Herbicide weed control increases nutrient leaching as compared to mechanical weeding in a large-scale oil palm plantation

Greta Formaglio¹, Edzo Veldkamp¹, Xiaohong Duan ², Aiyen Tjoa³, Marife D. Corre¹

¹Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Göttingen, 37073, Germany
²Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munich, 85764, Germany
³Faculty of Agriculture, Tadulako University, Palu, 94118, Indonesia

Correspondence to: Greta Formaglio (gformag@gwdg.de)
Abstract

Nutrient leaching in intensively managed oil palm plantations can diminish soil fertility and water quality. There is a need to reduce this environmental footprint without sacrificing yield. We quantified nutrient leaching in a large-scale oil palm plantation on Acrisol soil with factorial treatment combinations of two fertilization rates (260 N, 50 P, 220 K kg ha\(^{-1}\) yr\(^{-1}\) as conventional practice, and 136 N, 17 P, 187 K kg ha\(^{-1}\) yr\(^{-1}\), equal to harvest export, as reduced management) and two weeding methods (conventional herbicide, and mechanical weeding as reduced management). Each of the four treatment combinations was represented by a 2500 m\(^2\) plot, replicated in four blocks. In each plot, soil-pore water was collected monthly at 1.5 m depth for one year in three management zones: palm circle, inter-row, and frond-stacked area. In the palm circle, nutrient leaching was low due to low solute concentrations and small drainage fluxes, resulting from large plant uptake. Conversely, in the inter-row, nitrate and aluminum leaching losses were high due to their high concentrations, large drainage fluxes, low plant uptake, and acidic pH. In the frond-stacked area, base cation leaching was high, presumably from frond litter decomposition, but N leaching was low. Mechanical weeding, even with conventional high fertilization rates, reduced leaching losses of all nutrients. Mechanical weeding with reduced fertilization had the lowest N and base cation leaching whereas its yield and economic gross margin remain comparable with the conventional management practices. Herbicide weed control decreased ground vegetation, and thereby reduced efficiency of soil nutrient retention. Our findings signified that mechanical weeding and reduced fertilization should be included in the Indonesian Ministry of Agriculture program for precision farming (e.g. variable rates with plantation age), particularly for large-scale plantations, and in the science-based policy recommendations, such as those endorsed by the Roundtable for Sustainable Palm Oil association.
1 Introduction

Agricultural expansion is a major driver of tropical deforestation (Geist and Lambin, 2002), which have global impacts on reducing carbon sequestration (Asner et al., 2010; van Straaten et al., 2015), greenhouse gas regulation (e.g. Meijide et al., 2020; Murdiyarso et al., 2010), and biodiversity (e.g. Clough et al., 2016) and increasing profit gains at the expense of ecosystem multifunctionality (Grass et al., 2020). Oil palm is the most important rapidly expanding tree-cash crop that replaces tropical forest in Southeast Asia (Gibbs et al., 2010; Carlson et al., 2013) due to its high yield with low production costs and rising global demand (Carter et al., 2007; Corley, 2009). Currently, Indonesia produces 57 % of palm oil worldwide (FAO, 2018) and this production is projected to expand in the future, threatening the remaining tropical forest (Vijay et al., 2016; Pirker et al., 2016). Forest to oil palm conversion is associated with a decrease in soil fertility, because of high nutrient export via harvest, reduced rates of soil-N cycling, and decreases in soil organic carbon (SOC) and nutrient stocks (Allen et al., 2015; Allen et al., 2016; van Straaten et al., 2015). The decline in soil fertility reinforces the dependency on fertilizer inputs, and a severe decline can lead to abandonment of the area with further expansion of oil palm plantations in another, exacerbating land-use change. Leaching can contribute to the impoverishment of soil nutrients as well as reduction in water quality and eutrophication of water bodies. Increased nutrient loads to water bodies due to agricultural expansion and intensification, common in temperate areas (Carpenter et al., 1998), are increasingly reported for tropical regions (Figueiredo et al., 2010; Teklu et al., 2018). Given the typically high precipitation rates, leaching losses can possibly be large in intensively managed plantations in the tropics, although deeply weathered tropical soils also have the capacity to store large quantities of N and P (Jankowski et al., 2018; Neill et al., 2013). Indeed, NO$_3^-$, the most leachable form of N, can be retained in the subsoil by anion exchange capacity of highly weathered acidic soils (Wong et al., 1990) whereas P can be fixed to Fe and Al (hydr)oxides of tropical soils (Roy et al., 2016). Nevertheless, there are some evidences of streamwater quality
reductions due to oil palm cultivation in Malaysia (Luke et al., 2017; Tokuchi et al., 2019), signifying the importance of quantifying nutrient leaching losses in other areas with expansive oil palm plantations, especially in Jambi, Indonesia, one of the hotspots of forest conversion to oil palm in Indonesia (Drescher et al., 2016).

Although oil palm plantations can possibly have low leaching losses, as a consequence of high evapotranspiration and thus low drainage fluxes (Tarigan et al., 2020), most of oil palm plantations are large-scale enterprises that are characterized by intensive management with high fertilization rates and herbicide application. Intensive agriculture in the tropics is associated with high N leaching losses (Huddell et al., 2020). Even in tree-cash or perennial crop plantations, despite their generally higher evapotranspiration and deeper rooting depth than annual crops, high fertilization rates result in sustained, large nutrient leaching losses (e.g. Cannavo et al., 2013; Wakelin et al., 2011). Large NO$_3^-$ leaching from high N fertilization is always accompanied by leaching of cations (Cusack et al., 2009; Dubos et al., 2017), impoverishing highly weathered tropical soils that are inherently low in base cations (Allen et al., 2016; Kurniawan et al., 2018). Fertilization is necessary to support high yields of oil palm plantations, but reduction in fertilization rates, e.g. to levels that compensate for nutrient export through harvest, may reduce nutrient leaching losses while maintaining high productivity. On the other hand, the use of herbicide for weed control can exacerbate nutrient leaching losses, as prolonged absence of ground vegetation reduces uptake of redistributed nutrients from applied fertilizers far from reach of crop roots (Abdalla et al., 2019). Herbicide weeding, common in large-scale oil palm plantation, is practiced in the area where the fertilizers are applied, to reduce competition for nutrients and water with ground vegetation, and in the inter-rows, to facilitate access during harvest (Corley and Tinker, 2016). However, herbicide not only eradicates aboveground vegetative parts but also removes roots slowing down regeneration. In contrast,
mechanical weeding only removes aboveground part, allowing relatively fast regeneration of ground vegetation, which could take up redistributed nutrients and could reduce leaching losses.

To investigate nutrient leaching losses in an oil palm plantation, the spatial structure created by the planting design and by the management practices must be taken into account, which is only partly considered in the sampling designs of previous studies. Three management zones in oil palm plantations can be identified: (1) the palm circle, an area around the palm’s trunk where the fertilizers are applied and weeded; (2) the inter-row, weeded less frequently than the palm circle but unfertilized; and (3) the frond-stacked area, usually every second inter-row, where the cut senesced fronds are piled up. In these management zones, the interplay of water fluxes, root uptake and soil nutrient contents determine the extent of nutrient leaching losses. The palm circle despite having direct fertilization have also large water and nutrient uptake (Nelson et al., 2006) because of high root density (Lamade et al., 1996) such that large leaching losses may only occur following pulse high fertilization and during high drainage (from high precipitation) events (Banabas et al., 2008a). The inter-row experiences higher water input from precipitation than the palm circle because of lower canopy interception (Banabas et al., 2008b), and large water flux within the soil because of low root uptake, stimulating nutrient transport to lower depths. However, as there is no direct fertilizer application on the inter-row, nutrient leaching may be low. The frond-stacked area receives nutrients from decomposition of nutrient-rich fronds (Kotowska et al., 2016) and such mulching with senesced fronds prevents runoff and promotes water infiltration as a consequence of enhanced macroporosity by increased organic matter (Moradi et al., 2015). High water infiltration may generate high water drainage fluxes, resulting in intermediate nutrient leaching losses in the frond-stacked area.

