Supplementary Table 1. Location and environmental parameters for each station of the cruise. All the parameters are averaged from 5 to 200 m depth. LT is location time. The parameter Ω_{ar} is calculated. Values with an * are from station 18.

<table>
<thead>
<tr>
<th>Station code</th>
<th>Station name</th>
<th>Day (dd/mm/yyyy)</th>
<th>Time (LT)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Volume (m³)</th>
<th>Temperature (°C)</th>
<th>Salinity PSU</th>
<th>Fluorescense (μg L⁻¹)</th>
<th>pH</th>
<th>Ω_{ar}</th>
<th>NO₃</th>
<th>PO₄</th>
<th>$O₂$</th>
<th>$ρCO₂$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atlantic</td>
<td>5/2/2013</td>
<td>00:03</td>
<td>36.0348</td>
<td>-6.6421</td>
<td>1016</td>
<td>16.39</td>
<td>36.19</td>
<td>0.36</td>
<td>8.06</td>
<td>2.70</td>
<td>1.92</td>
<td>0.13</td>
<td>226.03</td>
<td>393.96</td>
</tr>
<tr>
<td>2</td>
<td>Gibraltar</td>
<td>5/3/2013</td>
<td>12:47</td>
<td>35.9505</td>
<td>-5.5613</td>
<td>537</td>
<td>14.68</td>
<td>37.20</td>
<td>0.11</td>
<td>8.06</td>
<td>2.68</td>
<td>4.18</td>
<td>0.22</td>
<td>191.05</td>
<td>407.19</td>
</tr>
<tr>
<td>3</td>
<td>Alboran Sea</td>
<td>5/4/2013</td>
<td>20:55</td>
<td>36.1213</td>
<td>-4.1853</td>
<td>1403</td>
<td>15.43</td>
<td>36.97</td>
<td>0.45</td>
<td>8.09</td>
<td>2.87</td>
<td>2.08</td>
<td>0.13</td>
<td>214.19</td>
<td>369.09</td>
</tr>
<tr>
<td>5</td>
<td>Southern Alguero-Balear</td>
<td>5/8/2013</td>
<td>10:44</td>
<td>38.5233</td>
<td>5.5453</td>
<td>459</td>
<td>14.60</td>
<td>37.89</td>
<td>0.18</td>
<td>8.10</td>
<td>2.97</td>
<td>1.22</td>
<td>0.05</td>
<td>224.38</td>
<td>368.25</td>
</tr>
<tr>
<td>6</td>
<td>Strait of Sardine</td>
<td>5/9/2013</td>
<td>20:34</td>
<td>38.2656</td>
<td>8.6873</td>
<td>423</td>
<td>14.60</td>
<td>38.13</td>
<td>0.19</td>
<td>8.08</td>
<td>2.96</td>
<td>2.30</td>
<td>0.15</td>
<td>212.38</td>
<td>389.51</td>
</tr>
<tr>
<td>7a</td>
<td>Strait of Sicily</td>
<td>5/11/2013</td>
<td>00:20</td>
<td>37.0381</td>
<td>13.1857</td>
<td>447</td>
<td>15.40</td>
<td>38.09</td>
<td>0.23</td>
<td>8.09</td>
<td>3.07</td>
<td>1.35</td>
<td>0.06</td>
<td>216.91</td>
<td>375.76</td>
</tr>
<tr>
<td>9</td>
<td>Ionian Sea</td>
<td>5/12/2013</td>
<td>11:31</td>
<td>35.1145</td>
<td>18.294</td>
<td>425</td>
<td>16.64</td>
<td>38.75</td>
<td>0.13</td>
<td>8.12</td>
<td>3.44</td>
<td>0.41</td>
<td>0.02</td>
<td>227.67</td>
<td>354.28</td>
</tr>
<tr>
<td>10</td>
<td>Southern Crete</td>
<td>5/14/2013</td>
<td>14:40</td>
<td>33.813</td>
<td>24.2664</td>
<td>320</td>
<td>16.70</td>
<td>39.04</td>
<td>0.12</td>
<td>8.11</td>
<td>3.43</td>
<td>1.03</td>
<td>0.03</td>
<td>211.61</td>
<td>368.15</td>
</tr>
<tr>
<td>11</td>
<td>Eastern Basin</td>
