The limits to northern peatland carbon stocks

by G. A. Alexandrov, V. A. Brovkin, T. Kleinen, and Z. Yu

Biogeosciences Discuss.,

https://www.biogeosciences-discuss.net/bg-2019-76/#discussion

Point-by-point reply to comments

Point-by-point reply to Editor’s comments ... 2
Point-by-point reply to Reviewer #3 comments .. 2
Marked-up manuscript version ... 7
 1 Introduction ... 7
 2 Methods ... 9
 3 Results ... 11
 4 Discussion .. 12
 5 Conclusions ... 14
References .. 15

All comments were considered thoroughly and were addressed in the revised manuscript. The help of reviewers is acknowledged in the revised manuscript.

Besides recommended revisions, some language editing was done to improve readability of the manuscript.
Point-by-point reply to Editor’s comments

<table>
<thead>
<tr>
<th>No</th>
<th>Comment</th>
<th>Reply</th>
<th>Changes in the manuscript</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I have now received the reviewer opinion on your revised manuscript. Please implement those demanded changes to the manuscript as outlined by the reviewer. I think your manuscript will greatly profit from these additional improvements.</td>
<td>The manuscript was changed as recommended.</td>
<td>These changes were made at the following pages of the marked-up manuscript version starting from page 8 of this file. P7 (title and abstract); P11 line 18; P9 lines 26-28, at P10 lines 12-13, at P11 line 32- P12 line 4; P12 lines 15-20; P15 lines 10 – 16.</td>
</tr>
</tbody>
</table>

Point-by-point reply to Reviewer #3 comments

<table>
<thead>
<tr>
<th>No</th>
<th>Comment</th>
<th>Reply</th>
<th>Changes in the manuscript</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Version 2 of the manuscript has been significantly improved by the authors employing reviewers’ comments and suggestions. The introduction and the method sections are easier to understand and highlight objectives of the study as well as limits related to the methodology employed and hypothesis made to estimate the ability of northern peatlands to reduce atmospheric CO2 content in</td>
<td>Thanks for this positive assessment of the revised manuscript.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
the future. This study fuels the discussion on the interactions of northern peatlands with climate and provide a quantification of one of the interactions which is the incorporation and accumulation of atmospheric CO2 into peatland soil.

<table>
<thead>
<tr>
<th>2.</th>
<th>Nevertheless, it is a shame that the title does not reflect the whole content and significance of this work. The authors insist on having a reminder in the title of the work by Clymo (1984) “The limits to peat bog growth” in order to highlight the fact that “the cumulative amount of carbon that northern peatlands could remove from the atmosphere is limited by the geomorphological conditions in present climate.” (response to comment 3 of reviewer 1 in point by point reply to all comments document) while the main hypothesis used to compute the estimations is that northern peatland surface area does not significantly change over a period of thousands of years. This hypothesis is fair to take for the present work but it is a strong constrain on the results. Therefore, I think that the authors should propose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This comment sounds very convincing. It would be logical to change the title (and the abstract) to shift the focus to the capacity of northern to remove a large amount of carbon from the atmosphere at a long-term scale.</td>
</tr>
<tr>
<td></td>
<td>P7: The title of the manuscript was changed to “The capacity of northern peatlands for long-term carbon sequestration” The abstract was revised to fit the changed title.</td>
</tr>
</tbody>
</table>
A title that will be appealing for potential readers and reflect in a more suitable manner the content or the topic of the manuscript. I understand that the authors do not like the word “potential” as suggested by reviewer 1 comment 3 “the potential of northern peatlands for carbon sequestration” fortunately for us the English language is full of words and there are plenty of synonyms for “potential or limits”: ability, capacity, faculty, potency … that could be used here.

3. Few minor errors in the text of manuscript version 2:
 P5 line 1 “The use of this approach to addressing uncertainty” choose the either forms “this approach to address” or “this approach addressing”
 P7 line 18 “that ocean will not able to remove” it is missing the verb to be, please modify to “that ocean will not be able to remove”

We corrected the errors.

P11 line 18: “The use of this approach to addressing uncertainty” was changed to “This approach to address uncertainty”.

The phrase “that ocean will not able to remove” falls within the text removed in response to the Comment #5.

4. I do regret that there are only so little description and comments on figures and table content. It feels like there are only there as nice illustration

Done

The descriptive statistics of the data sets illustrated by Figures 1-3 was added at P9 lines 26-28, at P10 lines 12-
where the authors could have talk more about geographical variability from a region to another as suggested by reviewer2 comment28 of the point by point reply to all comments documents. For example, the authors response to reviewer 2 comment 27 is very interesting on the accuracy of both estimates presented in Table 1. I think this could be added to the manuscript into the results section. It shows how interesting is your estimation approach and values, are at lower scale and the variability of the estimate over multiple sites.

