January 23rd, 2019

Dear Dr. Clare Woulds,

Please, see the revised version of our manuscript attached. Thank you for the opportunity to submit it again. We believe the manuscript has improved considering the comments and suggestions made by the reviewers. The changes we made to the text are marked as red-bold sentences. We also edited Figure 5 according to the recommendation made by the reviewers. We hope our manuscript is now suitable for publication on Biogeosciences.

On behalf of the other authors,

Gabrielle Quadra (gabrielle.quadra@ecologia.ufjf.br)
Response to Reviewer 1

I. General comments:

This paper estimates the storage of sediment OC in an Amazonian reservoir. It also shows the CH4 ebullition potential (high). The data set is sound and the conclusions more or less appropriate. This paper was reviewed before in the open review process at BG, and this version is solid and addressed the reviewer concerns. I still had a lot of comments, but these are less about the scientific merit of the work, but rather ways to improve the presentation of the work. I have no major concerns, but plenty of minor ones.

Response: Thank you for the positive comments and for helping us to improve our paper.

II. Specific comments:

69. The “However…” does not really follow from the first sentence. as the thread goes from reservoir to temperature and runoff

Response: We changed this part of the text to make our message clearer. It now reads: “To the best of our knowledge, OC burial has so far not been studied in an Amazonian reservoir. However, it is likely that reservoirs in tropical rain forest areas bury OC at a comparatively high rate, as temperature and runoff were identified as important drivers of OC burial in lakes and reservoirs (Mendonça et al., 2017). Indeed, OC burial in Amazonian floodplain lakes was reported to be much higher than in other lakes (Sanders et al., 2017).” (Page 4, lines 69 – 74)

78. delete it has been shown that
Response: We deleted it.

96 Because both OC…

Response: We deleted “since” from the sentence and restructured the paragraph also in accordance to reviewer 2. It now reads: “Both OC burial and CH$_4$ production take place in sediments. Here, we present results of a study approaching these processes on sediments of an Amazonian hydroelectric reservoir during hydrologically different seasons, which was motivated by an absence of such studies even though sediment carbon processing in Amazonian reservoirs may potentially be high. We aimed at providing a spatially-resolved quantification of OC burial, as well as a mapping of CH$_4$ saturation in the sediment porewater, which is indicative of the potential occurrence of CH$_4$ ebullition. Thereby, this study is intended to contribute to improved understanding of the potential biogeochemical effects of the current expansion of hydropower (Almeida et al., 2019) on the Amazonian carbon budget.” (Page 5, lines 102 – 111)

116. SD on the right of the plus/minus sign?

Response: Yes. We now mentioned at the first appearance that the numbers are shown as mean ± SD.

215. It is best to use variables in equations and not text. But his equation is so simple, it might be easiest to simply leave the text as is in lines 212 and 213.

Response: As a previous reviewer asked for an equation, we prefer to keep it.
230. Use variables, the numerator in this equation looks like it reads “organic carbon mass in the post minus flooding sediment”, which of course is meaningless. Use multiplication sign, not *.

Response: We changed the equation for:

\[
\text{Organic carbon burial rate} = \frac{\text{OC in reservoir sediment}}{\text{core area} \times \text{reservoir age}}
\]

231 Saying correlation and using regression is incorrect. If correlation analysis simply state \[and maybe a \text{p} \text{ value. 5 significant digits is way too high for high uncertainty parameters such as these.}

Response: Based on this comment and on a comment from Reviewer 2 we changed the text in this part for: “The empirical relationship between SAR and OC burial rate (see Results; \(y = 159x - 4.4; R^2 = 0.87; \text{Fig. S3} \) was used to estimate the OC burial rate (g C m\(^{-2}\) yr\(^{-1}\)) for the remaining 95 coring sites where OC content was not analyzed”. Moreover, we also changed the significant digits in the Figure S3 and S5. (Page 12, lines 247 – 248)

243 Delete in order

Response: We deleted it.

254. See 116

Response: Please, see our reply to 116.