<td>5/15/2013</td>
<td>13:01</td>
<td>33.5025</td>
<td>28.0015</td>
<td>372</td>
<td>17.73</td>
<td>38.85</td>
<td>0.10</td>
<td>8.12</td>
<td>3.61</td>
<td>0.58</td>
<td>0.02</td>
<td>224.16</td>
<td>361.25</td>
</tr>
<tr>
<td>12</td>
<td>Nile Delta</td>
<td>5/17/2013</td>
<td>03:14</td>
<td>33.2155</td>
<td>32.002</td>
<td>364</td>
<td>18.18</td>
<td>39.06</td>
<td>0.15</td>
<td>8.11</td>
<td>3.56</td>
<td>0.50</td>
<td>0.03</td>
<td>225.32</td>
<td>369.06</td>
</tr>
<tr>
<td>13</td>
<td>Lebanon</td>
<td>5/17/2013</td>
<td>16:15</td>
<td>34.2242</td>
<td>33.225</td>
<td>397</td>
<td>17.80</td>
<td>38.96</td>
<td>0.16</td>
<td>8.11</td>
<td>3.53</td>
<td>0.40</td>
<td>0.03</td>
<td>222.81</td>
<td>370.02</td>
</tr>
<tr>
<td>14</td>
<td>Antikythera Strait</td>
<td>5/21/2013</td>
<td>6:06</td>
<td>35.6958</td>
<td>23.4219</td>
<td>334</td>
<td>16.90</td>
<td>39.06</td>
<td>0.12</td>
<td>8.13</td>
<td>3.57</td>
<td>0.37</td>
<td>0.03</td>
<td>229.53</td>
<td>347.83</td>
</tr>
<tr>
<td>15</td>
<td>Eastern Ionian Sea</td>
<td>5/21/2013</td>
<td>21:25</td>
<td>36.4022</td>
<td>20.8081</td>
<td>391</td>
<td>16.52</td>
<td>39.05</td>
<td>0.15</td>
<td>8.12</td>
<td>3.40</td>
<td>1.08</td>
<td>0.04</td>
<td>228.12</td>
<td>352.18</td>
</tr>
<tr>
<td>17</td>
<td>Adriatic Sea</td>
<td>5/23/2013</td>
<td>21:09</td>
<td>41.8364</td>
<td>17.2546</td>
<td>440</td>
<td>16.34</td>
<td>38.82</td>
<td>0.16</td>
<td>8.13</td>
<td>3.50</td>
<td>0.90</td>
<td>0.03</td>
<td>231.22</td>
<td>348.93</td>
</tr>
<tr>
<td>16</td>
<td>Otranto Strait</td>
<td>5/24/2013</td>
<td>23:49</td>
<td>40.2342</td>
<td>18.8377</td>
<td>385</td>
<td>15.14</td>
<td>38.81</td>
<td>0.20</td>
<td>8.10</td>
<td>3.22</td>
<td>1.70</td>
<td>0.05</td>
<td>229.39</td>
<td>379.20</td>
</tr>
<tr>
<td>16-18</td>
<td>Between Otranto Strait and Central Ionian</td>
<td>5/25/2013</td>
<td>09:30</td>
<td>37.7067</td>
<td>18.5186</td>
<td>426</td>
<td>16.15*</td>
<td>38.88*</td>
<td>0.14*</td>
<td>8.11</td>
<td>3.40</td>
<td>1.97</td>
<td>0.06</td>
<td>216.01</td>
<td>359.78</td>
</tr>
<tr>
<td>19</td>
<td>Tyrhenian Ionia</td>
<td>5/27/2013</td>
<td>12:30</td>
<td>39.8294</td>
<td>12.5157</td>
<td>391</td>
<td>15.05</td>
<td>38.29</td>
<td>0.18</td>
<td>8.12</td>
<td>3.21</td>
<td>1.60</td>
<td>0.07</td>
<td>212.45</td>
<td>354.12</td>
</tr>
<tr>
<td>20</td>
<td>Northern Alguero-Balear</td>
<td>5/29/2013</td>
<td>20:00</td>
<td>41.3171</td>
<td>5.6657</td>
<td>356</td>
<td>14.08</td>
<td>38.39</td>
<td>0.36</td>
<td>8.14</td>
<td>3.24</td>
<td>4.01</td>
<td>0.20</td>
<td>208.91</td>
<td>343.27</td>
</tr>
<tr>
<td>21</td>
<td>Central Alguero-Balear</td>
<td>5/30/2013</td>
<td>10:30</td>
<td>40.0736</td>
<td>5.9474</td>
<td>392</td>