In this study, we aimed to quantify nutrient leaching losses in an intensively managed, large-scale oil palm plantation, and to assess if reduced intensity of management (i.e. reduced fertilization rates equal to harvest export and mechanical weeding) can reduce leaching losses.
in oil palm plantations. We tested these hypotheses: (1) leaching losses in the palm circle will be larger than in the other management zones because of direct fertilizer application; (2) leaching losses under herbicide application will be higher than mechanical weeding because of slower regeneration of ground vegetation that can augment nutrient retention; (3) nutrient leaching fluxes under conventional high fertilization rates will be substantial compared to reduced rates because of excessive nutrient inputs. Our study provides a systematic quantification of an important environmental footprint of oil palm production, taking into consideration its spatial variation in management zones, and evaluates the effectiveness of alternative management practices for leaching reduction.

2 Materials and methods

2.1 Study area and experimental design

This study was conducted in a state-owned oil palm plantation in Jambi province, Indonesia (1° 12’ 43” S, 103° 23’ 53” E, 73 m above sea level). Mean annual air temperature is 26.7 ± 1.0 °C and mean annual precipitation is 2235 ± 385 mm (1991–2011; data from Sultan Thaha airport, Jambi). During our study period (March 2017–February 2018), the mean daily air temperature was 26.3 °C and annual precipitation was 2772 mm, with a dry period between July and October (precipitation < 140 mm month⁻¹). The soil is highly weathered, loam Acrisol soil (Allen et al., 2015) and nutrient inputs from bulk precipitation in the area, measured in 2013, were 12.9 kg N, 0.4 kg P, 5.5 kg K ha⁻¹ yr⁻¹ (Kurniawan et al., 2018).

This oil palm plantation was established between 1998 and 2002, and so the palms were 16–20 years old during our study period. The plantation encompassed 2025 ha, with a planting density of approximately 142 palms ha⁻¹, spaced 8 m apart on rows. The rows between palms are used alternately for harvesting operations and to pile-up senesced fronds, which are regularly cut to facilitate harvesting of fruits; this frond-stacked area covers 15 % of the
plantation. The palm circle, 2 m radius from the trunk, wherein fertilizers are applied and weeded four times a year, covers 18 % of the plantation. The remaining 67 % can be classified as inter-row, which is not fertilized but weeded two times a year.

In November 2016, a two (fertilization rates) by two (weeding methods) factorial management experiment was established in this plantation as part of the framework of the EFForTS project, described in detail by Darras et al. (2019). For fertilization treatments, the conventional rates were 260 N, 50 P, 220 K kg ha⁻¹ yr⁻¹, whereas the reduced rates were 136 N, 17 P, 187 K kg ha⁻¹ yr⁻¹. Reduced fertilization rates were determined to compensate for nutrient exports via fruit harvest and were based on the nutrient concentrations measured in the fruit bunches multiplied by the annual yield. The fertilizer sources were urea (CH₂N₂O), triple superphosphate (Ca(H₂PO₄)₂·H₂O) and muriate of potash (KCl), and these were applied according to the plantation’s standard practices: split in two applications per year (in April and October), applied in a band within a 2 m radius from the palm, and this area was raked before fertilizer application. For both fertilization treatments, lime (426 kg dolomite ha⁻¹ yr⁻¹; CaMg(CO₃)₂) and micronutrients (142 kg Micro-Mag ha⁻¹ yr⁻¹ with 0.5 % B₂O₃, 0.5 % CuO, 0.25 % Fe₂O₃, 0.15 % ZnO, 0.1 % MnO and 18 % MgO) were also applied besides the N, P and K fertilizers, as commonly practiced in large-scale plantations on acidic Acrisol soils (Pahan, 2010). For weeding treatments, the conventional method was the use of herbicide (glyphosate), whereas the reduced method was mechanical weeding using a brush cutter. Glyphosate was applied following plantation’s standard practice: 1.5 L ha⁻¹ yr⁻¹ to the palm circle, split four times a year, and 0.75 L ha⁻¹ yr⁻¹ to the inter-row, split two times a year. The mechanical weeding was carried out in the same areas and frequencies as herbicide application. This management experiment comprised of four replicate blocks and each had four plots (50 m x 50 m each) assigned to four treatment combinations: conventional rate–herbicide,
conventional rate–mechanical weeding, reduced rate–herbicide, and reduced rate–mechanical weeding.

2.2 Soil water sampling

We collected monthly soil-pore water samples over one year, using suction cup lysimeters (P80 ceramic, maximum pore size 1 µm; CeramTec AG, Marktredwitz, Germany). We installed the lysimeters in January 2017, choosing two palms per plot and sampling in the three management zones: 1) in the palm circle, at 1 m from the palm trunk, 2) in the frond-stacked area, at about 4 m from the palm trunk, and 3) in the inter-row, at approximately 4 m from the palm trunk (Fig. A1). In total, 96 lysimeters were installed (4 treatment plots x 4 replicates x 2 subplots x 3 management zones). The lysimeters were inserted into the soil till 1.5 m depth, so that the soil-pore water was collected well below the rooting depth of 1 m which is common to oil palm plantations on loam Acrisol soils near our study site (Kurniawan et al., 2018). Starting in March 2017, soil water was sampled by applying 40 kPa vacuum (Kurniawan et al., 2018; Dechert et al., 2005) to the lysimeters and collected in dark glass bottles, which were stored in a bucket buried in the field. Once a week, we transferred the collected water into plastic bottles and transported them to the field station, where they were stored frozen. The collection continued over a month until a volume of 100 mL was collected from each lysimeter, or until the end of the month. The frozen water samples were transported by air freight to the University of Goettingen, Germany, where element concentrations were determined. We measured the concentrations of mineral N (NH_4^+ and NO_3^-), total dissolved N (TDN) and Cl by continuous flow injection colorimetry (SEAL Analytical AA3, SEAL Analytical GmbH, Norderstadt, Germany), as described in details by Kurniawan et al. (Kurniawan et al., 2018). Dissolved organic N (DON) was calculated as the difference between TDN and mineral N. We measured the concentrations of base cations (Na, K, Ca, Mg), total Al, total Fe, total Mn, total S, and total...
P with an inductively coupled plasma–atomic emission spectrometer (iCAP 6300; Thermo Fischer Scientific GmbH, Dreieich, Germany).

We determined a partial cation-anion charge balance of the major elements (concentrations > 0.03 mg L\(^{-1}\)) in soil-pore water by converting the concentrations to \(\mu\text{mol}_{\text{charge}} \text{L}^{-1}\). We assumed S to be in the form of sulfate (SO\(_4^{2-}\)) and total Al to have a charge of 3\(^+\). We calculated the contribution of organic acids (RCOO\(^-\)) and bicarbonate (HCO\(_3^-\)) as the difference between the measured cations and anions (2018).

2.3 Modeling water drainage

The water balance was modeled using the water sub-model of the Expert-N software, version 5.0 (Priesack, 2005), which was successfully used to estimate drainage fluxes from different land uses in Indonesia (Dechert et al., 2005; Kurniawan et al., 2018). The model inputs were climate data (solar radiation, temperature, precipitation, relative humidity, and wind speed), and soil (texture, bulk density, and hydraulic functions) and vegetation characteristics (biomass, leaf area index, and root distribution). The climate data were taken from the climatological station in the plantation (described in detail by Meijide et al., 2017), and the oil palm biomass was taken from a study on oil palm plantations near our study site (Kotowska et al., 2015). Soil bulk density and porosity in the top 10 cm were measured in each management zone at our study site, whereas for the 10–50 cm depth these were measured in the inter-row, assuming that the differences in soil bulk density among management zones would be minimal below the topsoil. Data for soil bulk density and porosity for the 50–200 cm depth, as well as soil texture, soil hydraulic parameters (i.e. water retention curve, saturated hydraulic conductivity and Van Genuchten parameters for the water retention curve), and root distribution were taken from Allen et al. (2015) and Kurniawan et al. (2018), choosing their studied oil palm plantations.
closest to our study site. Expert-N water sub-model calculates daily water drainage based on precipitation, evapotranspiration, canopy interception, runoff, and change in soil water storage. Evapotranspiration is calculated using Penman-Monteith method (Allen, 1998), applying a plant factor of 1.06 (Meijide et al., 2017), with plant transpiration based on leaf area index (LAI), plant biomass, and maximum rooting depth. The canopy interception is calculated from the percentage of throughfall and the maximum water storage capacity of the canopy. Runoff is calculated from soil texture and bulk density, which determine the water infiltration rate, and from the slope, which was 5% (Röll et al., 2019). The vertical water movement is calculated using Richard’s equation based on soil hydraulic functions.