<table>
<thead>
<tr>
<th>5.</th>
<th>Regarding figure 4 and simulation results from CLIMBER-2 Earth system model authors argued to review 1 comment 43 that it “demonstrates the role of northern peatlands in global carbon cycle recovery and calls for further numerical experiments.” In the manuscript model description is summarized in one sentence (supplementary document page 6 first sentence under section S4 Numerical experiments on the CLIMBER-2) and simulation set up and conditions are not described. In addition, the</th>
</tr>
</thead>
<tbody>
<tr>
<td>13, and at P11 line 32 – P12 line 4. The results of comparison estimated and observed carbon densities presented in the Table 1 were added at P12 lines 15-20.</td>
<td>Done</td>
</tr>
</tbody>
</table>
goal of the present work is to provide an estimate of the capability of northern peatland to store carbon therefore these simulations are beyond the scope of the paper. Since the authors estimations show an increase in peatland carbon storage in the future, they already demonstrate the role of peatland in the global carbon cycle rather than the simulation results that show that if you add another carbon sink ecosystem that is independent to the first one (the ocean) you do sequester more carbon from the atmosphere which is obvious. And regarding the effect of orbital forcing, in the response to review 1 comment 44, the authors recognized that is beyond the scope of the present study.

Therefore, for all the above reasons, you should remove figure 4 and the final paragraph line 13 to 19 page 7 of the discussion section from the manuscript and S4 from supplementary documentation.
The **limits to growth capacity** of northern peatland**s carbon stocks** for long-term carbon sequestration

5 Georgii A. Alexandrov¹, Victor A. Brovkin², Thomas Kleinen², Zicheng Yu³,⁴

¹ A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevsky 3, Moscow, 119017, Russia
² Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany
³ Department of Earth and Environmental Sciences, Lehigh University, 1 West Packer Avenue, Bethlehem, PA 18015, USA
⁴ Institute for Peat and Mire Research, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China

Correspondence to: Victor A Brovkin (victor.brovkin@mpimet.mpg.de)

Abstract. Northern peatlands have been a persistent natural carbon sink since the last glacial maximum. If there were no limits to their growth, carbon accumulation in these carbon rich ecosystems could offset a large portion of anthropogenic carbon emissions until before the end of the present interglacial period. Here we used an impeded drainage model and gridded data on the depth to bedrock and on the fraction of histosol-type soils to evaluate the limits to the growth of northern peatland carbon stocks, evaluated based on the gridded data on the depth to bedrock and on the fraction of area covered by soils of histosol type, suggest that Our results show that the potential carbon stock in northern peatlands could reach a total of 875±125 PgC before the end of the present interglacial, which could, as a result, remove is the most expedient estimate of the potential carbon stock in northern peatlands at large and that 330±200 PgC is the most expedient estimate of the total amount of carbon that they could remove of carbon from the atmosphere during the period from present to the end of the current interglacial. This leads to conclusion We argue that northern peatlands, not only together with the oceans, will potentially play an important role in reducing the atmospheric carbon dioxide concentration over the next five thousand years.

1 Introduction

The recent compilations of peatland data (Loisel et al., 2014; Treat et al., 2019) largely confirm that the conventional notion of the carbon (C) sink provided by northern peatlands, namely the peatlands distributed across the northern mid- and high-latitude regions located north of 45°N have been a large carbon sink, since the Last Glacial Maximum (Loisel et al., 2014; Loisel et al., 2017; Treat et al., 2019). Accordingly to this notion, northern peatlands were providing a persistent but variable sink for impact on atmospheric carbon (Yu, 2011). Variations in the sink magnitude of this carbon sink are explained by
changes in the rates of peatland expansion and in the rate of peat accumulation. In the early Holocene, both the rates of peatland expansion and the rate of carbon accumulation appear to be highest (Yu et al., 2010) as compared to the later Holocene periods. Since the area of peatlands remained relatively stable in the late Holocene (Adams and Faure, 1998; MacDonald et al., 2006; Yu et al., 2010), the major part of the carbon sink provided by northern peatlands during this period could be attributed to the growth in peat depth, not to the growth rather than increase in of the area occupied by the northern peatlands.