285 Isn’t M supposed to be written as mol L\(^{-1}\)?
Response: Although M (molar) is equal to mol L$^{-1}$, we changed it throughout the manuscript and figures for a better understanding.

289. This statistical method needs to be described in the methods. Simply saying “We did a t-test for …” is fine. But with the SD higher than the mean, and no way for negative numbers, the data are assuredly no normally distributed thus preventing the application of a t test. log transform might do the trick.

Response: Thanks for the comment. You were right. We tested the distribution of our data set and normal distribution was not observed, even log-tranforming the data set. Then, we run a non-parametric test (Wilcoxon) but the outcomes were the same – the difference between seasons was not observed. We added the results of the test (“$S = 33213, Z = -1.27863, \text{Prob} > |Z| = 0.20$”) to the lines 311–312 (page 15) and the information regarding statistical analysis to the ‘Data analysis’ section, as follows: “To verify the differences between CH$_4$ concentrations in the two seasons (rising and falling water), the non-parametric Wilcoxon Test was performed using the software JMP 14.1.0 (SAS)”. (Page 13, lines 266 – 268)

262. Is it possible to estimate a confidence interval for this flux? It might be more difficult than plus/minus 2*SD/sqrt(n) due to skewed distribution of rates and spatial autocorrelation.

Response: We now give the 95% confidence intervals. In these sentence, we give simple descriptive statistics of the results, which do not account for spatial autocorrelation. Please, find the confidence interval values in the figure below.
Response: See our reply to the previous comment.

291. What is saturation conc? Never mind, I see it on the figure.

Response: Ok. The saturation concentration varies between sites depending on water depth, hence there is no common saturation concentration for all the sites.

293 In most of the

Response: The sentence was changed and moved to discussion section based on a comment from Reviewer 2. It now reads: “The high amount of pore water CH₄ profiles with samples above the CH₄ saturation concentration indicates a high likelihood of gas bubble formation in most of the sampled sites, and thus the possibility of CH₄ ebullition (Table S5). Importantly, however, the link between bubble presence in the sediment and CH₄ ebullition flux is entirely qualitative, and can not be used to estimate the magnitude of CH₄ ebullition.” (Page 24, lines 467 – 472)

Fig 3. This figure could use some work to improve readability. Make font nearly the same size for axis labels and titles (9-11 pt). No need for bold font, it distracts readers to the titles and labels. And because all the axes are the same, they do not all need to be titled. One y and x axis title is enough. The numbers following the F and R don’t mean much to readers (37? 21?); they seems like some sort of internal labeling code. Rename them.
Response: We made the suggested changes, but we prefer to keep the numbers following F and R because they correspond to the site codes presented in Table S1. We now explain it in the figure caption by adding the following sentence: “The numbers following the letters F and R correspond to the site codes in Table S1”.

311. A leading paragraph in the discussion outlining the main findings would be useful. The first sentence, that water slows entering a reservoir, is not really a finding from the study.

Response: We added a paragraph summarizing the main findings of the study, as suggested.

“Despite the intense OC mineralization in the tropics, this study found that OC burial in the sediment of the Amazonian Curuá-Una reservoir was high when compared to sub-tropical and other tropical reservoirs, probably due to the high carbon inputs from the forest. However, autochthonous material was also an important component of CUN sediment. CH₄ concentrations in the sediment pore-water were frequently supersaturated, indicating that the sediment of CUN also has the potential to emit CH₄ to the atmosphere via ebullition.” (Page 18 – 19, lines 332 – 338)

362. What are units of mineralization?

Response: The unit is g C m⁻² yr⁻¹. We now give the equation separated from the text (see next response) and the unit appears right below the equation at line 393.

363. What is the x here? A multiplication sign? Confusing way to write math.

Response: We added the following equation in the manuscript:

\[OC \text{ mineralization} = (1.52 + 0.05) \times \text{Temperature} \]
364. Use the prediction uncertainty from the regression to derive uncertainty on the 325. I note that Cardosa et al regressed log mineralization with temp, and they have prediction error from 100-1100 at 29degC (wow what a nice analysis in that paper). That makes burial efficiency range from 8 to 48%, a huge range. I do think the authors can safely say that the range is not the 67 or 87% found in other places, but by scaling the uncertainty makes them more certain in that conclusion!