To model the drainage in the different management zones, we used the measured soil bulk density and porosity in the top 10 cm and adjusted other input parameters to simulate differences in water balance in each management zone. For the palm circle, we set the LAI to 3.65, which is the maximum LAI measured at our site (Fan et al., 2015), to simulate high water uptake in the palm circle (Nelson et al., 2006) and maximum rooting depth to 1 m, which is reported for oil palm plantations near our site (Kurniawan et al., 2018). The percentage throughfall in the palm circle was set to 50% and the water storage capacity of oil palm trunk was set to 8.4 mm (Tarigan et al., 2018). For the inter-row, we set the LAI and the maximum rooting depth as half of the palm circle (1.8 LAI, 50 cm rooting depth), as roots are shallower between palms (Nelson et al., 2006); the throughfall was set to 10%, and the palm trunk’s water storage capacity was set to 4.7 mm (based on canopy storage capacity reported by Tarigan et al., 2018). For the frond-stacked area, the LAI was set to 0.75, which is half of the minimum measured in the studied plantation (Darras et al., 2019), as understory vegetation is absent at this zone. Values for interception in the frond-stacked area was set to the same values as the inter-row, whereas the runoff was set to 0, as mulching with senesced fronds slows down runoff (Tarigan et al., 2016).
For validation of the Expert-N water sub-model outputs, we measured soil water matric potential at depths of 30 cm and 60 cm over the study period and compared the measured values with the modeled matric potential. Matric potential was measured by installing a tensiometer (P80 ceramic, maximum pore size 1µm; CeramTec AG, Marktredwitz, Germany) at each depth in each management zone near to two palms in two treatments (i.e. conventional rate-herbicide, and reduced rate-mechanical weeding), for a total of 12 tensiometers. We summed the modeled daily drainage at 1.5 m depth to get the monthly drainage fluxes, which we then multiplied with the element concentrations in soil water to get the monthly nutrient leaching fluxes.

2.4 Soil biochemical characteristics and nutrient retention efficiency

We measured soil biochemical properties in the same sampling locations (Figure S1) at four depth intervals: 0–5 cm, 5–10 cm, 10–30 cm, and 30–50 cm. Soil samples from the same management zone in each plot were pooled to make one composite sample, totaling to 192 soil samples (4 treatments plots x 4 replicates x 3 management zones x 4 depths). The samples were air-dried and sieved (2 mm) and measured for pH (1:4 soil-to-water ratio) and for effective cation exchange capacity (ECEC), by percolating the soils with unbuffered 1 mol L⁻¹ NH₄Cl and measuring the cations (Ca, Mg, K, Na, Al, Fe, Mn) in percolates using ICP-AES. A subsample was finely ground and analyzed for organic C and total N using a CN analyzer (Vario EL Cube, Elemental Analysis Systems GmbH, Hanau, Germany), and for ¹⁵N natural abundance signature using isotope ratio mass spectrometer (IRMS; Delta Plus, Finnigan MAT, Bremen, Germany). We calculated the soil element stocks for each depth by multiplying the element concentration with the measured bulk density and summed for the top 50 cm; other soil characteristics (e.g. pH, ECEC, base saturation) in the top 50 cm soil were calculated as the depth-weighted average of the sampled depths.
In addition, we calculated the N and base cation retention efficiency in the soil for each experimental treatment and management zone following the formula: nutrient retention efficiency = 1 – (nutrient leaching loss / soil-available nutrient) (Kurniawan et al., 2018). We used the gross N mineralization rates in the top 5 cm soil (Table A1) as an index of soil-available N whereas soil-available base cations was the sum of the stocks of K, Na, Mg and Ca in the top 10 cm soil, expressed in mol\textsubscript{charge} m-2.

2.5 Statistical analyses

For soil biochemical properties measured once, we tested for differences among management zones as well as among experimental treatments for the entire 50 cm depth, using the analysis of variances (ANOVA) with Tukey HSD as a post hoc test. The soil variables that showed non-normal distribution or unequal variances, tested with Shapiro–Wilk and Levene’s tests, respectively, were log-transformed prior to the analysis. Base cation and N retention efficiency were also tested for differences between experimental treatments in the same way. For repeatedly measured variables, i.e. soil-pore water solute concentrations and leaching fluxes, we used linear mixed-effects models (LME; Bates et al., 2015) to assess the differences among management zones and treatments. For testing management zone differences, we conducted the LME with management zone as fixed effect and random effects for sampling months and experimental treatments nested with replicate plots, which were also nested with subplots. For testing treatment differences, we calculated for each replicate plot on each sampling month the area-weighted average of the three management zones (i.e. palm circle accounts for 18 % of the plantation area, the frond-stacked area 15 %, and the inter-row 67 %), and LME was carried out with treatment as fixed effect and random effects for sampling months and replicate plots nested with subplots. If the residuals of the LME models were not normally distributed, we applied either logarithmic or square root transformation. Differences were assessed with...
ANOVA (Kuznetsova et al., 2017) followed by Tukey HSD (Hothorn et al., 2008). We also used LME to assess differences in soil water matric potential among management zones, with management zone as fixed effect and measurement days and depth nested with treatment as random effects. Comparability between modeled and measured soil water matric potential for each depth in each management zone ($n = 50$ field measurements) was assessed using Pearson correlation test. All tests were considered significant at $P \leq 0.05$, except for soil pH which we considered a marginal significance at $P = 0.06$. All statistical analyses were performed with R version 3.6.1 (R Core Team, 2019).

3 Results

3.1 Soil biochemical properties and water balance

Soil biochemical properties in the top 50 cm did not differ between experimental treatments (all $P > 0.05$) but strongly differed among management zones (Table 1). The frond-stacked area, where senesced fronds were regularly piled like mulch material, had higher SOC and total N stocks ($P < 0.01$) compared to the other management zones. The inter-row, with regular weeding but without direct fertilizer and lime inputs, showed lower exchangeable base cation contents (i.e. Ca, Mg, K) compared to the other management zones ($P \leq 0.02$) and higher exchangeable Al content than the palm circle ($P = 0.01$). This was reflected in the lower base saturation and higher Al saturation in the inter-row compared to the other zones ($P < 0.01$). Also, inter-row had the lowest ECEC ($P < 0.01$) and marginally lower pH than the palm circle ($P = 0.06$). The palm circle, where fertilizers and lime were applied, had generally comparable exchangeable element contents with the frond-stacked area, except for K, which was higher in the palm circle ($P < 0.01$), and for Mn, which was higher in the frond-stacked area ($P < 0.01$).
There were high positive correlations between field-measured and modeled soil water matric potential (Fig. 1). The matric potential was generally lowest in the palm circle, intermediate in the inter-row, and highest in the frond-stacked area ($P < 0.01$). This pattern was also reflected in the low drainage flux in the palm circle and high drainage flux in the frond-stacked area (Table 2; Fig. 2). In the palm circle, the low drainage flux had resulted from high plant transpiration and interception whereas the high drainage flux in the frond-stacked area was due to low evapotranspiration and runoff with the senesced frond mulch (Table 2). In ratio to annual precipitation, the calculated annual evapotranspiration was 51 %, 31 %, and 38 % in the palm circle, frond-stacked area, and inter-row, respectively; annual drainage fluxes at 1.5 m depth were 20 % of precipitation in the palm circle, 65 % in the frond-stacked area, and 43 % in the inter-row. Seasonally, the monthly drainage fluxes had two peak periods, May and November, after consecutive days of moderate rainfall, and were lowest during the end of the dry season towards the start of the wet season (Fig. 2).

