Dear Editor Jean-Pierre Gattuso,

Please find attached the final version of the manuscript bg-2019-352 entitled: “Coccolithophore biodiversity controls carbonate export in the Southern Ocean”. A detailed explanation of all the changes included in the manuscript were posted on the Interactive discussion of our manuscript and are listed below.

**

Response to reviewer 1

We sincerely thank Dr. Griet Neukermans (reviewer 1) for her positive and constructive comments on our manuscript that have helped to improve the paper. We have carefully considered all her comments and addressed each of them as outlined below.

R1-Cx : Referee comment, R1-Rx: authors response.

R1-C1: This paper is a very useful and original contribution to our understanding of how coccolithophore diversity shapes carbonate export in the Southern Ocean based on time series of sediment trap data. The paper is a pleasure to read: very well written, well structured, comprehensive, clear, and concise, with high-quality figures, and in-depth discussion. I highly recommend publication of this work in Biogeosciences. Congratulations to the authors for this very nice piece of work. I only have a few very minor comments that may improve the paper.

R1-R1: We sincerely thank reviewer #1 for the careful reading of our manuscript and constructive criticisms and comments that helped to improve the manuscript. We have carefully considered all her comments and have addressed each of her concerns as outlined below.

R1-C2: P3L87-89: replace “satellite reflectance observations” with “ocean color satellite reflectance observations” to precise that it is the fraction of incoming VISIBLE and NEARINFRARED solar radiation that is reflected from the ocean surface. Add reference (Balch et al., 2005) (Gordon et al., 2001) at the end of the sentence. These are the NASA standard algorithms for PIC retrieval.

R1-R2: Corrected according to reviewer 1’s suggestion.

R1-C3: P4L111: reference for representativeness is missing

R1-R3: Please note that a detailed explanation of the representativeness of the SOTS and SAM sites was explained later in the text (section 2.2). In the new version of the manuscript we refer to section 2.2 in the line indicated by the reviewer.

R1-C4: P5L132: remove “that”.

R1-R4: Corrected according to reviewer 1’s suggestion.

R1-C5: P6 Figure 1: STZ not included in legend.
R1-R5: Subtropical Zone - STZ has been included in the legend following reviewer 1’s suggestion.

R1-C6: P8L234: Can you briefly explain the method to calculate daily fluxes?

R1-R6: The method employed to estimate coccolith and coccosphere fluxes has been included in the new version of the manuscript (lines 260-267 of the corrected version of the manuscript).

R1-C7: P9L253-255. I strongly appreciate the authors obtained two independent estimates of coccolith fluxes based on the birefringence and morphometric methods, each with their own advantages and disadvantages.

R1-R7: We appreciate reviewer 1’s supportive comment. Since both techniques have associated errors, we decided to present both estimates (in the manuscript). Interestingly, in spite of some variability between techniques the general conclusions would remain similar to using any of the techniques individually.

R1-C8: P10L294: Can you briefly explain why you think that the finding of <5% error on DSL estimates from polarization would apply to other species than the one tested?

R1-R8: *E. huxleyi* overwhelmingly dominated the coccolithophore assemblages in all the samples analysed. Given the very low number of coccoliths of the rest of the coccolithophore species, it was almost impossible to find a representative number of individuals of for most of the “secondary” species in the same sample in order to statistically compare both microscopy techniques. Please note that even when a coccolith of a given species is found under the SEM, it can not always be measured because its position is not always adequate (e.g. they are often tilted or partially covered by other phytoplankton or detritus). Based on this, we decided to measure *C. leptoporus* because it was the second most abundant species, and therefore, statistical comparison between populations measured under the Light Microscope (LM) and SEM was possible. The subtle differences between coccolith distal length measurements are most likely due to the fact that the peripheral limit of the coccolith shield is not as sharp under the LM as is the case for SEM images. It follows that differences in coccolith measurements between SEM and LM techniques will be probably similar or smaller in the case of larger species. Since the majority of coccolith species identified in the current study display a similar (e.g. *Gephyrocapsa oceanica*, *Syracosphaera pulchra*, *Umbellosphaera tenuis* and *Umbilicosphaera sibogae*) or larger size (e.g. *Coccolithus pelagicus* and *Helicosphaera carteri*) than *C. leptoporus*, it can be assumed that the <5% error on DSL estimates for *C. leptoporus* is applicable to the rest of the species found in the current study. All the above is explained in section 2.6, lines 329-340 of the corrected version of the manuscript.

R1-C9: Materials and Methods section: I think you should add a section on the ocean colour satellite data treatment. Which data did you use? Figure 2 suggests you used weekly data for PIC but monthly for Chla? Why not the same temporal resolution? Did you use multisensor merged products (such as GlobColour)? Did you do any spatial averaging and how did you compute the weekly averages?

R1-R9: Corrected according to reviewer 1’s suggestion. A new subsection called “2.8 Remotely sensed chlorophyll-a and PIC concentrations” has been included in the new
version of the manuscript describing how we obtained and processed the Chl-a and PIC satellite data used in the manuscript. Weekly Chl-a data is now plotted in the graphs. Additionally, in order to support our statements in section 4.1 of the discussion, CaCO₃ fluxes registered by the traps have also been included in Figure 2.

R1-C10: P12 Figure legend: specify “ocean color satellite-derived”. Panel b, please add Chla data for October/November to see the potential rise in Austral spring. Can you present PIC and Chla data at the same temporal resolution? That would make sense.

R1-R10: Corrected according to reviewer 1’s suggestion. As mentioned in the previous comment weekly Chl-a data is now plotted in Figure 2. Moreover, data for the month of November is now included in figure 2.

R1-C11: P12 Figure 2: panel c at 61S is missing.

R1-R11: The figure caption erroneously mentioned the 61ºS site (the figure caption corresponds to an earlier version of the manuscript where data from the 61ºS was presented in the graph). In the new version of the manuscript this information is not required. Therefore, the reference to the 61ºS site in the caption of Figure 2 has been deleted.

R1-C12: P16L429: the secondary maximum of satellite PIC might be an artefact of satellite data treatment, but it’s hard to say, since that critical information is missing from the manuscript Materials and Methods...

R1-R12: As mentioned above (see R1-R9), a new subsection called “2.8 Remotely sensed chlorophyll-a and PIC concentrations” has been included in the manuscript. It is important to note that the PIC satellite signal for the grid area considered representative of the SAM station (coordinates 47-45° S and 171°E-179°W) was almost identical to that of a smaller area over the SAM site (47-45° S, 177.5-179.5°E). An alternative explanation of the secondary PIC maximum (i.e. possibility of storm-induced bubbles) has been included in the text. See section 4.1 of the new version of the manuscript.

R1-C13: P14L377: Not clear what you mean with total CaCO₃ export in Fig. 5. Is this the combined export of coccios and forams? If yes, how did you quantify foram export? I suggest you also explain total CaCO₃ in the Figure legend.

R1-R13: Both figure and figure caption have been modified in order to make clear that annual total CaCO₃ export (represented by yellow bars in Figure 5) refers to the total amount of CaCO₃ collected by the traps determined chemically (as explained in section 2.4) while the clear and dark blue bars represent the two different estimates of the contribution of CaCO₃ based on birefringence and morphometric techniques, respectively.

R1-C14: P17L436: it may also be a foraminiferan signal, see for example (Rembauville et al., 2016).

R1-R14: We appreciate reviewer 1’s suggestion. Indeed, we did consider the possibility that heterotrophic calcifying plankton such as planktonic foraminifera or pteropods could account for the secondary maximum in February-early-March. However, total CaCO₃ fluxes recorded in the trap do not reflect an increase during this interval. Therefore, we
believe this possibility is unlikely. Please note that in the new version of the manuscript total CaCO$_3$ fluxes have been included in figure 2 (see also R1-R9).

R1-C15: P18L497 etc.: The satellite PIC algorithm has indeed been calibrated in Northern hemisphere waters, where E. huxleyi greatly outnumbered other coccolithophore species, which is also the case in your study areas. In fact, the satellite signal (which is proportional to the particulate backscattering coefficient) is more sensitive to the concentration of E. huxleyi-sized particles, compared to larger, less abundant cocco species. Indeed, if larger, much heavier species are more prevalent in the Northern hemisphere waters, where the conversion factor for backscatter to PIC is calibrated, then this would lead to an overestimation of PIC in any waters where larger species are less prevalent. Put in other words, the conversion factor of backscatter to PIC is dependant on the size of the calcite particles. An alternative explanation for the overestimation of PIC is Southern Ocean waters is the contribution of bubbles to the backscattering coefficient.

R1-R15: Our intention was to highlight that the different composition of coccolithophore assemblages between the Northern Hemisphere and Southern Ocean may contribute (only one factor among probably many) to the overestimation of PIC concentration in the Southern Ocean. In the new version of the manuscript this has been clarified and the possible influence of microbubbles to the backscattering coefficient has also been included.

R1-C16: P23L654: poleward expansion of E. huxleyi to the Arctic has also been demonstrated by (Neukermans et al., 2018)

R1-R16: We appreciate the new reference provided by reviewer 1. This study is now mentioned in the new version of the manuscript.

R1-C17: P24L664 etc.: see also recent review in (Krumhardt et al., 2017)

R1-R17: The reference mentioned by reviewer 1 has been included in the discussion (section 4.5).

Response to reviewer 2

We sincerely thank Dr Alex Poulton (reviewer 2) for the valuable comments and suggestions that have helped to improve the original version of the manuscript. We have carefully considered all his comments and have addressed each of his concerns as outlined below.

R2-Cx : Referee comment, R2-Rx: authors response.