Response: The prediction interval gives the distribution of predicted individual observations. However, for our exercise, we are not concerned with the magnitude of individual observations, but with the mean of many observations. The OC burial of CUN was calculated as a mean of 114 observations, and accordingly a mean of mineralization can be estimated for a corresponding number of 114 individual predictions; it would not be correct to compare a mean of burial to an individual prediction of mineralization. When using the Cardoso et al. 2014 to predict 114 individual mineralization rates, the uncertainty of the mean mineralization rate becomes 0.4 g C m$^{-2}$ d$^{-1}$, using regular error propagation. This negligible uncertainty arises from the central limit theorem, which states that random errors converge to a normal distribution around a mean, and the more observations, the more does the uncertainty converge to the expected value, the mean (law of large numbers). We have added a clarifying statement to the text.

380. This conclusion seems dicey. I would want rather see carbon isotope evidence for this point.

Response: We agree that stable isotopic evidence would strengthen our conclusion. We did collect samples for stable isotopes and biomarkers analysis during the field campaings. However, these samples are still being analyzed, so we could not include these results into this paper. Nevertheless,
the C:N ratios give a rough and qualitative indication of the organic matter sources to the sediment, which is backed up by the given references, and we refrained from making any quantitative analysis based on it. We now make it clear at the discussion by modifying the following sentence:

“Although we refrained from making quantitative analysis based on C:N ratios, higher C:N values at the river inflow areas (Fig. 2) may indicate input from the highly productive watershed and thus the high load of land-derived OC to the sediment.” (Page 22, lines 415 – 418)

412 delete “is known to”

Response: We deleted it.

421. I was hoping there were such data. A figure with a simple carbon budget for this reservoir would be interesting, I realize that seston input might be unknown, but with sedimentation rate, mineralization and CO2 flux would make a nice picture.

Response: We agree that it would be interesting to show a carbon budget for the CUN reservoir, although the carbon inflow rates are indeed unknown. In fact, we have measured spatially resolved fluxes of CO2 and CH4 through diffusion and ebullition, and a part of the diffusion data are already published in Paranaíba et al 2018. However, the CH4 ebullition data still needs to be analyzed, and ebullition tends to be an important component of the C budget in an Amazonian reservoir (Deemer et al. 2016). We therefore prefer to compare our OC burial data with the currently available estimate of emission from the CUN reservoir (Duchemin et al., 2000), and to publish a new C budget of CUN once our full suite of data is analyzed, particularly since this paper is focused on sediment-related processes and not on a system-scale C balance.
Fig 5. This figure is tough to interpret. The binning seem arbitrary and can skew the picture depending on how binned. Why not simply plot the proportion of samples > saturation vs burial rate? Or the actual % saturation vs burial rate. That way there is a continuous relationship. It is likely not going to be a clean line, but it might be a triangle, where high CH4 relates with low to high burial rate, but low CH4 is always low burial rate. Just a guess, but I think there are much better ways to show this plot.

Response: We replaced this figure with a new one, which shows the mean CH4 saturation in the sediment layers against OC burial in each of the cores/sampling sites. We believe it more clearly shows a positive, albeit weak, tendency to higher CH4 saturation with increasing OC burial. It also very clearly shows the overall high level of CH4 saturation in CUN sediments. The new figure is also explained in the text.

469-471. This sentence seems to say “we have no idea of the C source” since the first part says the forest input is high and the second part says aquatic is high. I am totally fine with
this interpretation; these data do not really allow assessing the source (see 412). Are there primary production data from this reservoir?

Response: Unfortunately we do not have primary production data for this reservoir. What we meant to state is that although the forest seems to be the major source of OC to the CUN reservoir, autochthonous OC is also important in some specific areas. We edited the sentence to make it clearer. It now reads: “The forest seems to be a major OC source to the reservoir although the relatively low C:N ratio in some parts of the reservoir suggests an also significant aquatic contribution to sediment OC burial”. (Page 26, lines 514 – 516)

476. Yes and also to scale how the building of reservoirs will alter regional and global carbon budgets. Based on the work here the ocean is missing 0.3 Tg of its riverine carbon input.