3.2 Differences in leaching losses among management zones and treatments

For element concentrations in soil-pore water at 1.5 m depth, treatment differences were exhibited clearly in the palm circle and inter-row (Fig. 3), with the herbicide treatment showing higher element concentrations than the mechanical weeding ($P \leq 0.02$). The frond-stacked area had generally lower ionic charge concentrations compared to the other management zones (Fig. 3). The dominant cations were Al^{3+}, Ca^{2+}, Mg^{2+}, K^+, and Na^+ across experimental treatments and management zones. Among the management zones, Al^{3+} concentrations were highest in the inter-row, intermediate in the palm circle, and lowest in the frond-stacked area ($P < 0.01$). The concentrations of Ca^{2+} were similar in the palm circle and frond-stacked area ($P = 0.42$), and these were higher than the inter-row ($P < 0.01$). The concentrations of Mg^{2+} and K^+ were higher in the palm circle than in the other two management zones ($P < 0.01$). The Na^+ concentrations
were higher in the palm circle and inter-row than in the frond-stacked area ($P < 0.01$). As for dissolved N, NH$_4^+$ concentrations were lowest in the frond-stacked area, followed by the palm circle, and highest in the inter-row ($P = 0.01$). Across treatments, NH$_4^+$ was 4–18 % of TDN whereas DON was 1–7 % of TDN. Thus, NO$_3^-$ was the main form of dissolved N, and this was highest in the inter-row, followed by the frond-stacked area, and lowest in the palm circle ($P < 0.01$). The dominant anion was Cl$^-$ with higher concentrations in the palm circle than in the other zones ($P < 0.01$).

Monthly leaching fluxes showed a common pattern among the major solutes (Fig. 4): there were two peaks of leaching losses (May and November) that followed fertilizer applications, and lower leaching losses during the dry season from July to October. Leaching fluxes of NO$_3^-$ showed similar pattern as its concentrations: higher in the inter-row, followed by the frond-stacked area, and lowest in the palm circle ($P < 0.01$; Fig. 4). Total Al leaching fluxes were also higher in the inter-row than the other zones ($P < 0.01$; Fig. 4). On the other hand, although base cation concentrations were large in the palm circle (Fig. 3), the low drainage fluxes in this zone (Fig. 2; Table 2) resulted in opposite patterns of base cation leaching fluxes among management zones; Ca, K, and Mg leaching were higher in the frond-stacked area than the palm circle and inter-row (all $P < 0.01$; Fig. 4). Leaching of Na was higher in both the frond-stacked area and inter-row than the palm circle ($P < 0.01$; Fig. 4).

Reduced intensity of management clearly influenced nutrient leaching losses (Fig. 5; Table 3). Specifically, mechanical weeding reduced NO$_3^-$ and cation leaching compared to herbicide weed control ($P \leq 0.03$; Fig. 5; Table 3). Leaching of NO$_3^-$ was highest in the conventional fertilization–herbicide treatment and lowest in reduced management treatments ($P \leq 0.02$; Fig. 5). This was also reflected in the leaching fluxes of accompanying cations; specifically, total Al and Ca leaching were higher in conventional fertilization–herbicide treatment than the reduced management treatments (all $P \leq 0.02$; Fig. 5).
cations, mechanical weeding clearly lowered leaching losses compared to herbicide weeding, in particular K and Na leaching in both fertilization rates and Mg leaching in conventional fertilization (all $P \leq 0.03$; Fig. 5).

3.3 Annual leaching losses and nutrient retention efficiency

In proportion to the applied fertilizer, annual leaching losses of TDN (Table 3) were 28% of the applied N in the herbicide treatment for both conventional and reduced fertilization rates, 24% in the mechanical weeding with conventional fertilization, and only 19% in the mechanical weeding with reduced fertilization. The annual leaching of K (Table 3) was 4% of the applied K fertilizer in the herbicide treatment and 3% in the mechanical weeding for both fertilization rates. In this highly weathered Acrisol soils with high capacity for P fixation by Fe and Al (hydr)oxides, there was no leaching of dissolved P (Table 3).

Both N and base cation retention efficiencies were generally lower in the inter-row compared to the other management zones ($P \leq 0.03$), except for reduced fertilization–mechanical weeding where there were no differences among management zones (Table 4). The area-weighted average N retention efficiency was comparable among experimental treatments ($P = 0.89$) but there was a trend of increasing efficiency with decreasing management intensity (Table 4). Base cation retention efficiency showed clear differences among experimental treatments for each management zones: in the palm circle, it was highest in mechanical weeding and lowest in the herbicide treatment ($P = 0.04$); in the frond-staked area and inter-row, it was lowest in the most intensive management treatment (conventional fertilization–herbicide) and highest in either mechanical weeding or reduced fertilization ($P \leq 0.05$; Table 4). The area-weighted average base cation retention efficiency was also clearly influenced by weeding
method, being lowest in herbicide treatment and highest in mechanical weeding both with conventional fertilization ($P = 0.03$; Table 4).

4 Discussion

4.1 Water model and temporal pattern of nutrient leaching losses

To our knowledge, this study is the first attempt to model drainage fluxes from the different management zones of an oil palm plantation, making our comparisons with literature values limited. Our modeled annual transpiration rate in the palm circle (Table 2) was remarkably similar to the values estimated with the same Penman–Monteith method (827–829 mm yr$^{-1}$; Meijide et al., 2017; Röll et al., 2019), and our average daily transpiration rate (2.3 mm d$^{-1}$) was within the range of that measured with drone-based photogrammetry (3 ± 1 mm d$^{-1}$; Ahongshangbam et al., 2019), all in the same oil palm plantation. Also, the modeled annual runoff in the palm circle and inter-row (Table 2) was within the range of runoff estimates in oil palm plantations in Jambi province (10–20 % of rainfall; Tarigan et al., 2016) and in Papua New Guinea (1.4–6 % of rainfall; Banabas et al., 2008b). Considering the areal proportions of the three management zones, the weighted-average drainage flux (1161 mm yr$^{-1}$) was lower than that estimated for smallholder oil palm plantations near our study site (1614 mm drainage flux with 3418 mm precipitation measured in 2013; Kurniawan et al., 2018), although their ratios to annual precipitation were comparable. Aside from the difference in precipitation during our study period compared to the relatively wet year of 2013, evapotranspiration rate is higher in large-scale than smallholder oil palm plantations in our study area (Röll et al., 2019), which would lead to lower drainage flux in large-scale plantation. Moreover, in the frond-stacked area, enhanced porosity from organic matter that facilitates water infiltration (Moradi et al., 2015), as indirectly indicated by its low soil bulk density (Table 1), combined with low
evapotranspiration and runoff, resulted in large drainage flux (Table 2). This suggests that piling senesced fronds may amend groundwater recharge, which could moderate discharge fluctuations in water catchments of oil palm converted areas (Tarigan et al., 2020). Based on these comparisons with literature values and on the good agreement between modeled and measured soil water matric potential (Fig. 1), we conclude that our modeled drainage fluxes were reliable.

The temporal peaks of nutrient leaching fluxes (May and November; Fig. 4) had resulted from the combined effect of high drainage flux and fertilizer application. The high drainage fluxes in May and November (Fig. 2) might have stimulated the downward transport of elements and decreased their residence time in the soil, and thus their adsorption onto the soil exchange sites (Lohse and Matson, 2005). These high water fluxes usually dilute the element concentrations in the soil-pore water; however, high concentrations were maintained because of fertilizer and lime applications in the same periods, resulting in parallel peaks of drainage and leaching fluxes (Figs. 2 and 4). The high NO$_3^-$ leaching following urea-N fertilization (Fig. 4) suggests increased nitrification (Silver et al., 2005), fast NO$_3^-$ transport through the soil column, and reduced anion adsorption capacity, which otherwise would have delayed anion leaching (Wong et al., 1990). The latter was possibly aggravated by the additional Cl$^-$ from fertilization with KCl (Fig. 3), which could saturate the soil anion exchange sites, particularly at this mature plantation with already 16–20 years of high fertilization rates. Large NO$_3^-$ leaching is always accompanied by large leaching of buffering cations (Dubos et al., 2017; Kurniawan et al., 2018), resulting in their similar temporal patterns (Fig. 4). These findings showed that fertilization should be avoided during periods of high drainage fluxes. Generally, the high drainage was a consequence of a protracted period of moderate rainfall (Fig. 2). Prediction of periods of high precipitation and drainage will further be confounded by climate change, which is widening the range between wet and dry seasons and increasing the
uncertainties in rainfall intensity and distribution (Chou et al., 2013; Feng et al., 2013).