R2-C1: The manuscript by Rigual Hernandez et al. represents a comprehensive study of species-specific fluxes of coccolithophore-derived CaCO3 fluxes to the deep-sea in the
Southern Ocean. The manuscript is well written and easy to follow, and provides several new insights into the important role of numerically rare coccolithophore species with high relative coccolith and cellular CaCO3 content. Such understanding has been well recorded in terms of production and export in northern polar and sub-polar waters, but the manuscript by these authors reveals the importance of this processes in the Australian-New Zealand sector of the Southern Ocean. There are no significant issues with the methods or conclusions, and only a few points that need clarity or further referencing.

R2-R1: We sincerely appreciate reviewer 2 for taking the time to carefully read the manuscript and providing valuable comments and references that helped to improve the manuscript.

R2-C2: Ln 39: ‘E. huxleyi dominates remote sensing images as a result of higher cell abundance and detachment of its small coccoliths.’ This is an oversimplification and ignores the vital role of the characteristic light-scattering properties and size of E. huxleyi coccoliths, in addition to its tendency to shed coccoliths and characteristic bloom formation.

R2-R2: The sentence referred by reviewer 2 has been replaced by the following: “This observation contrasts with the generally accepted notion that high PIC accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms.”.

R2-C3: Ln 56-57: ‘Decline in saturation state of carbonate minerals in seawater makes the biological precipitation of carbonate difficult and increases dissolution rates of their shells or skeletons’. Current theoretical consensus of the response of coccolithophores to carbonate chemistry (e.g. Bach et al., 2015) specifically relates their internal calcification to substrate availability (HCO3-) and inhibition by proton (H+) concentrations; i.e. different carbonate chemistry parameters than inferred in the text (i.e. CaCO3 saturation state).

R2-R3: The sentence highlighted by Reviewer 2 has been modified taking into consideration his suggestion and the reference of Bach et al. (2015) is now mentioned in the text (see lines first part of the introduction of the corrected version of the manuscript). Please note that in this part of the introduction we are talking in general about marine calcifying organisms, i.e. not specifically about coccolithophores.

R2-C4: Ln 92-95: As well as recent work by Trull et al. (2018) showing that satellite oceancolour based PIC estimates can be unreliable in Antarctic waters, should also cite Holligan et al. (2010) which came to the same conclusion earlier.

R2-R4: Corrected according to reviewer 2’s suggestion. Holligan et al. (2010) paper is now mentioned together with Trull et al. (2018) in the new version of the manuscript.

R2-C5: Ln 131-132: ‘which that’, delete one or the other, both not necessary.
R2-R5: Corrected according to reviewer 1 and 2’s suggestion.

R2-C6: *Ln 294-295:* ‘For the k_s value of each taxa, data from the literature were (Table 1)’ – sentence not finished.

R2-R5: The sentence referred to by reviewer 2 has been modified. Now it reads: “For the k_s value of each taxa, data from the literature was employed (Table 1).”

R2-C7: *Ln 329:* Missing word – ‘later’ at end of sentence ‘i.e. approximately eight months <later> (Fig. 2).’

R2-R5: We intended to say that the period of elevated coccolith flux lasted about 8 months. However, this information is not of critical importance and therefore we have deleted the end of the sentence.

R2-C8: *Fig. 2.* Would it not be better to make the y-axis on these plots the same scale?

R2-R5: Corrected according to reviewer 2’s suggestion. The y-axes have now the same scale in each station. Please note that in figure SAM site two axes (cocospheres and PIC) required different scale due to the different magnitude of these parameters compared to those of the SOTS site.

R2-C9: *Ln 417-419:* This is an interesting point, as it is similar to loss terms found specifically for coccolithophores from microzooplankton grazing in the temperate N Atlantic setting (60-80%; Mayers et al., 2019).

R2-R9: We appreciate reviewer 2’s suggestion. This is a good point that has been included in the new version of the manuscript (see section 4.1 of the new version of the manuscript).

R2-C10: *Ln 490-492:* Again, although Trull et al. (2018) recently identified overestimate of coccolithophore PIC in the Southern Ocean by the NASA satellite ocean-colour-based PIC algorithm, this was examined earlier by Holligan et al. (2010). In the case of Holligan et al. (2010), the difference was attributed to the lower coccolith and cell CaCO3 content of $E_{huxleyi}$ found in the S Atlantic (Scotia Sea). This is in general agreement with the reasoning suggested here (i.e. issues over the coccolith specific-area:mass ratios for the dominant reflective particles), though differs over whether this is considered a problem with $E_{huxleyi}$ or $C_{pelagicus}$ (or other species with high coccolith CaCO3 content).

R2-R10: We agree with reviewer 2. The text has been modified including Holligan et al. (2010) reference in the manuscript. Now it reads: “Since satellite reflectance observations are mainly calibrated against Northern Hemisphere PIC results (Balch et al., 2011; Balch et al., 2016), the lower the calcite content of dominant $E_{huxleyi}$ morphotypes (B/C) in the Southern Ocean compared to their northern hemispheric counterparts has been suggested as a possible factor causing the over-estimation of PIC concentrations in the Southern Ocean. Following this reasoning, we speculate that differences in other components of the coccolithophore assemblages, and particularly, differences in C.
pelagicus numbers, could contribute to the over-estimation of PIC concentrations by the satellite PIC algorithm in the Southern Ocean. Indeed,…”

R2-C11: Ln 570: Should the units not be 0.4 Tmol C yr⁻¹?

R2-R11: Reviewer 2 is correct, this error has been corrected in the new version of the manuscript.

Additional corrections

Additionally, a few extra minor changes have been included in the text and are listed below:

- Some small changes have been included in results section 3.2. The annual relative abundance of coccolithophore species of the SOTS site has been updated. The changes only affect secondary species and are almost negligible (~0.1%). Moreover, some coccolithophore species with very low contribution but present in the samples of the SAM station were not listed in the first version of the manuscript. However, we believe all species should be mentioned in the text and therefore have been included all of them (see last sentence of section 3.2). Please note that none of these changes have an influence on the rest of the results or discussion.

- Sentence on Line 754. The reference of Rintoul et al. (2018) has been deleted and the sentence slightly modified. This publication does not fully support our statement and therefore we believe it is more appropriate to delete it from the text.

- Both reviewers are now thanked in the in the acknowledgment section.

- All data has been uploaded in the Australian Antarctic Data Centre in the following link: https://data.aad.gov.au/metadata/records/Coccolithophore_Fluxes_SAZ_2009-2012
Coccolithophore biodiversity controls carbonate export in the Southern Ocean

Andrés S. Rigual1,* Thomas W. Trull2,3, Scott D. Nodder4, José A. Flores1, Helen Bostock5,6, Fátima Abrantes6,7, Ruth S. Eriksen2,8, Francisco J. Sierro1, Diana M. Davies2,3, Anne-Marie Ballegeer9, Miguel A. Fuertes9, and Lisa C. Northcote4.

1 Área de Paleontología, Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
2 CSIRO Oceans and Atmosphere Flagship, Hobart, Tasmania 7001, Australia
3 Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania 7001, Australia
4 National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand
5 University of Queensland, Brisbane, Queensland 4072, Australia
6 Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, Lisboa, Portugal
7 CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
8 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
9 Departamento de Didáctica de las Matemáticas y de las Ciencias Experimentales, Universidad de Salamanca, 37008 Salamanca, Spain.

* Corresponding author

Abstract

Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO₃) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO₃ export in the Southern Ocean is uncertain, particularly in the circumpolar Subantarctic Zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO₃ flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative...
of a large portion of the Subantarctic Zone. We find that coccolithophores account for a major fraction of the annual CaCO$_3$ export with highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although *Emiliania huxleyi* is an important vector for CaCO$_3$ export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO$_3$ flux. This observation contrasts with the generally accepted notion that high PIC accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by *E. huxleyi* blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO$_3$ production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.

1. Introduction

The emissions of carbon dioxide (CO$_2$) into the atmosphere by anthropogenic industrial activities over the past 200 years are inducing a wide range of alterations in the marine environment (Pachauri et al., 2014). These include ocean warming, shallowing of mixed layer depths, changes in nutrient supply to the photic zone, and decreasing carbonate-ion concentrations and pH of the surface ocean, a process known as ocean acidification (Rost and Riebesell, 2004; Stocker et al., 2014). Substantial evidence from CO$_2$ manipulation experiments indicates that many species of corals, pteropods, planktonic foraminifera and coccolithophores will reduce their calcification rates under future ocean acidification scenarios (Bijma et al., 2002; Langdon and Atkinson, 2005 among others; Orr et al., 2005; Bach et al., 2015; Meyer and Riebesell, 2015). Owing to their moderate alkalinity and cold temperatures, Southern Ocean waters are projected to become undersaturated with respect to aragonite no later than 2040 and to calcite by the end of the century (Cao and Caldeira, 2008; McNeil and Matear, 2008; Shadwick et al., 2013). This decline in the saturation state of carbonate, together with other changes in carbonate chemistry speciation, will enhance dissolution of both aragonite and calcite shells and will make the biological precipitation of carbonate difficult in some marine calcifying organisms (Fabry et al., 2008; Gattuso and Hansson, 2011). Since such thresholds will be reached sooner in polar regions, Southern Ocean ecosystems have been...
proposed as bellwethers for prospective impacts of ocean acidification on marine organisms at mid and low latitudes (Fabry et al., 2009).