<td>14.51</td>
<td>37.88</td>
<td>0.17</td>
<td>8.11</td>
<td>3.03</td>
<td>0.81</td>
<td>0.04</td>
<td>233.14</td>
<td>362.91</td>
</tr>
</tbody>
</table>
Supplementary Table 2. Relative and absolute abundance of pteropods collected from BONGO nets. Western stations are 1-7a, 19-22 and Eastern stations are 9-'16-18’.

Absolute abundance (individuals m⁻²)

<table>
<thead>
<tr>
<th>Station</th>
<th>Station</th>
<th>H. inflata</th>
<th>L. trochiformis</th>
<th>L. bulimoides</th>
<th>Other Limaciniidae</th>
<th>C. inflexa</th>
<th>Other Cavoliniidae</th>
<th>C. acicula</th>
<th>C. conica</th>
<th>S. subula</th>
<th>Other Creseidae</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic</td>
<td>1</td>
<td>0.049</td>
<td>0.010</td>
<td>0.038</td>
<td>0.002</td>
<td>0.022</td>
<td>0.000</td>
<td>0.037</td>
<td>0.049</td>
<td>0.010</td>
<td>0.002</td>
<td>0.219</td>
</tr>
<tr>
<td>Gibraltar</td>
<td>2</td>
<td>0.196</td>
<td>0.019</td>
<td>0.119</td>
<td>0.006</td>
<td>0.047</td>
<td>0.002</td>
<td>0.065</td>
<td>0.039</td>
<td>0.007</td>
<td>0.002</td>
<td>0.501</td>
</tr>
<tr>
<td>Alboran Sea</td>
<td>3</td>
<td>0.523</td>
<td>0.003</td>
<td>0.249</td>
<td>0.008</td>
<td>0.007</td>
<td>0.001</td>
<td>0.154</td>
<td>0.200</td>
<td>0.019</td>
<td>0.011</td>
<td>1.176</td>
</tr>
<tr>
<td>S. central W. Med.</td>
<td>5</td>
<td>0.031</td>
<td>0.007</td>
<td>0.026</td>
<td>0.002</td>
<td>0.020</td>
<td>0.002</td>
<td>0.052</td>
<td>0.305</td>
<td>0.015</td>
<td>0.004</td>
<td>0.464</td>
</tr>
<tr>
<td>Str. of Sardinia</td>
<td>6</td>
<td>0.026</td>
<td>0.000</td>
<td>0.092</td>
<td>0.007</td>
<td>0.000</td>
<td>0.000</td>
<td>0.007</td>
<td>0.028</td>
<td>0.002</td>
<td>0.002</td>
<td>0.165</td>
</tr>
<tr>
<td>Str. of Sicily</td>
<td>7a</td>
<td>0.018</td>
<td>0.056</td>
<td>0.013</td>
<td>0.002</td>
<td>0.022</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.114</td>
</tr>
<tr>
<td>S. of Ionian Sea</td>
<td>9</td>
<td>1.278</td>
<td>0.475</td>
<td>1.584</td>
<td>0.099</td>
<td>0.056</td>
<td>0.000</td>
<td>0.061</td>
<td>0.054</td>
<td>0.005</td>
<td>0.002</td>
<td>3.614</td>
</tr>
<tr>
<td>Off S. Crete</td>
<td>10</td>
<td>0.550</td>
<td>0.394</td>
<td>0.034</td>
<td>0.025</td>
<td>0.019</td>
<td>0.000</td>
<td>0.034</td>
<td>0.013</td>
<td>0.003</td>
<td>0.003</td>
<td>1.075</td>
</tr>
<tr>
<td>Eastern Basin</td>
<td>11</td>
<td>0.153</td>
<td>0.027</td>
<td>0.046</td>
<td>0.000</td>
<td>0.005</td>
<td>0.000</td>
<td>0.011</td>
<td>0.003</td>
<td>0.000</td>
<td>0.003</td>
<td>0.247</td>
</tr>
<tr>
<td>Off Nile delta</td>
<td>12</td>
<td>0.093</td>
<td>0.038</td>
<td>0.069</td>
<td>0.003</td>
<td>0.025</td>
<td>0.000</td>
<td>0.025</td>
<td>0.014</td>
<td>0.003</td>