The average rate of carbon accumulation associated with peat growth is estimated at 18-28 gC m$^{-2}$ yr$^{-1}$ (Yu, 2011). This rate suggests that northern peatlands, occupying 2.4-4 million km2 (Yu, 2011), may accumulate during the next 20,000 years the amount of carbon comparable to the expected cumulative anthropogenic carbon emissions corresponding to a 2.5°C warming (Raupach et al., 2014), namely that is, ranging from 864 (18 gC m$^{-2}$ yr$^{-1}$ × 2.4 × 1012 m2 × 2 × 104 yr) to 2240 (28 gC m$^{-2}$ yr$^{-1}$ × 4 × 1012 m2 × 2 × 104 yr) PgC.

There has been little research, however, on estimating the potential magnitude of the cumulative carbon removal from the atmosphere associated with the natural development of peatland ecosystems. Individual peatland development may lead to reduction of the carbon sink-sequestration potential under the assumptions of constant production and decomposition rates (Clymo, 1984). The closer the peatland ecosystem is to its steady state, that is, to the equilibrium between organic matter production and decomposition, the lower is the carbon sink magnitude. Therefore, the amount of carbon that northern peatlands could remove from the atmosphere will be far less than that estimated through a simple calculation presented above.

The process of reaching equilibrium can be conceptualized as follows, (see also) (Clymo, 1984; Alexandrov et., 2016). Peat is accumulated due to protection of plant litter-organic matter in the catotelm, the lower layer of a peat deposit that is permanently saturated with water. Before the plant litters do not enter the catotelm directly, but instead they first enter-go through the upper layer of the peat deposit, the acrotelm, that is not permanently saturated with water. Despite intense aerobic decomposition of organic matter in the acrotelm, at least a small portion of the organic matter that enters the acrotelm always reaches the catotelm in an accumulating peatland. This is, of course, not true in the case of a degrading peatland, but degrading peatlands do not fall within the scope of this study.

Precisely speaking In fact, the organic matter does not reach the catotelm, but it is rather “flooded” by elevating groundwater water table and “buried” by accumulating acrotelm peat. The rise of groundwater water table is caused by the rise of the peatland surface that in turn results from accumulation of organic matter. However, this loop—this interaction and feedback cannot elevate the groundwater water table infinitely. The maximum height of the water table, and thus the potential peat depth, is determined by the amount of effective rainfall, drainage system density (the length of draining streams per unit area) and the hydraulic conductivity of peat and mineral materials below the peat (Alexandrov et al., 2016; Ingram, 1982).
The purpose of our study is to estimate the potential peat depth and carbon stocks over NH land area north of 45°C and arrive to conclusion about to estimate the amount of the cumulative carbon removal of anthropogenic carbon associated with the natural development of northern peatlands by the end of the current interglacial. Although it is not completely clear how long the current interglacial will last, the recent attempts to estimate its possible duration lead to conclusion that a glacial inception is unlikely to happen within the next 50,000 years if cumulative carbon emissions exceed 1000 PgC (Berger et al., 2016). Since the duration of the current interglacial depends on the cumulative carbon emissions, it should also depend on the cumulative carbon removal that may offset the effect of anthropogenic carbon emissions, and therefore our study contributes also to the discussion on whether the Earth System would remain in the present delicately balanced interglacial climate state for an unusually long time.

2 Methods

2.1 Model equations

To calculate the potential peat depth, we use an equation derived from the impeded drainage model used in our previous study (Alexandrov et al., 2016). This equation relates the maximum height of the water table above the level of the draining system, h_{max}, at a given watershed to the fraction of its area covered by peatland, $f_{P, \text{obs}}$, and the average depth to bedrock, g:

$$h_{\text{max}} = \frac{g}{\sqrt{1-f_{P, \text{obs}}}}$$

(1)

This allows us to estimate, based on gridded data of soil properties (Batjes, 2016) and depth to bedrock (Hengl et al., 2014), the potential average peat depth, $p_{d, \text{max}}$, in a grid cell as

$$p_{d, \text{max}} = \left((h_{\text{max}} - g) - \frac{1}{3} \left(h_{\text{max}} - g \left(\frac{g}{h_{\text{max}}} \right)^2 \right) \right) \frac{1}{f_{P, \text{obs}}} + d$$

(2)

where d is the maximum depth of the acrotelm, in m (set at 0.4 m), and then to estimate the maximum carbon stock in the grid cell, $p_{C, \text{max}}$ as

$$p_{C, \text{max}} = c \times A \times f_{P, \text{obs}} \times p_{d, \text{max}}$$

(3)

where c is the bulk carbon density of peat, in gC m$^{-3}$ (set at 58 KgC m$^{-3}$); A is the area of the grid cell in m2.