Fertilization during the dry period is also not advisable given the high volatilization of applied urea even in acidic soil as this is always accompanied by liming (Goh et al., 2003; Pardon et al., 2016) and the low palm uptake during the dry season (Corley and Tinker, 2016). Thus, reduction of fertilization rates, e.g. at compensatory level equal to harvest export, seems a viable option to reduce leaching losses without sacrificing production. One other option is the use of organic amendments and slow-release fertilizers, which have been shown to reduce N leaching in tropical cropping systems (Nyamangara et al., 2003; Mohanty et al., 2018; Steiner et al., 2008) and to improve soil fertility in oil palm plantations (Comte et al., 2013; Boafo et al., 2020), as was also evident with mulching of senesced oil palm fronds (i.e. high SOC, total N, ECEC and base saturation in the frond-stacked area; Table 1).

4.2 Leaching losses in the different management zones

Contrary to our first hypothesis, leaching losses were generally higher in the inter-row, especially for mineral N (largely NO₃; Fig. 3), compared to the other zones, whereas the palm circle had the lowest leaching (Fig. 4). This strikingly large mineral N leaching losses in the inter-row were surprising given that this area did not receive direct fertilizer inputs (see section 2.1). This result suggests that mineral N was transported from the directly fertilized palm circle to the inter-row via surface and subsurface lateral flow as these two zones were just 3 m apart (Fig. A1). Surface transport of mineral N was probably a minor process at our site because of the low runoff (Table 2); in an oil palm plantation in Papua New Guinea, the loss of N fertilizer via surface runoff is only 0.3–2.2 kg N ha⁻¹ yr⁻¹ (Banabas et al., 2008b). Mineral N was probably predominantly transported to the inter-row via subsurface lateral flow. Acrisol soils are characterized by clay translocation from upper to lower depths that could create an impeding layer conducive to lateral water flow (Elsenbeer, 2001). Indeed, the clay contents of the Acrisol
soils at our study area increase with depth, and soil bulk density is highest at 100–150 cm than at 150–200 cm depth (Allen et al., 2016). In addition, the palm roots spreading from the palm circle to the inter-row may create channels for subsurface lateral flow of dissolved ions like NO$_3^-$ (Li and Ghodrati, 1994). Higher mineral N leaching in the inter-row than palm circle was also observed in Brazil and it was attributed to lower root density and higher N mineralization at increasing distance from the palm’s trunk (Schroth et al., 2000). Hence, a combination of lower root uptake, higher N mineralization, and subsurface lateral transport (particularly for NO$_3^-$) may all have contributed to higher mineral N leaching losses in the inter-row than the palm circle. The main accompanying cation for NO$_3^-$ leaching in the inter-rows was Al$^{3+}$ (Figs. 3 and 4), as this zone’s soil pH (Table 1) was within the Al-buffering range (pH 3–5; van Breemen et al., 1983), having no direct lime application and thus low base saturation (Table 1). Our findings showed that if leaching is measured only within the palm circle, this largely underestimates mineral N and Al leaching losses.

The palm circle had relatively low N leaching losses (Figs. 3 and 4) despite the direct application of fertilizer. This was probably due to the large root density in this zone that facilitates an efficient nutrient uptake (Edy et al., 2020; Nelson et al., 2006). Hence, the dominant anion in soil-pore water in the palm circle was Cl$^-$ (Fig. 3), enhanced by the applied KCl fertilizer, which was accompanied by high base cation concentrations relative to dissolved Al (Fig. 3). The former was due to the applied micromag fertilizer and dolomite (section 2.1), which increased pH and exchangeable bases and rendered Al in insoluble form (i.e. lower exchangeable Al; Table 1; Schlesinger and Bernhardt, 2013). Despite their high concentrations, the leaching fluxes of base cations in the palm circle (Fig. 4) were constrained by the low water drainage flux due to high evapotranspiration (Table 2).

The frond-stacked area was at the same distance from the palm circle as the inter-row (Fig. A1) but had substantially lower mineral N leaching losses (Figs. 3 and 4). Decomposition
of nutrient-rich fronds (Kotowska et al., 2016) resulted in high SOC and N stocks (Table 1), which can support large microbial biomass in this zone (Haron et al., 1998). Thus, the low mineral N leaching in the frond-stacked area may be attributed to immobilization of mineral N by large microbial biomass, converting mobile NO₃⁻ to less mobile organic N (e.g. Corre et al., 2010). In addition, it could be possible that palm root uptake of nutrients (including mineral N) was higher in the frond-stacked area compared to the inter-row as roots proliferate in nutrient-rich zones (Table 1; Hodge, 2004). This is supported by studies that showed higher root density and higher water uptake under the frond piles compared to the inter-row (Rüegg et al., 2019; Nelson et al., 2006). The high ECEC, base saturation and pH in frond-stacked area (Table 1), despite having no direct lime application, were due to the release of nutrients from decomposition of frond litter, which contain high levels of base cations (Kotowska et al., 2016). Thus, although leaching of base cations were larger in the frond-stacked area than in the inter-row (Fig. 4), these losses merely mirrored their high exchangeable levels (Table 1). Finally, the leaching of Al was low in the frond-stacked area (Figs. 3 and 4) because Al becomes insoluble as pH increased (i.e. lower exchangeable Al; Table 1). Altogether, these results highlighted the benefits of piling senesced fronds onto the soil to reduce leaching of mineral N and Al, which otherwise can potentially diminish ground water quality, and to amend soil fertility (Table 1). Oil palm plantations in other areas (e.g. Borneo; Rahman et al., 2018) were reported to practice piling of senesced fronds on every inter-row, which we did not observed in our study region as that is claimed to hinder access to palms during harvest; nonetheless, our findings implied that increase in the frond-stacked area can contribute to sustainable management practices of oil palm plantations.

4.3 Leaching losses under different intensity of management
There was a clear influence of management intensity treatments on nutrient leaching losses with a general reduction of leaching in reduced management intensity (Fig. 5; Table 3). In line with our second hypothesis, the weeding methods clearly influenced leaching losses with a common pattern of lower leaching fluxes in mechanical weeding than herbicide treatment (Fig. 5; Table 3). Mechanical weeding was associated with more ground vegetation cover (Darras et al., 2019) and higher nutrient retention efficiency than herbicide weeding (Table 4), suggesting that faster regrowth of understory vegetation by mechanical weeding have additionally contributed to the uptake of nutrients and thus reducing leaching losses. This is in line with some studies in temperate forests and a cedar plantation, which showed that understory vegetation can take up excess NO$_3^-$ in the soil (Olsson and Falkengren-Grerup, 2003) and reduce NO$_3^-$ leaching and the mobilization of Ca and Mg (Baba et al., 2011; Fukuzawa et al., 2006). Enhanced understory vegetation in oil palm plantations may also positively impact biodiversity by increasing plant species richness and soil macrofauna diversity and abundance (Luke et al., 2019; Ashton-Butt et al., 2018), which may facilitate uptake and recycling of nutrients. Increase in soil macrofauna might have contributed to lower leaching of Na with mechanical weeding (Fig. 5), since herbivores and decomposers take up a large amount of Na (Kaspari et al., 2009). In addition, the use of glyphosate is associated with possible health risks to workers and the environment (van Bruggen et al., 2018); also, the economic gross margin (i.e. revenues minus costs) is comparable between mechanical weeding and herbicide treatment because of needed labor for periodic mechanical cutting of resistant ground vegetation in oil palm plantations with herbicide weeding (Darras et al., 2019; Pahan, 2010). Altogether, these results advocate for the higher sustainability of mechanical weeding over herbicide application.

The reduction of N fertilization rates decreased NO$_3^-$ leaching, supporting our third hypothesis. Comparing conventional and reduced fertilization rates, there were no differences in total N stocks (section 3.1), mineral N levels (Darras et al., 2019), N retention efficiency
(Table 4) and oil palm yield (Darras et al., 2019), suggesting that excess N (above harvest export; section 2.1) from high N fertilization was largely lost through leaching (Table 3). The decreased Al and Ca leaching with reduced fertilization can be attributed to the lowered NO$_3^-$ leaching, since these were the accompanying cations (Figs. 4 and 5). Also, a reduction of Ca leaching could have resulted from the lower application rate of triple superphosphate fertilizer, which contains 16% of Ca. The reduced K fertilization had no effect on K leaching (Fig. 5) because K fertilization rate was only reduced by 15% of the conventional rate due to high K requirements of oil palm fruits (section 2.1). We conclude that this mature (16–20 years old) plantation with conventional management was overly fertilized for N, and that a reduction in N fertilization rate may be included in the Indonesian program for precision farming (Ministry of Agriculture of Indonesia, 2016) to reduce environmental footprint of oil palm production.