<td>0.003</td>
<td>0.272</td>
</tr>
<tr>
<td>Off Lebanon</td>
<td>13</td>
<td>0.987</td>
<td>0.063</td>
<td>0.020</td>
<td>0.013</td>
<td>0.018</td>
<td>0.000</td>
<td>0.645</td>
<td>0.191</td>
<td>0.063</td>
<td>0.010</td>
<td>2.010</td>
</tr>
<tr>
<td>Antikythera Str.</td>
<td>14</td>
<td>1.677</td>
<td>1.428</td>
<td>1.162</td>
<td>0.042</td>
<td>0.009</td>
<td>0.000</td>
<td>0.072</td>
<td>0.057</td>
<td>0.000</td>
<td>0.000</td>
<td>4.446</td>
</tr>
<tr>
<td>E. Ionian Sea</td>
<td>15</td>
<td>0.488</td>
<td>0.327</td>
<td>0.504</td>
<td>0.041</td>
<td>1.440</td>
<td>0.000</td>
<td>0.552</td>
<td>0.601</td>
<td>0.036</td>
<td>0.013</td>
<td>4.003</td>
</tr>
<tr>
<td>Otranto Str.</td>
<td>16</td>
<td>0.818</td>
<td>2.353</td>
<td>1.894</td>
<td>0.002</td>
<td>0.016</td>
<td>0.000</td>
<td>0.036</td>
<td>0.034</td>
<td>0.000</td>
<td>0.000</td>
<td>0.270</td>
</tr>
<tr>
<td>Adriatic Sea</td>
<td>17</td>
<td>0.066</td>
<td>0.070</td>
<td>0.132</td>
<td>0.052</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>5.205</td>
</tr>
<tr>
<td>N. Ionian Sea</td>
<td>16-18</td>
<td>0.049</td>
<td>0.040</td>
<td>0.019</td>
<td>0.002</td>
<td>0.005</td>
<td>0.000</td>
<td>0.002</td>
<td>0.005</td>
<td>0.002</td>
<td>0.000</td>
<td>0.124</td>
</tr>
<tr>
<td>Tyrrhenian Sea</td>
<td>19</td>
<td>0.340</td>
<td>0.445</td>
<td>0.023</td>
<td>0.000</td>
<td>0.018</td>
<td>0.000</td>
<td>0.090</td>
<td>0.064</td>
<td>0.008</td>
<td>0.003</td>
<td>0.990</td>
</tr>
<tr>
<td>N-central W. Med.</td>
<td>20</td>
<td>0.000</td>
</tr>
<tr>
<td>Central W. Med.</td>
<td>21</td>
<td>0.120</td>
<td>0.138</td>
<td>0.041</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.102</td>
<td>0.077</td>
<td>0.000</td>
<td>0.003</td>
<td>0.480</td>
</tr>
<tr>
<td>Catalano-Balear</td>
<td>22</td>
<td>0.018</td>
<td>0.015</td>
<td>0.000</td>
<td>0.000</td>
<td>0.015</td>
<td>0.000</td>
<td>0.012</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Relative abundance (%)

<table>
<thead>
<tr>
<th>Station</th>
<th>Station</th>
<th>H. inflata</th>
<th>L. trochiformis</th>
<th>L. bulimoides</th>
<th>Other Limaciniidae</th>
<th>C. inflexa</th>
<th>Other Cavoliniidae</th>
<th>C. acicula</th>
<th>C. conica</th>
<th>S. subula</th>
<th>Other Creseidae</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic</td>
<td>1</td>
<td>22.4</td>
<td>4.5</td>
<td>17.5</td>
<td>0.9</td>
<td>9.9</td>
<td>0.0</td>
<td>17.0</td>
<td>22.4</td>
<td>4.5</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Gibraltar</td>
<td>2</td>
<td>39.0</td>
<td>3.7</td>
<td>23.8</td>
<td>1.1</td>
<td>9.3</td>
<td>0.4</td>
<td>13.0</td>
<td>7.8</td>
<td>1.5</td>
<td>0.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Alboran Sea</td>
<td>3</td>