2.2 Input data

The values of g at the geographic grid cells of 0.1°×0.1° geographic grid (Figure 1) were estimated from the data on depth to bedrock (Hengl et al., 2014). According to the data, the depth to bedrock does not exceed 10 m at 33% of the land north of 45°N, and at 90% of this region, it is less than 40 m. In the subregion, where the mean annual temperature is below -2°C, the shallow depth to bedrock is more widespread, less than 10 m at 58% of the land.
The use of these data for estimating \(g \) on permafrost landscapes is somewhat challenging, because the hydraulic conductivity of permafrost could be as low as that of bedrock under some conditions. Due to this reason, we find it more suitable to use the maximum depth of the active layer for estimating \(g \) on these landscapes, for example, by setting \(g \) at 2 meters for the regions where mean annual temperature is below -2°C, that is, assuming that the southern boundary of permafrost could be approximated by the -2°C isotherm of mean annual temperature (Riseborough et al., 2008) and that the active layer thickness does not exceed 2 m. The latter is an ad hoc assumption based on the recent discussion of uncertainties in the methods for estimating active layer thickness at regional scale (Mishra et al., 2017).

To determine the present-day peatland extent, we relied on the WISE30sec data set (Batjes, 2016) of soil properties at 30’’ resolution. The data set contains a classification of soil type for each mapping unit, and to diagnose peatland extent we determined the fraction of each 0.1°×0.1° grid cell covered by soils of histosol type (soil code HS in FAO90 classification). These data allow us to estimate the \(f_{P,\text{obs}} \) values that \(f_{P,\text{obs}} \) may take at the cells of the 0.1°×0.1° geographic grid (Figure 2), ranging from 10 to 30% in 45% of the total area north of 45°N covered by histosols. The grid cells where \(f_{P,\text{obs}} \) exceeds 70% occupy 11% of the total area of this region, the total area, 2.86 ×10^6 km^2, that peatlands occupy in the land north of 45°N.

Our calculations show that the total area that peatlands occupy in the land north of 45°N is equal to 2.86 ×10^6 km^2. This estimate of the peatland area is within does not go beyond the recent estimates of 2-4 million km^2 (see review in Yu, 2012) (that fall in the range of 2-4 million km^2), but it cannot be easily interpreted as the actual peatland area. The estimates of the actual peatland area may vary depending on the criteria, such as that are used to distinguish peatlands from other types of land surface. The minimal depth of the peat layer, which is used to classify a land unit as define peatland, is the criterion that affects the estimates of peatland area (Xu et al., 2018). Since our peatland extent is diagnosed by the extent of histosols, 2.86 ×10^6 km^2 should be interpreted as an estimate of the area of peatlands with peat depth exceeding 40 cm (according to FAO definition of histosols).

2.3 Uncertainty associated with peatlands distribution over a grid cell

The gridded data on soil properties (Batjes, 2016) provide the fraction of a grid cell covered by peatlands. To estimate the fraction of a watershed covered by peatlands, \(f_{PW} \), which is needed for calculating \(h_{\text{max}} \), one should make an assumption about the peatland distribution within the grid cell. This problem can be illustrated with the following example. The fact that 36% of a grid cell is covered by peatlands (\(f_{P,\text{obs}}=0.36 \)) may mean that peatlands cover 36% of each watershed within the grid cell (\(f_{PW}=0.36 \)), or that only 48% of watersheds are occupied by peatlands (\(f_{WP}=0.48 \)), and peatlands cover 75% of each of these watersheds (\(f_{PW}=0.75 \)).

We address this uncertainty by giving three estimates of the potential amount of carbon that could be accumulated in northern peatlands: the uniform estimate, the clumped estimate and the conductivity-dependent estimate. The uniform
estimate assumes a uniform distribution of peatlands over all grid cells \(f_{PW} = f_{P,obs}; f_{WP} = 1 \), the clumped estimate assumes a non-uniform distribution over all grid cells \(f_{PW} = 0.75; f_{WP} = f_{P,obs}/0.75 \), and the conductivity-dependent estimate is derived using a rule-based algorithm categorizing the grid cells into those where peatland distribution is uniform and those where peatland distribution is non-uniform. The value of the hydraulic conductivity coefficient, \(K \), calculated from the amount of annual precipitation, potential evapotranspiration, \(f_{P,obs} \) and \(g \) (see Supplement) is used in this algorithm as an indicator of non-uniform peatland distribution within a grid cell. If \(K \) is above the typical value, \(K_c \), then it can be assumed that peatland occupy \(f_{P,obs} / f_{P,est} \) fraction of watersheds and cover \(f_{P,est} \) fraction of area of each of these watersheds, where \(f_{P,est} \) is set at the value that brings \(K \) to \(K_c \).