Coccolithophores are a major component of phytoplankton communities in the Southern Ocean, particularly in its northern-most province, the Subantarctic Zone, where they often exhibit maximum abundances and diversity (e.g. Gravalosa et al., 2008; Saavedra-Pellitero et al., 2014; Malinverno et al., 2015; Charalampopoulou et al., 2016). Coccolithophores play an important and complex role in the Southern Ocean carbon cycle (Salter et al., 2014). On the one hand, the production of calcite platelets (termed coccoliths) decreases the alkalinity of surface waters thereby reducing the atmospheric uptake of CO$_2$ from the atmosphere into the surface ocean. On the other hand, the production of organic matter through photosynthesis, and its subsequent transport to depth in settling particles, enhances carbon sequestration via the biological carbon pump (Volk and Hoffert, 1985). Additionally, due to their high density and slow dissolution, coccoliths act as an effective ballast for organic matter, increasing organic carbon sequestration depths (Buitenhuis et al., 2001; Boyd and Trull, 2007; Ziveri et al., 2007).

Therefore, changes in the abundance, composition and distribution of coccolithophores could have an extensive impact on ocean nutrient stoichiometry, carbon sequestration, and nutrition for higher trophic levels in the Southern Ocean (Deppeler and Davidson, 2017).

The remoteness and vastness of the Southern Ocean, together with the inherent temporal and spatial variability of pelagic ecosystems, hampers accurate characterization and quantification of Southern Ocean phytoplankton communities. Advances in satellite technology and modelling algorithms have allowed a circumpolar and year-round coverage of the seasonal evolution of major phytoplankton functional groups within the Southern Ocean (e.g. Alvain et al., 2013; Hopkins et al., 2015; Rousseaux and Gregg, 2015). In particular, ocean-colour satellite reflectance observations have been used to quantitatively estimate coccolithophore Particulate Inorganic Carbon (PIC) concentrations throughout the Southern Ocean (Gordon et al., 2001; Balch et al., 2005b). These satellite estimates suggest apparent high PIC values during summer near the major Southern Ocean fronts attributed to coccolithophores (Balch et al., 2011; Balch et al., 2016). This band of elevated reflectance and PIC that encircles the entire Southern Ocean was termed the “Great Calcite Belt” by these authors. However, comparison of satellite remote-sensing data with ship-based observations (Holligan et al., 2010; Trull et al.,
indicate that satellite ocean-colour-based PIC estimates could be unreliable, particularly in Antarctic waters where they erroneously suggests high PIC abundances. Shipboard observations, on the other hand, provide a detailed picture of phytoplankton community composition and structure, but are dispersed, both temporally and geographically, and provide rather heterogenous data in terms of taxonomic groups investigated, and the sampling scales and methodologies used (e.g. Kopczynska et al., 2001; de Salas et al., 2011; Poulton et al., 2013; Patil et al., 2017, among others). In situ year-round monitoring of key strategic regions is critically needed to establish baselines of phytoplankton community composition and abundance and to validate and improve ocean biogeochemical models (Rintoul et al., 2012). This information is also essential if we are to detect possible climate-driven changes in the structure of phytoplankton communities that could influence the efficiency of the biological carbon pump, with consequent feedbacks to the rate of deep-water carbon sequestration and global climate change (Le Quéré et al., 2007; Deppeler and Davidson, 2017).

Here, we document coccolithophore and carbonate particle fluxes collected over a year by four sediment trap records deployed at two strategic locations of the Australia and New Zealand sectors of the Southern Ocean considered representative of a large portion of the SAZ (See section 2.2 for further details). Our measurements provide coccolith mass estimates of the main coccolithophore species and quantitatively partition annual carbonate fluxes amongst coccolithophore species and heterotrophic calcifiers. We find that coccolithophores are a major vector for CaCO$_3$ export out of the mixed layer and that the largest contribution to CaCO$_3$ export is not from the most abundant species *Emiliania huxleyi* but rather from larger coccolithophores species with substantially different physiological traits (e.g. *Calcidiscus leptoporus*). Our results emphasize the urgent need for diagnostic fitness response experiments on other coccolithophore species aside from *E. huxleyi* (e.g. Feng et al., 2017) in order to be able to be able to predict the impacts of anthropogenically induced changes in Southern Ocean ecosystems and biological carbon uptake mechanisms.

2. Material and methods

2.1 Oceanographic setting
The SAZ alone accounts for more than half of the Southern Ocean area (Orsi et al., 1995) and represents a transitional boundary between the warm, oligotrophic waters of the subtropical gyres to the north and the cold, silicate-rich waters south of the Polar Front (PF). The SAZ is arguably the largest high nutrient, low chlorophyll (HNLC) province in the world’s ocean and is central to the linkages between the ocean–atmosphere CO$_2$ exchange and climate. The deep winter convection in the SAZ, which exceeds 400 m, results in the formation of a high-oxygen water masses known as Subantarctic Mode and Antarctic Intermediate Waters that connect the upper and lower limbs of the global overturning circulation (Sloyan and Rintoul, 2001a, b). The formation of these water masses are responsible for the sequestration of a large fraction of anthropogenic CO$_2$ (Sabine et al., 2004), with an estimated 1 Gt C yr$^{-1}$ transported to intermediate depths annually (Metzl et al., 1999). Macronutrient concentrations display pronounced seasonal changes in the SAZ with fully replete levels during winter to substantial depletion during summer, particularly for silicate (Dugdale et al., 1995; Rintoul and Trull, 2001; Bowie et al., 2011). Phytoplankton community in the subantarctic zone is dominated by pico- and nanoplankton including cyanobacteria, coccolithophores and autotrophic flagellates with lower abundances of diatoms than polar waters south the Polar Front (Chang and Gall, 1998; Kopeczynska et al., 2001; de Salas et al., 2011; Rigual-Hernández et al., 2015b; Eriksen et al., 2018).

2.2 Field experiments

Here we report on the coccolithophore and biogeochemical fluxes collected over a year at the Australian Southern Ocean Time Series (SOTS) observatory (Trull et al., 2010) and the New Zealand Subantarctic Mooring (SAM) site (Nodder et al., 2016) (Fig. 1). The SOTS observatory is located in the abyssal plane of the central SAZ approximately 530 km southwest of Tasmania (46° 56’ S, 142° 15’ E) within an anticyclonic gyre in a region characterized by weak circulation (Trull et al., 2001; Herraiz-Borreguero and Rintoul, 2011). SOTS was equipped with three vertically moored, conical time-series sediment traps (McLane Parflux Mk 7G-21) placed at ~1000, 2000 and 3800 m depth between August 2011 until July 2012. The physical, chemical and biological parameters of SOTS site are regarded as representative for large portion of the Indian and Australian sectors of the SAZ (~90°E and 140°E; Trull et al., 2001). The SAM site is located in the Bounty Trough in in the subantarctic waters south east of New Zealand.
(46°40’S, 178° 30°E) and was equipped with conical, time-incremental sediment trap (McLane PARFLUX Mk7G-21) placed at 1500 m depth, with samples used in the present study collected between November 2009 until November 2010. The SAM site is considered to be representative of a wide area of the northern sector of the SAZ off eastern New Zealand, approximately 171°E to 179°W and 45 to 47°S (Law et al., 2014; Fig. 1). Full details of the field experiments from these two localities in the Australian and New Zealand sectors of the SAZ can be found in Trull et al. (2001) and Nodder et al. (2016), respectively.

Figure 1: Chlorophyll-a composite map of the Australian-New Zealand sector of the Southern Ocean (July 2002 to July 2012) from the MODIS Aqua Sensor showing the location of the sediment trap moorings sites: SOTS, 61°S and SAM. The regions for which the SOTS and SAM sites are representative are marked with light and dark blue areas, respectively. Abbreviations: Subtropical Zone – STZ, Subtropical front – STF, Subantarctic Zone – SAZ, Subantarctic Front – SAF, Polar Frontal Zone - PFZ, Polar Front - PF, Antarctic Zone – AZ, Southern Antarctic Circumpolar Current Front – SACCF, southern boundary of the ACC – SB. Oceanic fronts after Orsi et al. (1995).

2.3 Sample processing

In short, the recovered trap bottles were refrigerated upon recovery and then allowed to settle. The sample slurry was then wet-sieved through a 1 mm screen in the case of SOTS (no attempt to extract zooplankton "swimmers" was made for the <1 mm fraction analysed here) and through a 200 µm sieve to remove "swimmers" for the SAM site. The remaining fraction was then split using a McLane wet sample divider; the SOTS
samples were subdivided into one tenth aliquots while one fifth splits were made for the SAM samples. For the SOTS samples, a total of 55 samples were processed for calcareous nannoplankton analysis. The one-tenth splits dedicated to phytoplankton analysis were further subdivided into four aliquots with the McLane splitter. One aliquot was used for calcareous nannoplankton analysis and the remaining three were kept refrigerated for biomarker and non-calcareous microplankton analyses. In the case of the SAM samples, the one-fifth aliquots were further subdivided into five subsplits, and one of those was used for calcareous nannoplankton analysis. Two different types of glass slides per sample were prepared. The first preparation was used for the estimation of coccosphere and calcareous dinocyst (calcispheres of thoracosphaerids) fluxes and for coccolith imaging. A volume ranging between 1000 and 5000 µl of the raw sample was mounted on a glass slide using Canada balsam following Flores and Sierro (1997). This technique produces random settling of the coccoliths for microscopic identification and enumeration. The second type of glass slide was prepared following a modified protocol for non-destructive disintegration of aggregates modified from Bairbakhish et al. (1999). The objective of this chemical treatment is to reduce biases in the coccolith flux estimations associated with the presence of different types of aggregates and coccospheres (Bairbakhish et al., 1999). In brief, 2000 µl were extracted from the aliquot for calcareous nannoplankton analysis and then treated with a solution comprising 900 µl sodium carbonate and sodium hydrogen carbonate, 100 µl ammonia (25%) and 2000 µl hydrogen peroxide (25%). The sample was agitated for 10 seconds every 10 minutes and this process was repeated over an hour. Then, the reaction was stopped with catalase enzyme and samples were allowed to settle for at least 48 hours before preparation on microscope slides. pH controls indicate that the solution kept pH levels near 9, therefore precluding coccolith dissolution. Finally, trap samples were mounted on microscope slides following the same decantation method as used for the first type of glass slides (i.e. Flores and Sierro, 1997).