Response: Thank you for the comment. We added this information to the conclusion: “Moreover, it will be critical to quantify the effect of the new Amazonian reservoirs on the ocean’s carbon budget, since the CUN dam alone retains yearly 7,500 tons of OC and a part of it would likely reach the ocean in the absence of the dam.”. (Page 27, lines 523 – 526)

References

RESPONSE TO REVIEWER 2

I. General comments:

This is a revised version of a manuscript focusing on sediment C accumulation and sediment CH4 concentration in a tropical reservoir. The study is an important addition to the literature about the net C and greenhouse gas emissions caused by hydropower reservoirs and dams. Valuable work has been done to estimate the sediment C accumulation rates and spatial patterns in this reservoir. The current work is not capable of closing the full C or GHG budget, but perhaps, that is the ultimate goal of the researchers. The work is topical as it seems that hydropower business is increasing, particularly in the tropics. I agree with the reviewers 1 and 2 that the study deserves to be published. I also agree with the criticisms raised by those reviewers.

It looks that the authors have improved the manuscript quite well according to the comments on the earlier version by the reviewers 1 and 2. I have, however, still some reservations. I think that the presentation needs some work to be publishable and I suggest a rewrite. I suggest introducing the big questions behind and how sediment C accumulation and potential for CH4 emissions relate to that. Is the question about the GHG emissions caused by hydropower reservoirs and dams and/or how sediment C accumulation affect catchment C and GHG budgets, or something else? In addition, I found problematic how the CH4 data were dealt. Authors considered the CH4 concentration data as an indicator of potential for CH4 ebullition if concentration high enough for bubble formation. This is a bit problematic, because CH4 concentration, or CH4 saturation if high enough, may not translate to actual CH4 emission. The ‘potential’ is not considered in quantitative manner in this study and the
approach needs a motivation. I suggest that authors could elaborate the analysis or the text to the direction of quantitative analysis how the sediment and C accumulation and qualitative sediment properties determine the sediment CH4 concentration/CH4 saturation. I am confident that the authors can improve the presentation. I have listed some detailed comments and suggestions below.

Response: Thank you for the positive comments and for supporting the publication of our paper. We now clearly state our objective with this study at the end of the introduction. This part now reads: “Both OC burial and CH4 production take place in sediments. Here, we present results of a study approaching these processes on sediments of an Amazonian hydroelectric reservoir during hydrologically different seasons, which was motivated by an absence of such studies even though sediment carbon processing in Amazonian reservoirs may potentially be high. We aimed at providing a spatially-resolved quantification of OC burial, as well as a mapping of CH4 saturation in the sediment porewater, which is indicative of the potential occurrence of CH4 ebullition. Thereby, this study is intended to contribute to improved understanding of the potential biogeochemical effects of the current expansion of hydropower (Almeida et al., 2019) on the Amazonian carbon budget.” (Page 5, lines 102 – 111).

Regarding the pore-water CH4 concentrations, we are aware that our measurements cannot translate into emission rates, and this was explicitly stated in the following part of the methods: “The presence of gas bubbles is indicative for an elevated probability of CH4 ebullition, but not necessarily relates quantitatively to ebullition flux, since ebullition flux to the atmosphere is also dependent on water depth, sediment grain size, and pressure fluctuations (McGinnis et al., 2006; Maeck et al., 2014; Liu et al., 2016).”. Thus, we did not present a quantiative assessment of ebullition, and we do not attempt to make a link between bubble presence in the sediment and
ebullition flux. Qualitatively, however, the presence of gas bubbles in the sediment is the prerequisite for ebullition, thus bubble-rich sediments have a greater potential for ebullition flux than bubble-poor sediments. To further clarify this point, the following text was added to the discussion: “The high amount of pore water CH₄ profiles with samples above the CH₄ saturation concentration indicates a high likelihood of gas bubble formation in most of the sampled sites, and thus the possibility of CH₄ ebullition (Table S5). Importantly, however, the link between bubble presence in the sediment and CH₄ ebullition flux is entirely qualitative, and can not be used to estimate the magnitude of CH₄ ebullition.” (Page 24, lines 467 – 472)