Comparing the N leaching losses in the studied plantation with other fertilized tropical plantations (Table A2), our plantation had higher N leaching than other large-scale oil palm plantations on similar soils with comparable fertilization rates (Omoti et al., 1983; Tung et al., 2009). However, in these studies the leaching losses were measured in the palm circle (Omoti et al., 1983) or the sampling location was not specified (Tung et al., 2009), such that N leaching may be underestimated as our results showed the high contribution of the inter-row to leaching losses (Figs. 3 and 4). The N leaching fluxes in our plantation were also higher than in smallholder oil palm plantations in the same area, which typically had much lower fertilization rates (Kurniawan et al., 2018). On the other hand, our plantation had lower N leaching losses than an oil palm plantation and coffee agroforestry systems on volcanic soils (Banabas et al., 2008b; Cannavo et al., 2013; Tully et al., 2012), which have high inherent nutrient contents, highly porous soils and high infiltration rates. The N leaching losses from our plantation were also lower than in banana plantations, characterized by very high fertilization rates (Wakelin et al., 2011; Armour et al., 2013).
The nutrients leached at 1.5 m depth should be considered lost from uptake of oil palm roots, as majority of the root mass and the highest root density are in the top 0.5 m depth (Nelson et al., 2006; Schroth et al., 2000; Kurniawan et al., 2018). The high leaching fluxes of NO$_3^-$ and Al implied a risk of groundwater pollution. During the high drainage fluxes following fertilization, NO$_3^-$ concentrations in soil-pore water reached to 20–40 mg L$^{-1}$ in the inter-row (covering 67% of the plantation area), which was close to the 50 mg L$^{-1}$ limit for drinking water (WHO, 2011), and Al concentrations in soil-pore water exceeded the limit of 0.2 mg L$^{-1}$ in 60% of the samples. Nevertheless, before reaching to streams and rivers, these NO$_3^-$ and Al concentrations can be diluted by surface flow and retained in the soil along flow paths: NO$_3^-$ can be temporarily adsorbed in the deeper layers of highly weathered soils by its inherently high anion exchange capacity (Harmand et al., 2010; Jankowski et al., 2018) and can be consumed by denitrification (Wakelin et al., 2011). Riparian buffers can mitigate the transport of these agricultural pollutants to streams (Luke et al., 2017; Chellaiah and Yule, 2018). Restoring riparian buffers in former forests converted to oil palm plantations have been listed as one sustainability criteria, endorsed by the Roundtable for Sustainable Palm Oil association (RSPO, 2018), and may provide additional regulation services (Woodham et al., 2019).

5 Conclusions

Our findings show that nutrient leaching losses in an oil palm plantation differed among management zones, as a result of fertilization, liming, mulching and of different drainage fluxes. The reduction of management intensity, i.e. mechanical weeding with reduced fertilization rates, was effective in reducing nutrient leaching losses without reduction in yield at least during the first two years of this experiment (Darras et al., 2019). Long-term investigation of this management experiment is important to get a reliable response of yield and a holistic economic analysis, including valuation of regulation services. Greenhouse gas emissions should also be quantified, as another important parameter of environmental footprint.
of oil palm production. Our findings and these further investigations should be incorporated into science-based policy recommendations such as those endorsed by the RSPO.
Data availability

All data of this study are deposited at the EFForTS-IS data repository (https://efforts-is.uni-goettingen.de), an internal data-exchange platform, which is accessible to all members of the Collaborative Research Center (CRC) 990. Based on the data sharing agreement within the CRC 990, these data are currently not publicly accessible but will be made available through a written request to the senior author.

Author contribution

GF performed the experiments, analysed the data and wrote the manuscript in consultation with MDC. EV and MDC conceived and planned the experiment. XD helped carry out the water model simulations. AT aided in field activities organization and granting collaborations agreements. All authors contributed to the final version of the manuscript.

Competing interests

No conflict of interest to declare

Acknowledgments

This study was part of the project A05 in the CRC990-EFForTS, funded by the German Research Foundation (DFG, Project ID: 192626868 – SFB 990). We acknowledge the collaborations with PTPN VI plantation, Kevin Darras, and project Z01, for the implementation and maintenance of this field experiment. We thank Christian Stiegler, with project A03, for the climate data, and Eckart Priesack for the Expert-N water sub-model. We especially thank our field and laboratory assistants for their valuable dedications in all field and laboratory activities. This research was conducted under the research permit of Ministry of Research and Technology of Indonesia, 539351/SIP/FRP/E5/Dit.KI/X/2016.
References

Meijide, A., Melati, D., Nomura, M., Pérez-Cruzado, C., Qaim, M., Siregar, I. Z.,
Ecological and socio-economic functions across tropical land use systems after rainforest
conversion. Philosophical Transactions of the Royal Society of London. Series B,
Dubos, B., Snoeck, D., and Flori, A.: Excessive use of fertilizer can increase leaching
processes and modify soil reserves in two Ecuadorian oil palm plantations, Experimental
between tropical lowland rainforests and oil palm plantations, Frontiers in Plant Science,
Elsenbeer, H.: Hydrologic flowpaths in tropical rainforest soilscape - a review, Hydrological
Fan, Y., Roupsard, O., Bernoux, M., Le Maire, G., Panferov, O., Kotowska, M. M., and
Knohl, A.: A sub-canopy structure for simulating oil palm in the Community Land Model
(CLM-Palm): phenology, allocation and yield, Geoscientific Model Development, 8,
Feng, X., Porporato, A., and Rodriguez-Iturbe, I.: Changes in rainfall seasonality in the
Figueiredo, R. O., Markewitz, D., Davidson, E. A., Schuler, A. E., Watrin, O. d. S., and Silva,
P. d. S.: Land-use effects on the chemical attributes of low-order streams in the eastern
Food and Agriculture Organization, FAOSTAT: http://faostat.fao.org/site/339/default.aspx,
last access: 30 March 2020.
Fukuzawa, K., Shibata, H., Takagi, K., Nomura, M., Kurima, N., Fukazawa, T., Satoh, F., and
Sasa, K.: Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-

Tables and figures

Table 1 Soil physical and biochemical characteristics (mean ± standard errors, \(n = 4 \) plots) in the top 50 cm depth for each management zone, averaged across experimental treatments. Means within a row followed by different letters indicate significant differences among management zones (one-way ANOVA with Tukey HSD or Kruskal–Wallis H test with multiple comparisons extension at \(P \leq 0.05 \)). Bulk density measured in the top 10 cm of soil, whereas all the other parameters are for the 0–50 cm soil depth: element stocks are the sum of the sampled soil depths (0–5 cm, 5–10 cm, 10–30 cm and 30–50 cm) and the rest are depth-weighted averages, calculated for each replicate plot. ECEC, effective cation exchange capacity.