2.4 Determination of CaCO$_3$ fluxes

A detailed description of the geochemical analytical procedures for the SOTS samples is provided in Trull et al. (2001) and Rigual-Hernández et al. (2015a) while more detailed procedures of the SAM trap can be found in Nodder et al. (2016). In short, for the SOTS site three of the one tenth splits were filtered onto 0.45 pore size filters. Then the material was removed from the filter as a wet cake of material, dried at 60°C, and
ground in an agate mortar. This material was used to determine the total mass and composition of the major components of the flux. Particulate inorganic Carbon (PIC) content was measured by closed system acidification with phosphoric acid and coulometry. For the SAM site, one-fifth split was analysed for elemental calcium (Ca) concentration using ICP-MS techniques. The samples were oven-dried, digested in nitric/hydrochloric acid and then analysed according to the methods under US EPA 200.2. Ca was used to estimate CaCO$_3$ content in the samples assuming a 1:1 molar ratio in CaCO$_3$.

2.5 Quantification and characterization of coccolithophore sinking assemblages

Qualitative and quantitative analyses of coccospheires and coccoliths were performed using a Nikon Eclipse 80i polarised light microscope at 1000 x magnification. The taxonomic concepts of Young et al. (2003) and the Nannotax website (Young et al., 2019) were used. A target of 100 coccospheires and 300 coccoliths was established; however, owing to the pronounced seasonality in coccolithophore export, there were some periods with very low abundance of coccospheires in the samples and therefore the target of 100 coccospheires was not always met. Coccospheire and coccolith species counts were then transformed into relative abundances and daily fluxes using the following formula:

$$ F = \frac{N \times \frac{A}{a} \times V \times S}{d \times T} $$

where F = coccolith flux, N = number of coccoliths, $A = area$ of the Petri dish, n = number of fields of view, $a = area$ of a field of view, $V = dilution$ volume, $S = sample$ split, $d = number$ of days of collection and $T = sediment$ trap aperture area.

2.6 Determination of coccolith mass and size

Birefringence and morphometric methods are the two most commonly used approaches for estimating the calcite content of isolated coccoliths. The circularly-polarized light-microscopy-based technique (Fuertes et al., 2014) is based on the systematic relationship between the thickness of a given calcite particle (in the thickness range of 0 - 1.55 mm) and the first-order polarization colours that it displays under
polarized light (Beaufort, 2005; Beaufort et al., 2014; Bolton et al., 2016). The advantages of this approach are that: (i) it directly measures complete coccoliths with no assumptions regarding their shape or thickness and (ii) it allows for quantification of calcite losses associated with missing parts or etching of the coccoliths. Disadvantages of this technique are the errors associated with the coccolith-calcite calibration and their consequent effect on the coccolith mass estimates (Fuertes et al., 2014; González Lemos et al., 2018). The morphometric approach, on the other hand, allows better taxonomic identification of the coccoliths and has smaller errors in the length measurements (~0.1 to 0.2 μm; Poulton et al. 2011). However, this method does not allow direct measurement of coccolith thickness and assumes identical shape and width proportions for all specimens of the same species, among other uncertainties (see Young and Ziveri, 2000 for a review). Since the two methods have different associated errors (Poulton et al., 2011), we applied both approaches to our coccolith flux data in order to obtain two independent estimates of the fractional contribution of coccolithophores species to total carbonate export in the SAZ.

For the birefringence-based approach, a minimum of 50 coccoliths of each of the main coccolithophore species were imaged using a Nikon Eclipse LV100 POL light microscope equipped with circular polarisation and a digital camera (Nikon DS-Fi1 8-bit colour). The only exception was *E. huxleyi* for which coccolith mass values had already been estimated in all the same samples at high resolution by Rigual-Hernández et al. (under review). For the minor components of the flux assemblage, a lower number of coccoliths were measured (Table 1). A photograph of the same apical rhabdolith of the genus *Acanthoica* was taken and used for calibration at the beginning of each imagining session during which microscopy light and camera settings were kept constant. A different number of fields of view of multiple samples representative of different seasons were photographed until the target number of coccoliths for each species was reached. Photographs were then analysed by the image processing software C-Calcita. The output files for single coccoliths were visually selected and classified into the lowest possible taxonomic level. Length and weight measurements were automatically determined by C-Calcita software. Morphometric measurements of all the species are summarized in Table 1. For further methodological details see Fuertes et al. (2014) and Bolton et al. (2016).

The second approach consisted of performing morphometric measurements on the coccoliths followed by the estimation of their coccolith mass assuming a systematic relation between length and thickness (Young and Ziveri, 2000). Young and Ziveri (2000)
proposed that the calcite content of a given coccolith could be estimated using the following formula:

\[
\text{Coccolith calcite (pg)} = 2.7 \times k_s \times l^3
\]

where 2.7 is the density of calcite (\(\text{CaCO}_3; \text{pg } \mu\text{m}^{-3}\)), “\(k_s\)” is a shape constant that varies between species and morphotypes and whose value is based on the reconstruction of coccolith cross profiles and “\(l\)” is the distal shield length (DSL). In order to undertake coccolith measurements on the same coccoliths used for the birefringence-based approach, we employed the distal shield length values measured by C-Calcita using circularly polarized light instead of morphometric measurements on Scanning Electron Micrographs (SEM) as made in Young and Ziveri (2000).

Since coccolith distal shield length (DSL) has been reported to be systematically underestimated using cross-polarized light microscopy (e.g. D’Amario et al., 2018), we evaluated the possible errors in the DSL measurements made by C-Calcita. For this assessment, we measured 40 detached coccoliths of \(C.\) leptoporus under the SEM from samples of the SOTS sediment traps using the image processing software Image-J. Average DSL measurements under the SEM were then compared with those made by C-Calcita on 40 randomly selected \(C.\) leptoporus coccoliths. The average coccolith length obtained with the SEM analysis (6.37 ± 1.02, \(n = 40\)) was ~ 4% shorter than that estimated with C-Calcita (6.62 ± 1.47, \(n = 40\)). Therefore, we assumed the error for the DSL measurements with circularly polarized light is < 5%. Given the low numbers of the rest of species in the samples we considered that this error is applicable for the rest of the taxa measured in the current study. The subtle differences in coccolith distal length measurements between techniques are most likely due to the fact that the peripheral limit of the coccolith shield under the circularly-polarized light microscope (LM) is not as sharp as is the case for SEM images. It follows that differences in DSL measurements between SEM and LM techniques will be likely similar or smaller in the case of larger species. Since the majority of coccolith species identified in the current study display a similar (e.g. \(Gephyrocapsa\) oceanica, \(Syracosphaera\) pulchra, \(Unbellopsphaera\) tenuis and \(Umbilicosphaera\) sibogae) or larger size (e.g. \(Coccolithus\) pelagicus and \(Helicosphaera\) carteri) than \(C.\) leptoporus, it could be assumed that the <5% error on DSL estimates for \(C.\) leptoporus is applicable for the rest of the species found in the current study. For the \(k_s\) value of each taxa, data from the literature was employed (Table 1). \(E.\) huxleyi assemblages in the SAZ are composed of a mixture of five different morphotypes: A, A...
overcalcified, B, B/C and C, each of which is characterized by different shape factors (k). Since k is not available for all the morphotypes found in the SAZ and it is not possible to differentiate between morphotypes in our light microscopy images, we used the mean shape factor constant for E. huxleyi (i.e. k = 0.0275) to provide a range of coccolith mass estimates for this species (Table 1 and Fig. 4).

2.7 Calculation of annual estimates

Since the trap collection periods encompassed a period shorter than a calendar year, annual estimates of coccolith and CaCO\textsubscript{3} fluxes and species relative abundances had to be estimated. For the SOTS site, a total of 336 days were sampled for the 1000 and 2000 m traps and 338 days for the 3800 m. Since the unobserved interval occurred in winter, the missing sampling period was filled using an average flux value of the winter cups (first and last trap bottles). In the case of the SAM trap, the number of samples available for CaCO\textsubscript{3} and calcareous nanoplankton analyses was different, covering a period of 313 and 191 days respectively. Since gaps were quasi-equally distributed along the time series, annual fluxes were estimated by filling the gaps in the record with average fluxes calculated from the available data. The estimated range of the annual contribution of coccolithophores to total CaCO\textsubscript{3} export at the SOTS and SAM traps was calculated by multiplying the coccolith flux of each species in each sampling interval by its average coccolith weight values obtained with the birefringence and morphometric techniques.

2.8 Remotely sensed chlorophyll-a and PIC concentrations

Weekly Chlorophyll-a and PIC concentrations for the sampling intervals at the SOTS and SAM sites were derived from Giovanni online data system, developed and maintained by the NASA Goddard Earth Sciences Data Active Archive Center (Acker and Leptoukh, 2007). Each value is a weekly value is produced by computing spatial averages within the area 48.5-45.5\textdegree S and 130-150\textdegree E for the SOTS site and 47-45\textdegree S and 171\textdegree E-179\textdegree W for the SAM site (Fig. 5).