The typical values of hydraulic conductivity vary in a relatively wide range. Due to this reason, we set \(K_c \) at the value that leads the estimate of the potential carbon stocks in northern peatlands to that implied by the peat decomposition model employed by Yu (Yu, 2011). This model suggests that the growth of carbon stock in peatlands is limited by the ratio of annual carbon input to catotelm to the decay constant. Based on the data from peat cores, the annual carbon input to catotelm is estimated at 74.8 TgC yr\(^{-1}\) and decay constant at 0.0000855 yr\(^{-1}\) (Yu, 2011). Thus, the potential carbon stock in northern peatlands could be estimated at 875 PgC \((\text{that is}, \ 74.8 \ \text{TgC yr}^{-1}/0.0000855 \ \text{yr}^{-1} = 874,853.8 \ \text{TgC} \approx 875 \ \text{PgC}) \), and due to uncertainty in the annual carbon input to catotelm and decay constant may range from 750 to 1000 PgC (see Supplement). Therefore, we set \(K_c \) at the value, namely at 157 m yr\(^{-1}\) \((\approx 0.5 \times 10^{-5} \ \text{m s}^{-1}) \), that makes the conductivity-dependent estimate of the potential carbon stocks in northern peatlands equal to 875 PgC.

The use of this approach to addressing uncertainty is illustrated by in Table 1, where the estimates of potential peat carbon density in the central part of peatlands are compared to the values observed at 33 peatland sites (Billings, 1987; Borren et al., 2004; Jones et al., 2009; Robinson, 2006; Turunen et al., 2001; Yu et al., 2009). As it can be seen from Table 1, the estimates of the potential peat carbon density based on the uniform interpretation of \(f_{P,obs} \) \((f_{PW} = f_{P,obs}; f_{WP} = 1) \) are often lower than the actual peat carbon density at the sites that fall within the cells where \(f_{P,obs} \) is low. For example, the actual peat carbon density at site #30, a raised bog site in Finland (##30) -- that falls within located in a cell of which with 6% are covered by peatlands --, is equal to 214 kgC m\(^{-2}\), whereas the estimate of the potential peat carbon density based on the uniform interpretation of \(f_{P,obs} \) is equal to 65 kgC m\(^{-2}\). This example shows that in this case assuming a uniform distribution of peatlands could be wrong. The clumped interpretation of \(f_{P,obs} \) \((f_{PW} = 0.75; f_{WP} = 0.08) \) gives much higher value of the potential peat carbon density, 1350 kgC m\(^{-2}\), that, in its turn, may overestimate the potential peat carbon density at this site if the bog covers less than 75% of the watershed area. The conductivity-dependent interpretation of \(f_{P,obs} \) (for \(K_c =\ 157 \ \text{m yr}^{-1} \)) suggests that the bog covers 53% of the watershed area and its potential peat carbon density is equal to 636 kgC m\(^{-2}\).

3 Results

The conductivity-dependent estimates of the potential carbon stocks in the cells of 0.1º×0.1º geographic grid for \(K_c =\ 157 \ \text{m yr}^{-1} \) are shown on Figure 3 (in kilotons of C per square kilometer of the cell area). They exceed 20 KtC/km\(^2\) at 54% of the
total area of the region formed by the grid cells north of 45°N covered by peatlands. The grid cells where potential carbon stocks exceed 200 KtC/km² occupy 10% of the total area of this region. In the subregion of this region, where the mean annual temperature is below -2°C, the estimates of potential carbon stocks do not exceed 100 KtC/km². At 73% of the total area of this subregion, they are lower than 20 KtC/km².

The sum of the potential carbon stocks for all cells north of 45°N gives the conductivity-dependent estimate of the potential carbon stock in northern peatlands, which is equal to 875 PgC.

Since northern peatlands have already accumulated 547±74 PgC (Yu, 2011), the conductivity-dependent estimate of their potential carbon stock suggests that the total amount of carbon that they could remove from the atmosphere during the period from present to the end of the current interglacial is limited to 328±74 PgC.

The full range of uncertainty for the estimate of the amount of carbon that northern peatlands may accumulate from the start to the end of the current interglacial could be characterised by the uniform and clumped estimates. The former is equal to 665 PgC, and the latter is equal to 1258 PgC. However, our study shows that neither uniform interpretation nor clumped interpretation of the data on peatland extent is applicable everywhere, and hence the most likely range of uncertainty could be narrower than 665-1258 PgC.

Thus, the information presented in the Table 1 casts some doubts on the validity of uniform interpretation of the data on peatland extent in the case of grid cells where \(f_{P,obs} \) is less than 20%. Actual peat carbon densities observed at the sites that fall within such cells are higher than uniform estimates. This could mean that there are a few large peatlands, but not many small peatlands in these grid cells, and that clumped interpretation could be more appropriate in this case. The fact that clumped estimates are significantly higher than observed carbon densities suggests that the sites listed in the Table 1 are far from equilibrium and would accumulate a large amount of carbon by the end of the current interglacial.