II. Specific comments:

The title is awkward, because the emissions vs accumulation aspect was not really studied in the current study. How about: High sediment carbon accumulation and high sediment methane concentrations in an Amazonian hydroelectric reservoir. Other thing, I am more used to the term “carbon accumulation” rather than “C burial”. I.e. sediment accumulation rate (SAR), carbon ccumulation rate (CAR), but up to you.

Response: The title does not insinuate that emission was studied, instead it speaks of “potential for methane ebullition”, which reflects the qualitative way in which we streat the CH₄ saturation data of this study. We believe that the term “potential for methane ebullition” is consistent with the data we generated in this study and we would there like to keep it in the title. Also, we prefer to use the term “burial”, as it is used quite frequently in the literature.

Abstract 31-34. Difficult to read. Maybe make two sentences.
Response: We changed the sentences for: “This is the highest OC burial rate on record for low-latitude hydroelectric reservoirs. Such high rate probably results from a high OC deposition onto the sediment, which compensates the high OC mineralization at 28-30°C water temperature.” (Page 2, lines 31 – 34)

36. CUN, explain

Response: We now added the abbreviation after the first time that we mentioned the Curuá-Una reservoir (CUN) in the abstract.

46-47. It is not only transport from land to the Ocean, but also net sequestration by autotrophs at places.

Response: We removed “during transport from land to sea”.

49. But see also Kortelainen et al. 2004, GCB

Response: The study by Kortelainen et al. (2004) reports OC burial rates for a large number of boreal lakes. However, OC burial is still understudied on a global scale when compared to emissions. We edited this sentence, which now reads: “Many studies have been conducted on inland water carbon emissions, while the organic carbon (OC) burial in inland water sediments is comparatively understudied on a global scale (Raymond et al., 2013; Mendonça et al., 2017).” (Page 3, lines 47 – 50)

61. You just gave an estimate so rewrite to express the uncertainty

Response: We added the range based on the different scenarios of global OC burial given by Mendonça et al. (2014): “~28 to 55% of total inland water OC burial.” (Page 3, line 61)
75- Overall C accumulation is one component in the C and GHG budgets and you should acknowledge also the other parts. Examining the sediment C accumulation is important, though.

Response: In this paragraph we are focusing on OC burial only and on the complete lack of such measurement in Amazonian reservoirs. In order to keep focus, we prefer not to cite other components of the carbon cycle in this part of the text.

83. There are also older references

Response: We added the reference Segers 1998.

87-88. Awkward, suggest editing. To capture the total emissions both high emission and not so high emissions sites count.

Response: We replaced the “even if” with “although”.

94. Note that CH4 emission may not affect the C pool much even though it has significance as a greenhouse gas. How about CO2 and CH4 emissions.

Response: We added a clarifying statement: “While CH4 emission typically constitutes a very small flux in terms of carbon mass, it is highly relevant to climate since CH4 is a ~34 times stronger greenhouse gas than CO2 (IPCC, 2013). The transformation of sediment OC (i.e. previously fixed CO2) to atmospheric CH4 therefore represents an amplification of radiative forcing in the atmosphere.” (Page 5, lines 97 – 101)

96- Shouldn’t you formulate research questions or hypotheses?
Response: We revised the last paragraph of the introduction in order to make the context, motivation and objectives more clear. It now reads: “Both OC burial and CH$_4$ production take place in sediments. Here, we present results of a study approaching these processes on sediments of an Amazonian hydroelectric reservoir during hydrologically different seasons, which was motivated by an absence of such studies even though sediment carbon processing in Amazonian reservoirs may potentially be high. We aimed at providing a spatially-resolved quantification of OC burial, as well as a mapping of CH$_4$ saturation in the sediment porewater, which is indicative of the potential occurrence of CH$_4$ ebullition. Thereby, this study is intended to contribute to improved understanding of the potential biogeochemical effects of the current expansion of hydropower (Almeida et al., 2019) on the Amazonian carbon budget.” (Page 5, lines 102 – 111).