3. RESULTS

3.1 Magnitude and seasonality of coccolithophore and CaCO\textsubscript{3} fluxes

Annualized coccolith fluxes were similar at the SOTS three trap depths, with 8.6, 7.3 and 8.6 x 1011 liths m-2 yr-1 at 1000, 2000 and 3800 m respectively, and about three
times larger than those of the SAM site (3.0 x 10^{11} \text{liths m}^{-2} \text{yr}^{-1}). The contribution of intact coccospheres to the total coccolith export was low at both sites, with annual coccosphere fluxes two orders of magnitude lower than coccolith fluxes at SOTS (3.5, 3.3 and 1.8 x 10^{9} \text{coccospheres m}^{-2} \text{yr}^{-1} at 1000, 2000 and 3800 m, respectively) and SAM (2.2 \times 10^{9} \text{coccospheres m}^{-2} \text{yr}^{-1}). Annualized CaCO_{3} export was similar at both sites with 14.6, 16.2 and 17.1 \text{g m}^{-2} \text{yr}^{-1} at 1000, 2000 and 3800 m at the SOTS site and 13.9 \text{g m}^{-2} \text{yr}^{-1} at the SAM sediment trap (1500 m).

Both coccolith and coccosphere fluxes displayed a marked seasonality that followed the general trend of algal biomass accumulation in the surface waters at the SOTS and SAM sites (Fig. 2). Coccolith fluxes at 1000 m started to increase in early October and remained above the threshold of 1 \times 10^{9} \text{coccoliths m}^{-2} \text{d}^{-1} until mid-April (Fig. 2). Three maxima were recorded during the period of high coccolith export: October-early November 2011 (4 \times 10^{9} \text{coccoliths m}^{-2} \text{d}^{-1}), late December 2011 (9 \times 10^{9} \text{coccoliths m}^{-2} \text{d}^{-1}) and March 2012 (4 \times 10^{9} \text{coccoliths m}^{-2} \text{d}^{-1}). Coccolith fluxes of the main coccolithophore species generally followed the similar seasonal pattern to that of the total coccolith flux (Supplementary figure 1) and are not discussed further. Coccolithophore fluxes registered by the 2000 and 3800 m sediment traps followed a generally similar seasonal pattern to those of the shallower trap at the SOTS site (Fig. 2).

At SAM, coccolith fluxes exhibited a strong seasonality with peak fluxes in early January 2010 (up to 6 \times 10^{9} \text{coccoliths m}^{-2} \text{d}^{-1}) and a secondary peak in August 2010 (3 \times 10^{9} \text{coccoliths m}^{-2} \text{d}^{-1}). Coccosphere fluxes at both sites displayed maximum fluxes during the austral summer and minima during winter; however maximum coccosphere export peaks did not always match those of coccolith export (Fig. 2). The seasonality of total CaCO_{3} followed a similar pattern to coccolith fluxes with peak values in the spring-summer and minima during winter at both study sites.
Figure 2: Ocean-colour satellite-derived chlorophyll-α and Particulate Inorganic Carbon (PIC) concentration in the surface layer and total CaCO$_3$ coccolith and coccosphere fluxes registered by the sediment traps at the SOTS (a) and SAM (b) sites.

3.2. Coccolithophore assemblage composition

Coccolith sinking assemblages were overwhelmingly dominated by *Emiliania huxleyi* for all sediment trap records analysed (Fig. 3a). At the SOTS site, the annualized flux-weighted relative contribution of *E. huxleyi* decreased slightly with depth, comprising 88% of the total coccolithophore assemblage at 1000 m, 82% at 2000 m and 80% at 3800 m. Secondary components of the coccolith sinking assemblage were *Calcidiscus leptoporus* (sensu lato) (6.8, 10.1 and 9.8% at 1000, 2000 and 3900 m, respectively), *Heliscosphaera carteri* (1.4, 2 and 1.3%) and small Gephyrocapsa spp. (<3 µm) (1.4, 1.5 and 4.7%). Background concentrations (≤1%) of Calciosolenia spp., *Coccolithus pelagicus*, *Gephyrocapsa muellerae*, *Gephyrocapsa oceanica*, *Gephyrocapsa* spp. (>3 µm), *Syracosphaera pulchra*, *Syracosphaera* spp., *Umbellosphaera tenuis* (sensu lato), and *Umbilicosphaera sibogae* were also registered. At the SAM site, *E. huxleyi* accounted for 83% of the annualized coccolith flux, with subordinate contributions of *C. leptoporus* (12.2%) and *Gephyrocapsa* spp. (<3 µm) (1.5%). Background concentrations (≤1%) of Calciosolenia spp., *Coccolithus pelagicus,*
3.3 Calcite content per species

Coccolith length and mass for all species measured using birefringence and morphometric techniques are provided in Table 1. Overall, the average coccolith mass estimates for the coccolithophore species at SOTS and SAM sites using both approaches...
are within the range of values in the published literature. The Noelaerhabdaceae family members, *G. oceanica* and *Gephyrocapsa* spp., display almost identical mass values with both approaches (Fig. 4). In contrast, substantial discrepancies are identifiable for *C. pelagicus*, *C. leptoporus*, *H. carteri* and *U. sibogae*, for which coccolith mass estimates are about two-fold greater using morphometrics than with the birefringence approach.

The range of annual contributions of coccolithophores to carbonate is illustrated in Figure 5.

<table>
<thead>
<tr>
<th>Species and morphotypes</th>
<th>Type of measurement</th>
<th>(n)</th>
<th>Length ((\mu \text{m})) Average</th>
<th>Mass (ext{CaCO}_3) ((\mu \text{g})) Average</th>
<th>(k)</th>
<th>Crystal unit types</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcidiscus leptopus</td>
<td>Birefringence</td>
<td>210</td>
<td>6.30</td>
<td>3.65</td>
<td>21.11</td>
<td>-</td>
<td>VanR</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>210</td>
<td>6.35</td>
<td>3.65</td>
<td>21.11</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>41-9.6</td>
<td>22.6±1±5.2</td>
<td>9.00±0.105</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccolithus pelagicus</td>
<td>Birefringence</td>
<td>54</td>
<td>11.28</td>
<td>17.00</td>
<td>11.23</td>
<td>-</td>
<td>VanR</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>54</td>
<td>11.28</td>
<td>17.00</td>
<td>11.23</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>13-12.5</td>
<td>98.05±10.6</td>
<td>98.05±10.6</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emiliania huxleyi</td>
<td>Birefringence</td>
<td>12442</td>
<td>2.70</td>
<td>2.56</td>
<td>1.43</td>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>12442</td>
<td>2.70</td>
<td>2.56</td>
<td>1.43</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>2.70</td>
<td>0.99±0.04 (2.81)*</td>
<td>0.60±0.04 0.015±0.0275 (0.0275)*</td>
<td>(Vonk tested)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. huxleyi type A</td>
<td>Literature estimates</td>
<td>2.70</td>
<td>0.99±0.04 (2.81)*</td>
<td>0.60±0.04 0.015±0.0275 (0.0275)*</td>
<td>(Vonk tested)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. huxleyi type B/C</td>
<td>Literature estimates</td>
<td>3.5-5</td>
<td>0.3-5</td>
<td>0.15</td>
<td>5.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gephyrocapsa oceanica</td>
<td>Birefringence</td>
<td>51</td>
<td>5.87</td>
<td>26.70</td>
<td>5.64</td>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>51</td>
<td>5.87</td>
<td>26.70</td>
<td>5.64</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>5.87</td>
<td>16.3±25.7</td>
<td>0.05±0.062</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gephyrocapsa spp.</td>
<td>Birefringence</td>
<td>10</td>
<td>4.03</td>
<td>9.00</td>
<td>2.51</td>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>10</td>
<td>4.03</td>
<td>9.00</td>
<td>2.51</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>4.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hali pleasure carteri</td>
<td>Birefringence</td>
<td>64</td>
<td>11.20</td>
<td>201.10</td>
<td>20.34</td>
<td>-</td>
<td>VanR</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>64</td>
<td>11.20</td>
<td>201.10</td>
<td>20.34</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>11.20</td>
<td>199.05±15.86</td>
<td>199.05±15.86</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stramenopila pulexera</td>
<td>Birefringence</td>
<td>81</td>
<td>6.77</td>
<td>17.77</td>
<td>0.80</td>
<td>-</td>
<td>VanR and T</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>81</td>
<td>6.77</td>
<td>17.77</td>
<td>0.80</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>6.77</td>
<td>13.3±6.15</td>
<td>0.025±0.031</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbeluclephora bottae</td>
<td>Birefringence</td>
<td>54</td>
<td>6.42</td>
<td>15.69</td>
<td>5.02</td>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>54</td>
<td>6.42</td>
<td>15.69</td>
<td>5.02</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>6.42</td>
<td>8.5±2.19</td>
<td>0.05±0.07</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbeluclephora sibogae</td>
<td>Birefringence</td>
<td>6</td>
<td>7.76</td>
<td>21.14</td>
<td>11.87</td>
<td>-</td>
<td>VanR</td>
</tr>
<tr>
<td></td>
<td>Morphometrics</td>
<td>6</td>
<td>7.76</td>
<td>21.14</td>
<td>11.87</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature estimates</td>
<td>7.76</td>
<td>19.6±3.34</td>
<td>0.05±0.086</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Coccolith mass estimates of the main coccolithophore species found at the SOTS and SAM sites using birefringence (C-Calcita) and morphometrics. Additionally, length and mass estimates from the literature are also listed for most species. References: (1) Young and Ziveri (2000), (2) Beaufort and Heussner (1999), (3) Samtleben and Bickert (1990), (4) Poulton et al. (2010), (5) Poulton et al. (2011), (6) Holligan et al. (2010) and (7) Charalampopoulos et al. (2016). * coccolith mass range obtained applying the minimum and maximum \(k_s \) values for *E. huxleyi* found in the literature (i.e. 0.015 and 0.04, respectively).
Figure 4: Average and standard deviation of the coccolith mass estimates of the most important coccolithophore species captured by the SOTS and SAM sediment traps using birefringence (C-Calcita) and morphometric approaches. For *E. huxleyi*, the morphometric-based coccolith mass estimate was calculated by applying a mean shape factor constant (k_s) value estimated from the range of all the morphotypes found at the SAZ (i.e. $k_s = 0.0275$, Table 1).