4 Discussion

The limits to northern peatlands carbon stock were estimated here for the first time in the literature, although the methodology for obtaining such estimate were developed more than 30 years ago by Clymo (1984). We adapted this methodology for use at the Earth system scale based on gridded data (Hengl et al., 2014) representing geomorphological aspects of peat bog growth.

We also characterized the uncertainty in the estimate of the limits to northern peatlands carbon stock induced by sub-grid distribution of peatlands. This uncertainty cannot be easily reduced by using a finer grid, because it cannot be expected that each watershed falls within one grid cell. Therefore, we elaborated use an approach for to reducing uncertainty in the spatial distribution of peatlands that allows us to make a conclusion about obtain a the most likely value estimate of, 875 PgC, for this estimate.
Analyzing the uncertainty in the data on present-day peatland extent goes beyond the scope of this study. Improving the accuracy and representativeness of these input data sets used in this study is a well-known task actively tackled by ISRIC, the International Soil Reference and Information Centre, (Batjes, 2016; Hengl et al., 2014), and by networks of peatland researchersscientists such as C-Peat (e.g., Treat et al., 2019) and PeatDataHub (Xu et al., 2018). Hence, it might be more important to update the estimates of potential carbon stocks on a regular basis to keep pace with improvements in the accuracy of the data on present-day peatland extent.

The results of our study suggest that even the uniform estimate of the potential carbon stocks (665 PgC) is still higher than Gorham’s (1991) estimate of 455 PgC in the actual carbon stocks of northern peatlands. Gorham’s estimate, based on peat-volume approach (Yu, 2012Loisel et al., 2014), is the product of the four numbers: mean depth of peatlands (2.3 m), mean bulk density of peat (112 Kg m⁻³), carbon content of its dry mass (0.517), and the area of peatlands (3.42×10¹² m²). Our uniform estimate of potential carbon stocks implies that the potential mean depth of peat could be as high as 4 m for the same values of mean bulk density of peat and carbon content of its dry mass, and for smaller area of peatlands (2.86×10¹² m²). The uniform estimate is also higher than the Yu et al.,’s (2010) estimate of actual carbon stocks of 547±74 PgC, based on the time history approach (Yu et al., 2012), suggesting that northern peatlands in total would accumulate in the future more carbon than they store now.

The clumped estimate of 1258 PgC is beyond the range of uncertainty of 760-1006 PgC in the estimate of potential carbon stocks that could be derived using the Yu’s (2011) model of peat accumulation (see Supplement). Hence, it is reasonable to argue agree—that the estimate of 875±125 PgC, as obtained from two completely independent methods, is the most expedient estimate of potential carbon stocks in northern peatlands. As such, the estimate of 330±200 PgC is the most expedient estimate of the likely amount of carbon that peatlands could remove from the atmosphere during the period from present to the end of the current interglacial.

The estimate of potential carbon stocks of 875±125 PgC, corresponds to the present climate, and therefore assuming that the present climate is typical for the remainder of the present interglacial period. This assumption, however, might not be justified considering relevant to the scenarios of dramatic changes in the Earth system, that may jeopardizing peatlands development. The recent analysis of mitigation pathways compatible with global warming of 1.5°C above pre-industrial levels (Rogelj et al., 2018) shows that holding the global average temperature increase to well below 2°C is difficult but not impossible. To achieve this goal, cumulative CO₂ emissions from the start of 2018 until the time of net zero global emissions must be kept well below 1430 GtCO₂PgCO₂, (i.e., 390 PgC), that corresponds to 66th percentile of transient climate response to cumulative carbon emissions (Rogelj et al., 2018; their Table 2.2). Since cumulative anthropogenic CO₂ emissions through to the year 2017 are estimated at 610 PgC (Le Quéré et al., 2018), 1000 PgC of cumulative carbon emissions, the sum of historical (610 PgC) and the future cumulative emissions compatible with the global average temperature increase to below 2°C are estimated at 1000 PgC (that is, 610 PgC +390 PgC) of cumulative carbon emissions could be
considered as a threshold for defining the range of validity of the most expedient estimate of potential carbon stocks in northern peatlands. In brief summary, if cumulative carbon emissions do not exceed 1000 PgC, the northern peatlands could play an important role in global carbon cycle recovery.