122-124. here and elsewhere, unnecessary use of parentheses.

Response: We removed the parentheses.

Fig S1. Why not in the main document.

Response: The historical water level shown in this graph provides general background information, and does not present key information related to understanding our study. We therefore prefer to keep it in SI.

140. Delete (see…)

Response: We removed it.

153-159. Specify that sampling campaigns were targeted to rising and falling water periods?
Response: We now specify it and the text reads: “In both sampling campaigns, targeted to rising and falling water periods, sediment cores were taken for the analysis of pore water CH\textsubscript{4} concentration profiles (n = 16 in February 2016 and n = 9 in September 2017).” (Page 8, lines 166 – 168).

158. Quite large GPS error!

Response: The distance of up to 100 m between sampling sites in different field campaigns is not only due to GPS error (the precision is ~3 m but can increase when different devices are used), but also because the boat drifts a bit during sampling.

184. Unnecessary parentheses

Response: We removed them.

185. Explain, how saturation concentration defined

Response: We added the explanation in the text: “The saturation concentration, calculated here from temperature and pressure along the sediment profiles, represents the maximum concentration that dissolves in pore water, above which bubbles are formed.” (Page 10, lines 200 – 202)

192. Be specific, how many cores were measured for [CH4]

Response: We already mentioned this in the sampling section: “In both sampling campaigns, targeted to rising and falling water periods, cores were taken for the analysis of pore water CH\textsubscript{4} concentration profiles (n = 16 in February 2016 and n = 9 in September 2017).” (Page 8, lines 166 – 168).
199. Injected unnecessary > …and analyzed for CH₄ concentration within the same day using...

Response: We changed the sentence for: “The headspace was stored in the syringe, closed with a gas-tight valve, and then analyzed for CH₄ concentration within the same day using an Ultraportable Greenhouse Gas Analyzer (UGGA, Los Gatos Research) with a custom-made sample injection port. Then, the resulting peaks were integrated using R software (RStudio Version 1.1.383).” (Page 10, lines 214 – 218).

208. was lost

Response: Changed it.

218. do you mean that ‘therefore, the mean accumulation rate cannot reveal short-term …’

Response: Not exactly. It is true that this approach cannot reveal the short-term variability in sediment deposition, but we meant to state that the approach does incorporate any short-term variability as it represents the total sediment deposition since the reservoir was flooded divided by the year since flooding. The sentence was rephrased accordingly and it now reads: “This approach returns the average sediment accumulation rate over the lifetime of the reservoir (Renwick et al., 2005; Kunz et al., 2011; Mendonça et al., 2014; Quadra et al., 2019), and therefore incorporates any short-term variability in sediment deposition, for example, caused by an episodic change in sediment load or internal sediment movement.” (Page 11, lines 232 – 236).

226. The average C accumulation rate (xx) was calculated dividing the total C mass (g C m⁻²) by the accumulation time
Then, the mean OC burial rate (g C m⁻² yr⁻¹) for each of these 19 sites was calculated dividing the total OC mass in post-flooding sediment (g C) by the core surface area (2.8 x 10⁻³ m²) and the reservoir age (yr) at the sampling dates”. We also fixed the formula. (Page 11 – 12, lines 242 – 246).

231. We used empirical relationship between SAR and CAR (y=..) to estimate the CAR for the remaining...

Response: We changed the sentence for: “The empirical relationship between SAR and OC burial rate (see Results; y = 159x - 4.4; R² = 0.87; Fig. S3) was used to estimate the OC burial rate (g C m⁻² yr⁻¹) for the remaining 95 coring sites where OC content was not analyzed”. Moreover, we also changed the significant digits in the Figure S3 and S5. (Page 12, lines 247 – 248)

235. 237. Suggestion, ..’to produce maps of SAR and CAR’.