<td>44.5</td>
<td>0.2</td>
<td>21.2</td>
<td>0.7</td>
<td>0.6</td>
<td>0.1</td>
<td>13.1</td>
<td>17.0</td>
<td>1.6</td>
<td>1.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>Stations</td>
<td>SLT</td>
<td>SLT</td>
<td>SLT</td>
<td>SLT</td>
<td>SLT</td>
<td>SLT</td>
<td>SLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. central W. Med.</td>
<td>5</td>
<td>6.6</td>
<td>1.4</td>
<td>5.6</td>
<td>0.5</td>
<td>4.2</td>
<td>0.5</td>
<td>11.3</td>
<td>65.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str. of Sardinia</td>
<td>6</td>
<td>15.7</td>
<td>0.0</td>
<td>55.7</td>
<td>4.3</td>
<td>0.0</td>
<td>0.0</td>
<td>4.3</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str. of Sicily</td>
<td>7a</td>
<td>15.7</td>
<td>49.0</td>
<td>11.8</td>
<td>2.0</td>
<td>19.6</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. of Ionian Sea</td>
<td>9</td>
<td>35.4</td>
<td>13.2</td>
<td>43.8</td>
<td>2.7</td>
<td>1.6</td>
<td>0.0</td>
<td>1.7</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off S. Crete</td>
<td>10</td>
<td>51.2</td>
<td>36.6</td>
<td>3.2</td>
<td>2.3</td>
<td>1.7</td>
<td>0.0</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Basin</td>
<td>11</td>
<td>62.0</td>
<td>10.9</td>
<td>18.5</td>
<td>0.0</td>
<td>2.2</td>
<td>0.0</td>
<td>4.3</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Nile delta</td>
<td>12</td>
<td>34.3</td>
<td>14.1</td>
<td>25.3</td>
<td>1.0</td>
<td>9.1</td>
<td>0.0</td>
<td>9.1</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Lebanon</td>
<td>13</td>
<td>49.1</td>
<td>3.1</td>
<td>1.0</td>
<td>0.6</td>
<td>0.9</td>
<td>0.0</td>
<td>32.1</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antikythera Str.</td>
<td>14</td>
<td>37.7</td>
<td>32.1</td>
<td>26.1</td>
<td>0.9</td>
<td>0.2</td>
<td>0.0</td>
<td>1.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Ionian Sea</td>
<td>15</td>
<td>12.2</td>
<td>8.2</td>
<td>12.6</td>
<td>1.0</td>
<td>36.0</td>
<td>0.0</td>
<td>13.8</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otranto Str.</td>
<td>16</td>
<td>15.7</td>
<td>45.2</td>
<td>36.4</td>
<td>1.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adriatic Sea</td>
<td>17</td>
<td>24.4</td>
<td>26.1</td>
<td>48.7</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Ionian Sea</td>
<td>16-18</td>
<td>39.6</td>
<td>32.1</td>
<td>15.1</td>
<td>1.9</td>
<td>3.8</td>
<td>0.0</td>
<td>1.9</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrrhenian Sea</td>
<td>19</td>
<td>34.4</td>
<td>45.0</td>
<td>2.3</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>9.0</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-central W. Med.</td>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central W. Med.</td>