The ultimate recovery of the global carbon cycle from anthropogenic emissions is a long-term process (Archer, 2005). The current understanding of this process suggests that oceans absorb the majority of cumulative carbon dioxide emission within several centuries, the minor portion within several thousand years, and the remaining part will be removed through weathering of silicate rocks that may take hundreds of thousands of years (Archer, 2005; Archer and Brovkin, 2008; Brault et al., 2017). In other words, the larger the perturbation of the Earth system, the lower the chances that the pre-industrial state will be restored in course of the current interglacial.

Including peatlands in the consideration of global carbon cycle recovery allows us to evaluate the level of the Earth system perturbation that would not last too long to “break” the glacial-interglacial cycle. The results of numerical experiments (see Supplement) performed using an Earth system model of intermediate complexity (Brovkin et al., 2016) imply that keeping cumulative carbon dioxide emissions below 1000 PgC essentially reduces the risk of human intervention of natural glacial-interglacial cycle (Figure 4). The northern peatlands are capable to remove in relevant time frame, that is, over the next 5-15 thousand years, the amount of carbon that ocean will not able to remove, and thus to reduce the atmospheric carbon dioxide concentration to the level that is typical of interglacial periods.

5 Conclusions

Northern peatlands accumulate organic carbon and serve as a slow but persistent land carbon sink since the beginning of the current interglacial. If there were no limits to their growth in the absence of anthropogenic or natural CO₂ sources to the atmosphere, they could eventually reduce the atmospheric carbon dioxide concentration to the level at which a next precession-driven decline in the summer insolation in the high northern latitudes would trigger the onset of next glaciation.

Our study, however, shows that the cumulative carbon removal from the atmosphere associated with the natural development of peatland ecosystems is limited. The most expedient likely estimate of its potential magnitude, sink of 875±125 PgC in northern peatlands was obtained under the assumption that the present climate is somewhat typical for the current interglacial period. Unless future scenarios of climate changes in the Earth system moved beyond the climate space would leave no room for northern peatlands, the–northern peatlands will would play an important role in global carbon cycle recovery from anthropogenic emissions. While studies of this recovery process are now mostly focused on the strength and capacity of the ocean carbon sink, our results open offer a new perspective for the future research on global carbon cycle recovery and on the mitigation measures needed to protect the northern peatlands as an important element of the Earth’s climate system.
Data availability. All data used in this study are available from public databases or literature, cited in the Methods section. The data produced in course of this work are available from Georgii Alexandrov (g.alexandrov@ifaran.ru) upon request.

Author Contributions. All authors contributed to the conception of the work, to data processing and to writing of the paper. G.A.A. drafted the manuscript with inputs from V.A.B., T.K., and Z.Y.

Competing interests. The Authors declare no conflict of interests.

Acknowledgements. G.A.A. acknowledges funding by RFBR according to the research project № 19-05-00534. The manuscript has been initiated during a visit of G.A.A. to the Land in the Earth System Department of the Max Planck Institute of Meteorology in 2017. The comments of anonymous reviewers helped us to improve the original manuscript.

References

Table 1. Potential peat carbon density at the central part of peatland estimated under uniform (PCD1) and clumped (PCD2) interpretation of $f_{P, \text{obs}}$ as compared to the observed peat carbon density (PCD0) at 33 peatland sites (Yu et al., 2009).