<table>
<thead>
<tr>
<th>Soil properties</th>
<th>Palm circle</th>
<th>Frond-stacked area</th>
<th>Inter-row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density g cm(^{-3})</td>
<td>1.37 ± 0.01(^a)</td>
<td>0.89 ± 0.01(^b)</td>
<td>1.36 ± 0.01(^b)</td>
</tr>
<tr>
<td>Soil organic C kg m(^{-2})</td>
<td>6.2 ± 0.6(^b)</td>
<td>9.1 ± 0.8(^a)</td>
<td>6.4 ± 0.2(^b)</td>
</tr>
<tr>
<td>Total N g m(^{-2})</td>
<td>402 ± 31(^b)</td>
<td>571 ± 39(^a)</td>
<td>426 ± 15(^ab)</td>
</tr>
<tr>
<td>soil C:N ratio</td>
<td>15.5 ± 0.5(^a)</td>
<td>15.7 ± 0.3(^a)</td>
<td>15.0 ± 0.5(^a)</td>
</tr>
<tr>
<td>(^{15})N natural abundance (‰)</td>
<td>5.9 ± 0.1(^a)</td>
<td>5.3 ± 0.2(^a)</td>
<td>5.7 ± 0.2(^a)</td>
</tr>
<tr>
<td>pH 1:4 (H(_2)O)</td>
<td>5.05 ± 0.08(^a)</td>
<td>5.00 ± 0.08(^ab)</td>
<td>4.81 ± 0.05(^b)</td>
</tr>
<tr>
<td>ECEC mmol kg(^{-1})</td>
<td>35 ± 2(^a)</td>
<td>28 ± 2(^a)</td>
<td>18 ± 1(^b)</td>
</tr>
<tr>
<td>Base saturation (%)</td>
<td>48 ± 3(^a)</td>
<td>46 ± 4(^a)</td>
<td>20 ± 2(^b)</td>
</tr>
<tr>
<td>Aluminum saturation (%)</td>
<td>52 ± 4(^b)</td>
<td>50 ± 2(^b)</td>
<td>78 ± 2(^a)</td>
</tr>
<tr>
<td>Mg g m(^{-2})</td>
<td>32 ± 3(^a)</td>
<td>28 ± 6(^a)</td>
<td>9 ± 1(^b)</td>
</tr>
<tr>
<td>Ca g m(^{-2})</td>
<td>169 ± 21(^a)</td>
<td>157 ± 15(^a)</td>
<td>37 ± 5(^b)</td>
</tr>
<tr>
<td>K g m(^{-2})</td>
<td>39 ± 13(^a)</td>
<td>13 ± 1(^b)</td>
<td>6 ± 1(^b)</td>
</tr>
<tr>
<td>Na g m(^{-2})</td>
<td>1.5 ± 0.4(^a)</td>
<td>0.7 ± 0.2(^a)</td>
<td>0.6 ± 0.2(^a)</td>
</tr>
<tr>
<td>Al g m(^{-2})</td>
<td>66 ± 4(^b)</td>
<td>71 ± 4(^ab)</td>
<td>87 ± 3(^a)</td>
</tr>
</tbody>
</table>
Table 2 Annual water balance simulated from March 2017 to February 2018 for each management zone.

<table>
<thead>
<tr>
<th>Water flux (mm yr$^{-1}$)</th>
<th>Palm circle</th>
<th>Frond-stacked area</th>
<th>Inter-row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>2772</td>
<td>2772</td>
<td>2772</td>
</tr>
<tr>
<td>Transpiration</td>
<td>828</td>
<td>448</td>
<td>401</td>
</tr>
<tr>
<td>Evaporation</td>
<td>228</td>
<td>214</td>
<td>434</td>
</tr>
<tr>
<td>Interception</td>
<td>351</td>
<td>209</td>
<td>209</td>
</tr>
<tr>
<td>Runoff</td>
<td>338</td>
<td>0</td>
<td>216</td>
</tr>
<tr>
<td>Drainage (at 1.5 m depth)</td>
<td>556</td>
<td>1806</td>
<td>1179</td>
</tr>
</tbody>
</table>

Fe g m$^{-2}$ 1.4 ± 0.2a 1.8 ± 0.4a 1.8 ± 0.5a
Mn g m$^{-2}$ 0.7 ± 0.1b 1.8 ± 0.3a 0.6 ± 0.2b
H g m$^{-2}$ 0.2 ± 0.0a 0.2 ± 0.0a 0.2 ± 0.1a
Table 3 Annual leaching losses at 1.5 m depth for each experimental treatment from March 2017 to February 2018. Values are area-weighted averages of leaching losses in each management zone (mean ± standard error, n = 4 plots). Means followed by different letters indicate differences among experimental treatments (linear-mixed effect models on monthly values followed by Tukey HSD test for multiple comparisons at $P \leq 0.05$). Treatments: ch = conventional fertilization–herbicide; cw = conventional fertilization–mechanical weeding; rh = reduced fertilization–herbicide; rw = reduced fertilization–mechanical weeding. DON = dissolved organic N; TDN = total dissolved N.

<table>
<thead>
<tr>
<th>Element leaching (kg ha$^{-1}$ yr$^{-1}$)</th>
<th>ch</th>
<th>cw</th>
<th>rh</th>
<th>rw</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3$-N</td>
<td>71.5 ± 20.1a</td>
<td>48.2 ± 13.0ab</td>
<td>36.3 ± 20.1b</td>
<td>30.0 ± 5.7b</td>
</tr>
<tr>
<td>NH$_4$-N</td>
<td>1.7 ± 0.2a</td>
<td>1.7 ± 0.1a</td>
<td>1.8 ± 0.1a</td>
<td>1.7 ± 0.2a</td>
</tr>
<tr>
<td>DON</td>
<td>0.5 ± 0.5a</td>
<td>0.6 ± 0.3a</td>
<td>0.4 ± 0.1a</td>
<td>0.3 ± 0.0a</td>
</tr>
<tr>
<td>TDN</td>
<td>73.6 ± 20.2a</td>
<td>50.4 ± 13.1ab</td>
<td>38.4 ± 8.9b</td>
<td>32.0 ± 5.8b</td>
</tr>
<tr>
<td>Ca</td>
<td>26.6 ± 4.3a</td>
<td>19.4 ± 4.4b</td>
<td>18.2 ± 1.8b</td>
<td>17.0 ± 2.1b</td>
</tr>
<tr>
<td>Mg</td>
<td>11.6 ± 2.5a</td>
<td>7.7 ± 0.8b</td>
<td>9.1 ± 0.7ab</td>
<td>10.8 ± 3.6ab</td>
</tr>
<tr>
<td>K</td>
<td>8.1 ± 1.3a</td>
<td>6.2 ± 0.7b</td>
<td>8.9 ± 0.6a</td>
<td>5.7 ± 1.1b</td>
</tr>
<tr>
<td>Na</td>
<td>15.9 ± 3.5ab</td>
<td>13.6 ± 2.4b</td>
<td>18.9 ± 3.1a</td>
<td>13.1 ± 1.2b</td>
</tr>
<tr>
<td>Mn</td>
<td>0.3 ± 0.1a</td>
<td>0.2 ± 0.0b</td>
<td>0.2 ± 0.0bc</td>
<td>0.1 ± 0.0c</td>
</tr>
<tr>
<td>Total Al</td>
<td>40.8 ± 11.5a</td>
<td>20.8 ± 7.6b</td>
<td>19.9 ± 6.8b</td>
<td>21.8 ± 3.1b</td>
</tr>
<tr>
<td>Total S</td>
<td>2.4 ± 0.5a</td>
<td>1.8 ± 0.4a</td>
<td>2.1 ± 0.6a</td>
<td>4.9 ± 3.3a</td>
</tr>
<tr>
<td>Total Fe</td>
<td>0.2 ± 0.0a</td>
<td>0.5 ± 0.3a</td>
<td>0.2 ± 0.0a</td>
<td>0.5 ± 0.3a</td>
</tr>
<tr>
<td>Total P</td>
<td>0.0 ± 0.0a</td>
<td>0.1 ± 0.0a</td>
<td>0.0 ± 0.0a</td>
<td>0.0 ± 0.0a</td>
</tr>
</tbody>
</table>
Table 4 N and base cation retention efficiencies in the soil for each management zone and experimental treatment (means ± standard error, n = 4 plots). Means followed by different lowercase letters indicate differences among experimental treatments for each management zone, whereas different uppercase letters indicate differences among management zones for each experimental treatment (one-way ANOVA with Tukey HSD or Kruskal–Wallis H test with multiple comparisons extension at $P \leq 0.05$). Weighted-average is based on the areal coverage of each management zone: 18 % for palm circle, 15 % for frond-stacked area, and 67 % for inter-row. Treatments: ch = conventional fertilization–herbicide; cw = conventional fertilization–mechanical weeding; rh = reduced fertilization–herbicide; rw = reduced fertilization–mechanical weeding. See section 2.4 for calculations of N and base cation retention efficiency.