<td>21</td>
<td>25.0</td>
<td>28.7</td>
<td>8.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>21.3</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalano-Balear</td>
<td>22</td>
<td>30</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Stations</td>
<td>1-7a</td>
<td>31.7</td>
<td>16.6</td>
<td>14.5</td>
<td>0.6</td>
<td>3.6</td>
<td>0.2</td>
<td>12.5</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Stations</td>
<td>9-16-18°</td>
<td>29.0</td>
<td>24.5</td>
<td>25.7</td>
<td>1.3</td>
<td>7.5</td>
<td>0.0</td>
<td>6.8</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Stations</td>
<td>1-22</td>
<td>29.4</td>
<td>23.2</td>
<td>23.8</td>
<td>1.2</td>
<td>6.8</td>
<td>0.0</td>
<td>7.7</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- SLT: Salinity (in practical salinity units)
- ‘Str.’: Strait
- ‘Basin’: Basin
- ‘Delta’: Delta
Supplementary Table 3. Loadings of the environmental parameters of the PCA and Pearson’s correlation coefficients for the relationships between the environmental parameters and PCA factors as well as correlation coefficients for total abundance and the abundances of each species with the environment parameters and PCA factors. The binary logistic regression model uses two groups (low abundance and high abundance) to predict the odds of a station having low abundance (Exp[B]) with 90% confidence. Kruskal-Wallis Test indicates significant differences in total and individual species abundance between western and eastern stations. OTMC = Omnibus test for model coefficients. Nagelkerk R-square is used. ^ indicates significance at the 0.1 level, * at the 0.05 level and ** 0.01 level.

<table>
<thead>
<tr>
<th>PCA results</th>
<th>Abundances</th>
<th>Binary Logistic Regression Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td>Factor 2</td>
<td>H. inflata</td>
</tr>
<tr>
<td>Factor 1</td>
<td>1</td>
<td>.459*</td>
</tr>
<tr>
<td>Factor 2</td>
<td>1</td>
<td>.231</td>
</tr>
</tbody>
</table>

Environmental Factors

<table>
<thead>
<tr>
<th>Environmental Factors</th>
<th>Temperature</th>
<th>.678</th>
<th>-.449</th>
<th></th>
<th>.470*</th>
<th>.224</th>
<th>.258</th>
<th>.133</th>
<th>.342</th>
<th>.067</th>
<th>.32</th>
<th>.378*</th>
<th></th>
<th>.062^</th>
<th>.405</th>
<th>.183</th>
<th>.898</th>
<th>.036*</th>
<th>.271</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td>.852</td>
<td>.305</td>
<td></td>
<td></td>
<td>.359</td>
<td>.325</td>
<td>.278</td>
<td>.207</td>
<td>.191</td>
<td>.024</td>
<td>.039</td>
<td>.38*</td>
<td></td>
<td>.195</td>
<td>.306</td>
<td>.068</td>
<td>1.377</td>
<td>.125</td>
<td>.153</td>
</tr>
<tr>
<td>pH</td>
<td>.746</td>
<td>.653</td>
<td></td>
<td></td>
<td>.372</td>