Figure 5: Total annual CaCO$_3$ export (chemically determined) and fractional contribution of coccolithophores to CaCO$_3$ estimated using birefringence (C-Calcita) and morphometric approaches for the SOTS and SAM sites.

4. Discussion

4.1 Coccolithophore phenology in the SAZ: satellite versus sediment trap records
Total coccolith flux seasonality at the SOTS site shows good congruence with satellite-derived PIC in the surface layer, with both parameters suggesting enhanced coccolithophore productivity between October and March (austral mid-spring to early autumn; Fig. 2a). Interestingly, substantial cocosphere export (> 1 x 10^7 cocospheres m^-2 d^-1) does not occur until January indicating that coccolith and cocosphere export are not tightly coupled in the subantarctic waters south of Australia. Two different processes could be invoked to explain the mismatch between coccolith and cocosphere fluxes at this site. Firstly, *E. huxleyi*, the dominant coccolithophore species in the Southern Ocean, is able to produce coccoliths rapidly (up to three coccoliths per hour; Paasche, 1962; Balch et al., 1996) and shed the excess of coccoliths into the surrounding water under certain environmental conditions (Paasche, 2002). Although the coccolith shedding rate of *E. huxleyi* increases linearly with cellular growth rate (Fritz and Balch, 1996; Fritz, 1999), the tiny size and low weight of detached coccoliths allow them to remain in the upper water column long after cell numbers have begun to decline. It follows that high concentrations of detached coccoliths do not necessarily imply a proportional abundance of cocospheres in the surface layer (Tyrrell and Merico, 2004; Poulton et al., 2013) or in the traps. Additionally, a substantial fraction of the cocospheres produced in the surface layer may experience substantial mechanical breakage by zooplankton before reaching the trap depths. Indeed, microzooplankton grazing pressure can remove up to 82% of primary production in mid-summer in the subantarctic waters south of Tasmania (Ebersbach et al., 2011) and about 60% of the daily coccolithophore growth in the North Atlantic (Mayers et al., 2019), therefore suggesting a strong top-down control on coccolithophore populations. Additionally, a polyacrylamide gel sediment trap study in the subantarctic waters south of Tasmania by Ebersbach et al. (2011) revealed that most of the particles exported out the mixed layer during the productive period occur in the form of faecal aggregates. Therefore, it is highly likely that: (i) the intensity of cocosphere export registered by the traps is influenced by grazing pressure in the surface layer, and (ii) that the impact of grazing on coccolithophores varies throughout the year (Calbet et al., 2008; Lawerence and Menden-Deuer, 2012; Quégueiner, 2013).

In contrast, seasonal variations in satellite-derived PIC concentration and coccolith fluxes at SAM show some discrepancies not observed at SOTS. While maximum PIC concentrations in the surface layer and coccolith and cocosphere fluxes co-occur in December and January (austral early to mid-summer), satellite-derived PIC suggests a secondary maximum in February–early-March not recorded by the trap (Fig. 2a). Interestingly, substantial cocosphere export (> 1 x 10^7 cocospheres m^-2 d^-1) does not occur until January indicating that coccolith and cocosphere export are not tightly coupled in the subantarctic waters south of Australia. Two different processes could be invoked to explain the mismatch between coccolith and cocosphere fluxes at this site. Firstly, *E. huxleyi*, the dominant coccolithophore species in the Southern Ocean, is able to produce coccoliths rapidly (up to three coccoliths per hour; Paasche, 1962; Balch et al., 1996) and shed the excess of coccoliths into the surrounding water under certain environmental conditions (Paasche, 2002). Although the coccolith shedding rate of *E. huxleyi* increases linearly with cellular growth rate (Fritz and Balch, 1996; Fritz, 1999), the tiny size and low weight of detached coccoliths allow them to remain in the upper water column long after cell numbers have begun to decline. It follows that high concentrations of detached coccoliths do not necessarily imply a proportional abundance of cocospheres in the surface layer (Tyrrell and Merico, 2004; Poulton et al., 2013) or in the traps. Additionally, a substantial fraction of the cocospheres produced in the surface layer may experience substantial mechanical breakage by zooplankton before reaching the trap depths. Indeed, microzooplankton grazing pressure can remove up to 82% of primary production in mid-summer in the subantarctic waters south of Tasmania (Ebersbach et al., 2011) and about 60% of the daily coccolithophore growth in the North Atlantic (Mayers et al., 2019), therefore suggesting a strong top-down control on coccolithophore populations. Additionally, a polyacrylamide gel sediment trap study in the subantarctic waters south of Tasmania by Ebersbach et al. (2011) revealed that most of the particles exported out the mixed layer during the productive period occur in the form of faecal aggregates. Therefore, it is highly likely that: (i) the intensity of cocosphere export registered by the traps is influenced by grazing pressure in the surface layer, and (ii) that the impact of grazing on coccolithophores varies throughout the year (Calbet et al., 2008; Lawerence and Menden-Deuer, 2012; Quégueiner, 2013).
One possibility is that the satellite secondary maximum is not coccoliths. The higher chlorophyll-a levels at the SAM site (Fig. 2) suggests that other phytoplankton groups, such as diatoms, are more abundant than in the subantarctic waters south of Tasmania. Empty and broken diatom valves have been suggested to display similar spectral characteristics than those of coccolithophore blooms (Broerse et al., 2003; Tyrrell and Merico, 2004; Winter et al., 2014). Therefore, the second peak in satellite-derived PIC could have been caused by a senescent diatom bloom. This hypothesis is likely since diatom blooms in the SAZ are known to develop early in the productive season (Rigual-Hernández et al., 2015b) and rapidly decay following the depletion of silicate and/or iron stocks in the surface layer (Lannuzel et al., 2011). However, no secondary late summer maximum was observed in biogenic silica fluxes in the SAM. Another possible explanation is a contribution to the satellite record from lithogenic material or storm-induced microbubble injection (Zhang et al., 2002). Fully resolving causes of mismatches between in-situ and satellite PIC estimates is not achievable for the SAM site (nor more broadly for the Southern Ocean; Trull et al., 2018).

A second difference between the SAM and SOTS sites is that maximum annual coccosphere export occurred one week earlier than maximum coccolith fluxes at SAM (Fig. 2). The different seasonalities between the sites suggest that different export mechanisms may operate. The formation of rapidly sinking algal aggregates by diatoms is known to scavenge particles they have collided with and increase particle sinking (Alldredge and McGillivary, 1991; Passow and De La Rocha, 2006), thus the formation of such rapid-sinking aggregates could potentially facilitate the preservation of coccospheres early in the productive season at the SAM site. However, the lack of accompanying in situ information on plankton community structure in the study region precludes the assessment of these hypotheses.

Despite the uncertainties involved in our interpretations, the overall picture that emerges from our comparison of satellite and sediment trap flux data is that the duration of the coccolithophore bloom based on ocean-colour-based PIC concentrations most likely provides an over-estimation of the coccolithophore productive season. Our observations motivate caution in describing coccolithophore phenology solely based on satellite-derived PIC concentrations (e.g. Hopkins et al., 2015).

4.2 Magnitude and composition of subantarctic coccolithophore assemblages
Annual coccolith export across the major zonal systems of the Australian sector of the Southern Ocean exhibits a clear latitudinal gradient, with maximum fluxes at the SAZ (8.6×10^{11} liths m$^{-2}$ yr$^{-1}$) and eight-fold lower fluxes in the polar waters of the AZ (1.0×10^{11} liths m$^{-2}$ yr$^{-1}$; Rigual Hernández et al., 2018). Coccolithophore species occurrence documented by our subantarctic sediments traps are consistent with previous reports on coccolithophore assemblage compositions in the surface layer (Findlay and Giraudet, 2000; Saavedra-Pellitero et al., 2014; Malinverno et al., 2015; Chang and Northcote, 2016) and sediments (Findlay and Giraudet, 2000; Saavedra-Pellitero and Baumann, 2015) and are more diverse than those found in the AZ (Rigual Hernández et al., 2018). The southward decline in coccolithophore abundance and diversity is most likely due to the decrease in sea-surface temperature (SST) and light availability moving poleward (Charalampopoulou et al., 2016; Trull et al., 2018). In particular, the close relationship between temperature and growth rates has been demonstrated in a range of coccolithophore species and strains (Buitenhuis et al., 2008), and seems to be a critical, if not the most important, control on the biogeographical distribution of coccolithophore species in the Southern Ocean (Trull et al., 2018). This pronounced latitudinal change in coccolithophore assemblage composition contrasts with the little longitudinal variability between the subantarctic SOTS and SAM sites (Fig. 3). These observations underscore the role of circumpolar fronts as natural physical barriers for plankton species distribution in the Southern Ocean (Medlin et al., 1994; Boyd, 2002; Cook et al., 2013).