<table>
<thead>
<tr>
<th></th>
<th>ch</th>
<th>cw</th>
<th>rh</th>
<th>rw</th>
</tr>
</thead>
<tbody>
<tr>
<td>N retention efficiency (mg N m$^{-2}$ d$^{-1}$ / mg N m$^{-2}$ d$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palm circle</td>
<td>0.987 ± 0.002^{aA}</td>
<td>0.982 ± 0.007^{AB}</td>
<td>0.986 ± 0.003^{AB}</td>
<td>0.997 ± 0.000^{aA}</td>
</tr>
<tr>
<td>Frond-stacked area</td>
<td>0.984 ± 0.004^{aA}</td>
<td>0.989 ± 0.004^{aA}</td>
<td>0.993 ± 0.001^{aA}</td>
<td>0.987 ± 0.002^{aA}</td>
</tr>
<tr>
<td>Inter-row</td>
<td>0.877 ± 0.025^{bB}</td>
<td>0.870 ± 0.022^{B}</td>
<td>0.900 ± 0.018^{B}</td>
<td>0.906 ± 0.039^{aA}</td>
</tr>
<tr>
<td>Weighted-average</td>
<td>0.925 ± 0.022^{a}</td>
<td>0.934 ± 0.020^{a}</td>
<td>0.945 ± 0.012^{a}</td>
<td>0.946 ± 0.018^{a}</td>
</tr>
</tbody>
</table>

<p>| | | | | |
| | | | | |
| Base cation retention efficiency (mol c m$^{-2}$ yr$^{-1}$ / mol c m$^{-2}$ yr$^{-1}$) | | | | |
| Cl | 79.7 ± 15.8^a | 36.9 ± 8.3^b | 67.7 ± 8.7^a | 78.3 ± 7.5^a |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Value 1 ± Standard Error</th>
<th>Value 2 ± Standard Error</th>
<th>Value 3 ± Standard Error</th>
<th>Value 4 ± Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm circle</td>
<td>0.967 ± 0.008</td>
<td>0.982 ± 0.002</td>
<td>0.937 ± 0.013</td>
<td>0.974 ± 0.010</td>
</tr>
<tr>
<td>Frond-stacked area</td>
<td>0.884 ± 0.013</td>
<td>0.950 ± 0.004</td>
<td>0.960 ± 0.002</td>
<td>0.928 ± 0.016</td>
</tr>
<tr>
<td>Inter-row</td>
<td>0.588 ± 0.086</td>
<td>0.875 ± 0.022</td>
<td>0.704 ± 0.048</td>
<td>0.822 ± 0.063</td>
</tr>
<tr>
<td>Weighted-average</td>
<td>0.876 ± 0.009</td>
<td>0.945 ± 0.007</td>
<td>0.902 ± 0.019</td>
<td>0.934 ± 0.012</td>
</tr>
</tbody>
</table>
Figure 1 Pearson correlation test between modeled (red line) and field-measured soil water matric potential (black points) ($n = 50$ field measurements over one year) for each management zone at 30 and 60 cm depths.
Figure 2 Monthly water drainage at 1.5 m depth, simulated in each management zone, and daily rainfall from March 2017 to February 2018. The gray shaded area represent the dry season (precipitation < 140 mm month$^{-1}$)
Figure 3. Partial cation-anion charge balance of the major solutes (with concentrations > 0.03982 mg L$^{-1}$) in soil water at 1.5 m depth for each experimental treatment in the different management zones. The concentrations of organic acids (RCOO$^{-}$) and carbonates (HCO$_3^-$) are calculated as the difference between the measured cations and anions. Treatments: ch = conventional fertilization–herbicide; cw = conventional fertilization–mechanical weeding; rh = reduced fertilization–herbicide; rw = reduced fertilization–mechanical weeding.
Figure 4 Monthly leaching losses at 1.5 m depth (mean ± standard errors, n = 4 plots) for each management zone. Black arrows indicate fertilizer applications and the gray shaded area represents the dry season (precipitation < 140 mm month⁻¹).
Figure 5 Average monthly leaching losses at 1.5 m depth for each experimental treatment from March 2017 to February 2018. Values are area-weighted averages of leaching losses in each management zone (means ± standard errors, \(n = 4 \) plots). For each parameter, different letters indicate significant differences among treatments (linear-mixed effect models on monthly values followed by Tukey HSD test for multiple comparisons at \(P \leq 0.05 \)). Treatments: ch = conventional fertilization–herbicide; cw = conventional fertilization–mechanical weeding; rh = reduced fertilization–herbicide; rw = reduced fertilization–mechanical weeding.
Appendices

Table A1 Gross N mineralization rates (means ± SE, n = 4 plots) in the top 5 cm soil for each treatment and management zone in a large-scale plantation in Jambi, Indonesia. Measurements were done on intact soil cores in February 2018 using the 15N pool dilution technique, as described in details by Allen et al. (2015). Treatments: ch = conventional fertilization–herbicide; cw = conventional fertilization–mechanical weeding; rh = reduced fertilization–herbicide; rw = reduced fertilization–mechanical weeding

<table>
<thead>
<tr>
<th>Gross N mineralization (mg N m$^{-2}$ d$^{-1}$)</th>
<th>ch</th>
<th>cw</th>
<th>rh</th>
<th>rw</th>
</tr>
</thead>
<tbody>
<tr>
<td>palm circle</td>
<td>2.2 ± 0.6</td>
<td>1.9 ± 0.4</td>
<td>1.8 ± 0.6</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>frond-stacked area</td>
<td>22.4 ± 3.3</td>
<td>32.5 ± 8.0</td>
<td>22.4 ± 7.2</td>
<td>16.6 ± 5.2</td>
</tr>
<tr>
<td>inter-row</td>
<td>4.8 ± 1.1</td>
<td>4.0 ± 0.6</td>
<td>3.8 ± 0.8</td>
<td>4.4 ± 0.9</td>
</tr>
</tbody>
</table>

Note: These data are not included in the manuscript to avoid double-publication as these results were reported in our previous study (Formaglio et al., unpublished data).
Table A2 Literature comparison of annual N fertilization and total N leaching losses across tropical plantations.

<table>
<thead>
<tr>
<th>Author</th>
<th>Soil type</th>
<th>Rainfall (mm yr(^{-1}))</th>
<th>Type of plantation management</th>
<th>N applied (kg ha(^{-1}) yr(^{-1}))</th>
<th>Total N leaching (kg ha(^{-1}) yr(^{-1}))</th>
<th>Percentage N leached (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present study</td>
<td>loam</td>
<td>2772</td>
<td>intensive oil palm</td>
<td>260</td>
<td>74</td>
<td>28</td>
</tr>
<tr>
<td>Present study</td>
<td>loam</td>
<td>2772</td>
<td>intensive oil palm</td>
<td>130</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>Omoti et al. 1983</td>
<td>sandy clay</td>
<td>2000</td>
<td>intensive oil palm</td>
<td>150</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Kurniawan et al. 2018</td>
<td>loam</td>
<td>3418</td>
<td>smallholder oil palm</td>
<td>88</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>Tung et al. 2009</td>
<td>Acrisol</td>
<td>-</td>
<td>intensive oil palm</td>
<td>128</td>
<td>3 (150 days)</td>
<td>2</td>
</tr>
<tr>
<td>Tung et al. 2009</td>
<td>Acrisol</td>
<td>-</td>
<td>intensive oil palm</td>
<td>251</td>
<td>3 (150 days)</td>
<td>1</td>
</tr>
<tr>
<td>Banabas et al. 2008</td>
<td>clay loam</td>
<td>2398</td>
<td>intensive oil palm</td>
<td>100</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Banabas et al. 2008</td>
<td>sandy loam</td>
<td>3657</td>
<td>intensive oil palm</td>
<td>100</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>Cannavo et al. 2013</td>
<td>clay loam</td>
<td>2678</td>
<td>coffee</td>
<td>250</td>
<td>157</td>
<td>63</td>
</tr>
</tbody>
</table>
Figure A1 Lysimeter locations at each treatment plot, with two subplots (blue rectangles) that each included the three management zones (blue crosses): 1) lysimeters in the palm circle were at 1 m from the palm trunk, 2) in the frond-stacked area, at about 4 m from the palm trunk, and 3) in the inter-row, at approximately 4 m from the palm trunk.