<td>.439^</td>
<td>.381^</td>
<td>.132</td>
<td>.073</td>
<td>.021</td>
<td>-.09</td>
<td>.431*</td>
<td></td>
<td>.189</td>
<td>0</td>
<td>0</td>
<td>25484.594</td>
<td>.131</td>
<td>.149</td>
</tr>
<tr>
<td>O₂</td>
<td>.933</td>
<td>.215</td>
<td></td>
<td></td>
<td>.482*</td>
<td>.414^</td>
<td>.373</td>
<td>.134</td>
<td>.21</td>
<td>-.02</td>
<td>.079</td>
<td>.465*</td>
<td></td>
<td>.087^</td>
<td>.02</td>
<td>0</td>
<td>.859</td>
<td>.047*</td>
<td>.246</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>-.575</td>
<td>.179</td>
<td></td>
<td></td>
<td>-.293</td>
<td>-.271</td>
<td>-.245</td>
<td>-.139</td>
<td>-.107</td>
<td>-.002</td>
<td>.015</td>
<td>-.306</td>
<td></td>
<td>.648</td>
<td>12.228</td>
<td>.001</td>
<td>101345.651</td>
<td>.638</td>
<td>.015</td>
</tr>
<tr>
<td>NO₂</td>
<td>-.804</td>
<td>.514</td>
<td></td>
<td></td>
<td>-.513*</td>
<td>-.348</td>
<td>-.368</td>
<td>-.106</td>
<td>-.287</td>
<td>-.206</td>
<td>-.221</td>
<td>-.474*</td>
<td></td>
<td>.08*</td>
<td>4.616</td>
<td>1.097</td>
<td>19.433</td>
<td>.018*</td>
<td>.336</td>
</tr>
<tr>
<td>PO₄</td>
<td>-.882</td>
<td>.374</td>
<td></td>
<td></td>
<td>-.439^</td>
<td>-.365</td>
<td>-.346</td>
<td>-.148</td>
<td>-.241</td>
<td>-.183</td>
<td>-.152</td>
<td>-.451*</td>
<td></td>
<td>.134</td>
<td>9.09e+08</td>
<td>.135</td>
<td>6.12702E+18</td>
<td>.048*</td>
<td>.245</td>
</tr>
<tr>
<td>O₂</td>
<td>.669</td>
<td>.333</td>
<td></td>
<td></td>
<td>.328</td>
<td>.374</td>
<td>.424^</td>
<td>.181</td>
<td>.184</td>
<td>.236</td>
<td>.08</td>
<td>.452*</td>
<td></td>
<td>.23</td>
<td>.931</td>
<td>.844</td>
<td>1.027</td>
<td>.472</td>
<td>.035</td>
</tr>
<tr>
<td>N₂0</td>
<td>-.643</td>
<td>.662</td>
<td></td>
<td></td>
<td>-.363</td>
<td>-.428^</td>
<td>-.39*</td>
<td>-.186</td>
<td>-.09</td>
<td>-.132</td>
<td>.063</td>
<td>-.449*</td>
<td></td>
<td>.155</td>
<td>1.057</td>
<td>.991</td>
<td>1.128</td>
<td>.104</td>
<td>.170</td>
</tr>
</tbody>
</table>

Kruskal-Wallis test

<table>
<thead>
<tr>
<th>χ²(2)</th>
<th>4.17</th>
<th>6.61</th>
<th>7.01</th>
<th>3.29</th>
<th>.24</th>
<th>.01</th>
<th>.04</th>
<th>.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>.04*</td>
<td>.01*</td>
<td>.01*</td>
<td>.07^</td>
<td>.62</td>
<td>.94</td>
<td>.85</td>
<td>.82</td>
</tr>
</tbody>
</table>
Supplementary Figure 1. PCA graphs of environmental factors overlaid with absolute abundance values on station scores of **A** *L. inflata*, **B** *L. trochiformis*, **C** *L. bulimoides*, **D** *C. inflexa*, **E** *C. acicula*, **F** *C. conica* and **G** *S. subula*. Stations in blue indicate western Mediterranean stations (1-7a and 19-22) and stations in red indicate eastern stations (9-16-18).