Notably, the rare occurrence of the cold-water species Coccolithus pelagicus at the SOTS and SAM sites contrasts with the high contribution of C. pelagicus to the living coccolithophore communities in the subpolar and polar waters of the North Atlantic and North Pacific oceans, where it is often the second most abundant species after E. huxleyi (McIntyre and Bé, 1967; Baumann et al., 2000; Broerse et al., 2000a; Broerse et al., 2000b; Ziveri et al., 2000). This important difference in species composition between Northern and Southern hemisphere subpolar ecosystems could have important implications in the calibration of the satellite PIC signal in the Southern Ocean. Previous research in the Southern Ocean comparing satellite and shipboard observations identified a substantial over-estimation of coccolithophore PIC in the Southern Ocean waters by satellite ocean-colour-based PIC algorithms (Holligan et al., 2010; Trull et al., 2018). Since satellite reflectance observations are mainly calibrated against Northern Hemisphere PIC results (Balch et al., 2011; Balch et al., 2016), the lower the calcite content of dominant E. huxleyi morphotypes (B/C) in the Southern Ocean compared to...
their northern hemispheric counterparts has been suggested as a possible factor causing the over-estimation of PIC concentrations in the Southern Ocean. Following this reasoning, we speculate that differences in other components of the coccolithophore assemblages, and particularly, differences in *C. pelagicus* numbers, could contribute to the over-estimation of PIC concentrations by the satellite PIC algorithm in the Southern Ocean. Indeed, the scaling of reflectance (in satellite images) to PIC (in ocean) is very dependent on coccolith area:mass ratios (Gordon and Du, 2001; Balch et al., 2005a). *Coccolithus pelagicus* has remarkably heavier and thicker coccoliths (100–400 pg per coccolith; Table 1) than *E. huxleyi* (~3 pg per coccolith), i.e. about 100 times heavier. However, the average coccolith area of *C. pelagicus* is only about ten times greater than that of *E. huxleyi*. Thus, this lack of proportional relationship between area and mass between these species should be taken into consideration when calibrating the satellite signals of coccolithophore-related PIC in the Southern Ocean. However, it should be noted that this is only one possible factor contributing to the overestimation of PIC concentrations in Southern Ocean waters. Other factors such as the presence of microbubbles -- that are a source of enhanced reflectance -- must also play an important role (Balch et al., 2011).

4.3 Coccolith calcite content of subantarctic coccolithophore species

Multiple methodological biases associated with each of the methods used for estimating coccolith calcite content (i.e. birefringence, morphometrics) could be invoked to explain the different estimates observed for some of the species (see Young and Ziveri, 2000; Fuertes et al., 2014 and references therein). However, the fact that these discrepancies vary greatly across species suggests that the composition of the crystal-units of the coccoliths could be the most important factor causing these differences. All the heterococcoliths of the species analysed are mainly composed of either V- or R-calcite crystal units or a combination of both (Young et al., 2003; Table 1). R units are characterized by sub-radial c-axes that are reasonably well measured by the birefringence technique, but, the almost vertical optical axes of the V units (Young, 1992; Young et al., 1999) make the same thickness less birefringent (Fuertes et al., 2014). Thus, it is likely that differences in the birefringence properties of the R and V units could be responsible for the different estimates provided by the two approaches. This is supported by our results which show coccolith mass estimates of those species composed of R units, such
as *G. oceanica* and *Gephyrocapsa* spp. exhibit almost identical values with both techniques (Table 1). In contrast, those species with coccoliths composed by a combination of R and V units, such as *C. pelagicus*, *C. leptoporus*, *H. carteri* and *U. sibogae*, display divergent mass estimates between approaches. The case of *E. huxleyi* is more complex due to the large intraspecific genetic variability that results in substantial differences in the profile and degree of calcification between specimens (Young and Ziveri, 2000). Our birefringence mass estimate for *E. huxleyi* (2.67 ± 1.49 pg) is less than one picogram lower than the mean range value calculated with the morphometric technique (i.e. 1.81 ± 1.10 pg with an average k, value of all the morphotypes found at the SAZ, i.e. k, = 0.0275), but identical to the maximum (2.64 ± 1.60 pg; using k, = 0.04). These results suggest a reasonably good consistency between techniques for *E. huxleyi*.

Taking into consideration all the above, it is likely that the coccolith mass of some species is underestimated by the birefringence technique, and therefore, the fractional contribution of coccolithophores to total PIC using this approach should be taken as a conservative estimate. Since both methods for estimating calcite content have inherent uncertainties, the range of values provided by both techniques is used here as an approximation of the fractional contribution of coccolithophores to total annual CaCO$_3$ export to the deep sea in the Australian and New Zealand sectors of the SAZ.

4.4 Contribution of coccolithophores to carbonate export in the Australian-New Zealand sectors of the Southern Ocean

The magnitude of the total PIC export in the subantarctic waters was similar between the SOTS and SAM sites (range 14-17 g m$^{-2}$ yr$^{-1}$), and thus slightly above the global average (11 g m$^{-2}$ yr$^{-1}$; Honjo et al., 2008). Our estimates indicate that coccolithophores are major contributors to CaCO$_3$ export in the Australian and New Zealand waters of the SAZ, accounting for 40-60% and 15-25% of the annual CaCO$_3$ export, respectively (Fig. 5). Heterotrophic calcifiers, mainly planktonic foraminifera (Salter et al., 2014), must therefore account for the remainder of the annual CaCO$_3$ export at both sites. Previous work on foraminifera fluxes in our study regions allows an approximate estimate of the contribution of foraminifera to total CaCO$_3$ flux that can be used to assess the validity of our estimates. Combining counts of foraminifera shells (King and Howard, 2003) with estimates of their average shell weights (20-40 µg per shell depending on size; Moy et al., 2009) suggests contributions of 1/3 to 2/3 of planktonic foraminifera to the total CaCO$_3$ flux in the Australian SAZ (Trull et al., 2018).
In the subantarctic waters south of New Zealand, Northcote and Neil (2005) estimated that planktonic foraminifera accounted for about 78-97% of the total CaCO$_3$. Thus, estimations of the contribution of heterotrophic calcifiers to total carbonate in both study regions are in reasonable agreement with our coccolithophore CaCO$_3$ estimates at both sites. The lower contribution of coccolithophores to CaCO$_3$ export at the SAM site in comparison with that of SOTS may be explained by differences in the ecosystem structure between sites. Algal biomass accumulation in the surface waters of the SAM region (average chlorophyll-a concentration between 2002 and 2018 is 0.31 mg m$^{-3}$) is substantially higher than that at SOTS (0.23 mg m$^{-3}$). We speculate that the higher abundance of non-calcareous phytoplankton (e.g. diatoms) in the subantarctic waters south of New Zealand could simultaneously reduce coccolithophore biomass through resource competition (Quéré et al., 2005; Sinha et al., 2010) while stimulating foraminifera growth (Schiebel et al., 2017). The combination of both factors could be responsible for the lower coccolithophore productivity at the SAM site despite similar total CaCO$_3$ export. Assuming that both the SOTS and SAM sites can be considered representative of a broad longitudinal swath of the SAZ south of Australia and New Zealand (ca. 1% of areal extent of the global ocean), the coccolithophore CaCO$_3$ export in these two regions together account for approximately 0.4 Tmol C$_{org}$ yr$^{-1}$. This value represents approximately 1% of the global annual PIC export to the deep ocean (Honjo et al., 2008) and underscores the notion that the high nutrient low-chlorophyll waters of the circumpolar SAZ should not be taken as indicative of low biological activity or export.

Our results indicate that although *E. huxleyi* overwhelmingly dominates the coccolithophore sinking assemblages at both study sites, other species with lower relative contribution but substantially heavier coccoliths are more important contributors to the annual coccolithophore CaCO$_3$ export budget (Fig. 3). Particularly relevant is the case of *C. leptoporus* that despite its relatively low abundance (~10% of the annual assemblage at both sites; Fig. 3), it accounts for between 30-50% and 60-70% of the annual coccolithophore-CaCO$_3$ export at the SOTS and SAM sites, respectively (Fig. 3). Similarly, other species with heavy coccoliths, such as *H. carteri* and *C. pelagicus*, are important contributors to the annual coccolithophore PIC export to the deep sea (up to ~30% and ~10% of the annual coccolithophore PIC, respectively) despite their low annual relative abundance (<2% at both sites) (Fig. 3). These results serve as an important reminder that it is often not the most abundant species, but rather the largest
coccolithophore species that account for the greatest contribution to coccolithophore
CaCO₃ production and export (Young and Ziveri, 2000; Baumann et al., 2004; Daniels et
al., 2016).

The important contribution made by the coccolithophore community in setting the
magnitude of carbonate production and export to the deep sea is evidenced when we
compare the coccolith and total CaCO₃ fluxes of the SOTS sediment trap with those
deployed in the AZ along the 140°E meridian (Fig. 1). Although both total and
coccolithophore CaCO₃ export decrease with increasing latitude these changes are largely
even. While total CaCO₃ decreases two-fold from the SAZ to the AZ, coccolithophore
CaCO₃ export decreases 28-fold (Supplement Figure 2). This lack of proportional
latitudinal change can be attributed to two main factors. First, subantarctic
coccolithophore populations are diverse and relatively rich in species with large and
heavy coccoliths such as C. leptoporus or H. carteri that account for a large fraction of
the annual carbonate production and export. South of the PF, assemblages become
monospecific, or nearly monospecific, dominated by the small and relatively lightly
calculated E. huxleyi. Second, latitudinal variations in the abundance of heterotrophic
calculifiers (mainly foraminifera but also pteropods) must play a major role in modulating
the observed variations in CaCO₃ export. In particular, our data suggests that the
fractional contribution of heterotrophic calculifiers to CaCO₃ production increases from
~40-60% in the Australian SAZ to up to 95% in the AZ (Rigual Hernández et al., 2018).
This pattern is consistent with previous shipboard and sediment trap studies that reported
higher abundances of planktonic foraminifera at the PFZ and AZ compared to that of the
SAZ in the Australian sector (King and Howard, 2003; Trull et al., 2018). Controls on the
biogeographic distribution of foraminifera species are complex and beyond the scope of
this paper, however, we provide a few observations. Both temperature and diet are critical
factors controlling the spatial distribution of planktonic foraminifera species. In
particular, the lower temperatures south of the SAF seem to favour the development of
Neogloboquadrina pachyderma sin. and Turborotalita quinqueloba as indicated by the
high abundance of these species in the PFZ (> 80% of the annual integrated flux for both
species together; King and Howard, 2003). Additionally, the dramatically different algal
communities dwelling in each zonal system may also play a role in planktonic
foraminifera species distributions. In particular, diatoms can account for a major part of
the diet of some foraminifera species, including N. pachyderma (Schiebel and Hemleben,
Therefore, it is likely that the preferential grazing on diatoms of some foraminifera species may play an important role in the increase of foraminifera CaCO$_3$ production moving poleward.