<table>
<thead>
<tr>
<th>Site #</th>
<th>Region</th>
<th>Type</th>
<th>Location</th>
<th>PCD0 kgC m$^{-2}$</th>
<th>PCD1 kgC m$^{-2}$</th>
<th>PCD2 kgC m$^{-2}$</th>
<th>$f_{P, \text{obs}}$ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>West Siberia</td>
<td>bog</td>
<td>60°10'N 72°50'E</td>
<td>230</td>
<td>1148</td>
<td>2239</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>West Siberia</td>
<td>bog</td>
<td>60°10'N 72°50'E</td>
<td>268</td>
<td>1148</td>
<td>2239</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>West Siberia</td>
<td>bog</td>
<td>56°50'N 78°25'E</td>
<td>413</td>
<td>1277</td>
<td>1432</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>West Siberia</td>
<td>fen</td>
<td>56°20'N 84°35'E</td>
<td>399</td>
<td>849</td>
<td>1444</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>Alaska</td>
<td>fen</td>
<td>60°27'N 151°14'W</td>
<td>149</td>
<td>190</td>
<td>1437</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Alaska</td>
<td>fen</td>
<td>60°38'N 151°04'W</td>
<td>142</td>
<td>191</td>
<td>1449</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Alaska</td>
<td>rich fen</td>
<td>60°25'N 150°54'W</td>
<td>117</td>
<td>157</td>
<td>1155</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Alaska</td>
<td>poor fen</td>
<td>60°47'N 150°49'W</td>
<td>64</td>
<td>219</td>
<td>1687</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Alaska</td>
<td>taiga bog</td>
<td>64°52'N 147°46'W</td>
<td>133</td>
<td>102</td>
<td>692</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Canada</td>
<td>slope bog</td>
<td>54°09'N 130°15’W</td>
<td>73</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Canada</td>
<td>rich fen</td>
<td>53°35'N 118°01'W</td>
<td>232</td>
<td>68</td>
<td>864</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>Canada</td>
<td>fen</td>
<td>52°27'N 116°12'W</td>
<td>317</td>
<td>55</td>
<td>623</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Canada</td>
<td>bog</td>
<td>55°01'N 114°09'W</td>
<td>228</td>
<td>1499</td>
<td>1811</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>Canada</td>
<td>permafrost</td>
<td>61°48'N 121°24’W</td>
<td>147</td>
<td>72</td>
<td>566</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>Canada</td>
<td>fen</td>
<td>68°17'N 133°15’W</td>
<td>61</td>
<td>82</td>
<td>524</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>Canada</td>
<td>fen</td>
<td>69°29'N 132°40’W</td>
<td>27</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Canada</td>
<td>permafrost</td>
<td>55°51'N 107°41’W</td>
<td>141</td>
<td>99</td>
<td>1294</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>Canada</td>
<td>fen</td>
<td>64°43'N 105°34’W</td>
<td>65</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Canada</td>
<td>fen</td>
<td>66°27'N 104°50’W</td>
<td>84</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Canada</td>
<td>permafrost</td>
<td>59°53'N 104°12’W</td>
<td>81</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Canada</td>
<td>bog</td>
<td>45°41'N 74°02’W</td>
<td>70</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Canada</td>
<td>rich fen</td>
<td>82°N 68°W</td>
<td>97</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Canada</td>
<td>N/A</td>
<td>47°56'N 64°35’W</td>
<td>275</td>
<td>58</td>
<td>678</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>Canada</td>
<td>N/A</td>
<td>45°56'N 60°16’W</td>
<td>209</td>
<td>54</td>
<td>606</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>Scotland</td>
<td>bog</td>
<td>57°31'N 5°09’W</td>
<td>106</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Scotland</td>
<td>bog</td>
<td>57°34'N 5°22’W</td>
<td>195</td>
<td>129</td>
<td>873</td>
<td>21</td>
</tr>
<tr>
<td>27</td>
<td>Scotland</td>
<td>bog</td>
<td>57°41'N 5°41’W</td>
<td>151</td>
<td>160</td>
<td>493</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>Finland</td>
<td>palsa mire</td>
<td>68°24'N 23°33’E</td>
<td>122</td>
<td>190</td>
<td>1438</td>
<td>20</td>
</tr>
<tr>
<td>29</td>
<td>Finland</td>
<td>fen</td>
<td>68°24'N 23°33’E</td>
<td>134</td>
<td>190</td>
<td>1438</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>Finland</td>
<td>raised bog</td>
<td>60°49'N 26°57’E</td>
<td>214</td>
<td>65</td>
<td>1350</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>Finland</td>
<td>aapa mire</td>
<td>65°39'N 27°19’E</td>
<td>123</td>
<td>499</td>
<td>994</td>
<td>55</td>
</tr>
<tr>
<td>32</td>
<td>Finland</td>
<td>aapa mire</td>
<td>65°39'N 27°19’E</td>
<td>154</td>
<td>499</td>
<td>994</td>
<td>55</td>
</tr>
<tr>
<td>33</td>
<td>Finland</td>
<td>fen</td>
<td>65°39'N 27°19’E</td>
<td>215</td>
<td>499</td>
<td>994</td>
<td>55</td>
</tr>
</tbody>
</table>
Figure 1: The depth to bedrock, an estimate of g, in meters, in Europe (a), Western Siberia (b), Canada (c).
Figure 2: The fraction of histosols (%) in Europe (a), Western Siberia (b), and Canada (c).
Figure 3: The conductivity-dependent estimate of the potential carbon stocks in northern peatlands per area of a grid cell ($x10^9$ gC km$^{-2}$) in Europe (a), Western Siberia (b), and Canada (c).
Figure 4: Multimillennial changes in the atmospheric CO$_2$ concentration simulated using CLIMBER-2, an Earth-system model of intermediate complexity (Brovkin et al., 2016), for scenario of 1000 PgC cumulative emissions. No peatlands (mainly ocean CO$_2$ uptake, red line), plus northern peatlands uptake of 330 PgC (green line), plus orbital forcing effect (blue line).