4.5 Future predictions of coccolithophore community response to environmental change in the subantarctic zone

The response of *E. huxleyi* to environmental change has been extensively studied in laboratory experiments (Meyer and Riebesell, 2015; Müller et al., 2015; Feng et al., 2017) and the available information is sufficient to propose possible changes of its niche and calcification in the Southern Ocean, as discussed in detail in Trull et al. (2018) and Krumhardt et al. (2017). Due to the ubiquity and abundance of *E. huxleyi*, the ecophysiology of this species is often regarded as typical of all coccolithophores. However, *E. huxleyi* is rather different from most other coccolithophore species in that its physiological adaptations place it in the upper limit of the r-K ecological gradient of these organisms (i.e. an opportunistic species), while most of the other species are located at the opposite end of the spectrum (i.e. conservative or K-selected species) (Probert and Houdan, 2004). Our results demonstrate that *E. huxleyi* plays an important, but not dominant role in CaCO$_3$ export, with other species such as *C. leptoporus, H. carteri* or *C. pelagicus* making a larger contribution to the annual CaCO$_3$ export in the SAZ (Fig. 3).

Therefore, it is of critical importance to evaluate how these other biogeochemically important coccolithophore species will respond to projected climate-induced changes in the Southern Ocean. Here, we now assess the response of large coccolithophore species to projected changes in temperature and carbonate chemistry, that have been highlighted among the most important environmental stressors expected to impact Southern Ocean coccolithophore physiological rates (Müller et al., 2015; Charalampopoulou et al., 2016; Feng et al., 2017; Trull et al., 2018).

The Southern Ocean is warming rapidly (Gille, 2002; Böning et al., 2008), largely due to the southward migration of the ACC fronts (Sokolov and Rintoul, 2009). Only between 1992 and 2007 the position of Southern Ocean fronts shifted by approximately 60 km to the south (Sokolov and Rintoul, 2009) and this trend may continue throughout the next century. Therefore, it is likely that any further southward migration of ACC fronts will be coupled with an expansion of subantarctic coccolithophore species towards higher latitudes. The poleward expansion of *E. huxleyi* geographic range has already been
suggested in the Southern Ocean (Cubillos et al., 2007; Winter et al., 2014; Charalampopoulou et al., 2016) and it also appears to be occurring in the North Atlantic (Rivero-Calle et al., 2015; Neukermans et al., 2018). Given the important contribution of large subantarctic coccolithophore species to CaCO₃ export, the expansion of their ecological niche could result in a substantial increase in CaCO₃ production and export in the Southern Ocean. However, this may not be the future scenario for the SAZ southeast on New Zealand, where bathymetry strongly controls the location of ocean fronts (Fernandez et al., 2014; Chiswell et al., 2015). If the fronts are bathymetrically ‘locked’, then the SAZ will not expand in areal extent, although the region is still predicted to undergo significant physical, biogeochemical and biological changes (Law et al., 2017) that will have likely flow-on effects on coccolithophore productivity and export (Deppeler and Davidson, 2017).

The available carbonate chemistry manipulation experiments with *C. leptoporus* have come to different conclusions. While some studies identified an increase in coccolith malformations with increasing CO₂ concentrations (Langer et al., 2006; Langer and Bode, 2011; Diner et al., 2015), another study (Fiorini et al., 2011) reported no changes in the calcification of *C. leptoporus* at elevated pCO₂. Interestingly, *C. leptoporus* did not experience changes in its photosynthesis rates over the tested CO₂ range in any of the aforementioned studies. The most likely explanation for the different results between the studies is a strain-specific variable response to changing carbonate chemistry (Diner et al., 2015). Strain-specific variability in response to changing carbonate chemistry has been previously reported in other coccolithophores, such as *E. huxleyi* (Langer et al., 2009; Müller et al., 2015), and therefore it is likely that this also occurs in other species.

Given the fact that Southern Ocean fronts act as barriers for species distributions and gene flows (Medlin et al., 1994; Patarnello et al., 1996; Thornhill et al., 2008; Cook et al., 2013), it is possible that the subantarctic *C. leptoporus* populations exhibit a different ecophysiology than those used in the above mentioned laboratory experiments. Prediction of the responses of *H. carteri* and *C. pelagicus* is even more challenging due to the lack of experiments testing the response of these species to changing seawater carbonate chemistry. The only available insights in the response of one of these species to ocean acidification are found in the fossil record. Both Gibbs et al. (2013) and O’Dea et al. (2014) reconstructed the evolution of *C. pelagicus* populations during the Palaeocene-Eocene Thermal Maximum (PETM), a period arguably regarded as the best geological approximation of the present rapid rise in atmospheric CO₂ levels and temperatures.
These studies concluded that *C. pelagicus* most likely reduced its growth rates and calcification during this period. This limited number of studies suggest that the ongoing ocean acidification in the Southern Ocean could potentially have a negative impact on the physiological rates of *C. leptoporus* and *C. pelagicus* while the effect on *H. carteri* is unknown. Physiological response experiments (e.g. Müller et al., 2015) with Southern Ocean strains of *C. leptoporus*, *H. carteri* and *C. pelagicus* are, therefore, urgently needed to be able to quantify the effect of projected changes in oceanic conditions in the SAZ on their physiological rates and consequent effects on carbon cycling in the Southern Ocean.

Our synthesis suggests opposing influence of environmental stressors on subantarctic coccolithophore populations. Poleward migration of fronts will likely increase coccolithophore CaCO$_3$ production in the Southern Ocean, while changes in carbonate chemistry speciation will reduce growth rates of subantarctic coccolithophores. It seems possible that coccolithophores will initially expand southward as waters warm and fronts migrate, but then eventually diminish as acidification overwhelms those changes.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 748690 – SONAR-CO2 (ARH, JAF and FA). The SOTS mooring work was supported by IMOS, the ACE CRC, and the Australian Marine National Facility. The work at SAM was supported by funding provided by the New Zealand Ministry of Business, Innovation and Employment and previous agencies, and most recently by NIWA’s Strategic Science Investment Fund. NIWA is acknowledged for providing capital grants for mooring equipment purchases, and thanks to all the NIWA scientists, technicians and vessels staff, who participated in the New Zealand biophysical moorings programme (2000-12). Cathryn Wynn-Edwards (IMAS) provided support in sample splitting/processing and laboratory analysis. Satellite Chlorophyll-a and PIC data sets were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. We thank Griet Neukermans and Alex Poulton for their constructive comments and suggestions that helped improve and clarify this manuscript.

Author contributions
TWT, SDN, DMD and LN planned and performed the field experiment. ARH led the coccolithophore study and performed sample processing and microscopy and image analyses. AMB and ARH performed SEM analyses. ARH and SN performed numerical analyses. ARH wrote the paper with feedback from all authors.
Competing interests

The authors declare no competing interests.

Data Availability

Morphometric data of major coccolithophore species generated during the current study are listed in Table 1, while species relative abundance and species fluxes (plotted in Supplement Figure 1) can be accessed in the following link:

References

Beaufort, L., Barbarin, N., and Gally, Y.: Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths, Nature Protocols, 9, 633, 10.1038/nprot.2014.028, 2014.

Eriksen, R., Trull, T. W., Davies, D., Jansen, P., Davidson, A. T., Westwood, K., and van den Enden, R.: Seasonal succession of phytoplankton community structure from autonomous

Trull, T. W., Passmore, A., Davies, D. M., Smit, T., Berry, K., and Tilbrook, B.: The distribution of
pelagic biogenic carbonates in the Southern Ocean south of Australia: a baseline for ocean
Tyrrell, T., and Merico, A.: Emiliania huxleyi: bloom observations and the conditions that
Volk, T., and Hoffert, M. I.: Ocean Carbon Pumps: Analysis of Relative Strengths and
Efficiencies in Ocean-Driven Atmospheric CO2 Changes, in: The Carbon Cycle and Atmospheric
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E., and Brown, C. W.: Poleward expansion of
Young, J., Geisen, M., Cross, L., Kleijne, A., Sprengel, C., Probert, I., and Østergaard, J.: A guide
to extant coccolithophore taxonomy, Journal of Nanoplankton Research Special Issue 1,
Young, J. R.: The description and analysis of coccolith structure, Nannoplankton Research.
Young, J. R., Davis, S. A., Bown, P. R., and Mann, S.: Coccolith Ultrastructure and
Biomineralisation, Journal of Structural Biology, 126, 195-215,
Young, J. R., and Ziveri, P.: Calculation of coccolith volume and it use in calibration of carbonate
flux estimates, Deep Sea Research Part II: Topical Studies in Oceanography, 47, 1679-1700,
http://dx.doi.org/10.1016/S0967-0645(00)00003-5, 2000.
natural bubble populations, Limnology and Oceanography, 47, 1273-1282, 2002.
at 48°N 21°W, Northeastern Atlantic, Deep Sea Research Part II: Topical Studies in
carbonate and potential contribution to organic carbon ballasting in the deep ocean, Deep Sea
Research Part II: Topical Studies in Oceanography, 54, 659-675,