Response: We changed the sentence for: “To produce spatially-resolved maps of SAR and OC burial rate, the data from the 114 cores were interpolated to the reservoir area using the Inverse Distance Weighted algorithm (IDW, cell size of approximately 22 m x 22 m)” (Page 12, lines 250 – 252)

245. was > were?

Response: We changed it.

260. Sediment and C accumulation rates

Response: We prefer to keep the term “burial”, it is also used quite frequently in the literature.

262. Why supplement if the main result? To my opinion belongs to the main document
Response: SAR is not considered a main result of the study, rather an intermediate result used to calculate OC burial. We therefore prefer to keep it in SI.

276. The same here

Response: The C:N ratio data is explored in Fig. 2, and this reference is now given.

278-279. to the site description

Response: We moved the information to the site description, but we kept more detailed results about the land use analysis on the results section (Methods: page 6, lines 120 – 123; Results: page 14, lines 293 – 300).

286. Isn’t this unnecessary reference to the supplement, because you have fig. 3?

Response: We do have the whole data set on the supplement, while Fig. 3 compares the methane profiles in the same spot but at different seasons.

289. Is the test mentioned in the M&M?

Response: Now we added the information regarding the statistical analysis to the M&M: “To verify the differences between CH₄ concentrations in the two seasons (rising and falling water), the non-parametric Wilcoxon Test was performed using the software JMP 14.1.0 (SAS)” (Page 13, lines 266 – 268).

292. ‘this indicates…’ belongs to the discussion

Response: We moved it.

294. S5 unnecessary?
Response: In case other reserachers want to use our data, it is much more convenient for future work to have a table with the aggregate data set instead of getting all the numbers from figures.

295. So the same areas have also high CAR. Maybe emphasize.

Response: Exactly. We explored it in the discussion section (Lines 472 – 474, page 24).

317. What you mean with ‘margins’?

Response: Margins is the same as the shores. A clarification was added.

323. What the ‘muddy lake area’ actually means?

Response: When the reservoir shows a higher SAR near the dam, the area has been called ‘muddy lake area’, according to the given references (Morris and Fan, 1998; Sedláček et al., 2016), connected to the transport of fine sediment all the way to the dam.

328. I think that the ref to S6 is unnecessary

Response: We removed it.

352. If CUN has high CAR (& other rates), why it is important? How these findings will improve our understanding on the reservoir systems?

Response: We now more clearly put our findings into a wider context in the Conclusions section: “Given the planned expansion of hydropower dams in the Amazon region, and the high OC burial rate in CUN shown here, future studies should quantify how OC burial and CH$_4$ emission may be affected by new Amazonian hydroelectric reservoirs. Moreover, it will be critical to quantify the effect of the new Amazonian reservoirs on the ocean’s carbon budget, since the CUN dam alone
"retains yearly 7,500 tons of OC and a part of it would likely reach the ocean in the absence of the dam." (Page 26 – 27, lines 520 – 526).

386. Can you refer to the Fig 1 instead of the supplement?

Response: Yes, we changed it.

388- I found this section unclear

Response: This sentence was rephrased to: "However, there was no strong relation between OC burial rate and C:N ratio (Fig. S7A), even though the C:N ratio has been shown to affect the OC burial efficiency (Sobek et al., 2009). Possibly, the strong effect of SAR on OC burial masked the potential effect of the C:N ratio." (Page 22, lines 421 – 424).

398. Can you include S6 in the main document

Response: The bathymetry map is a background information, not a key finding of this study. We therefore prefer to keep it in SI.

401- Write open the idea behind

Response: We rephrased this sentence: "The source of buried OC has an important implication in terms of accounting for the sediment carbon as a new sink or not (Prairie et al., 2017), since the burial of aquatic OC can be ascribed to aquatic primary production in the reservoir, which would not have taken place in the absence of the dam, and thus represents a new C sink. However, our data do not allow us to make a quantitative estimate of the share of the CUN sediment carbon stock that is of aquatic origin, and thus may be accountable as a new carbon sink resulting from river damming (Prairie et al., 2017)." (Page 22 – 23, lines 433 – 439).
417. Mention that the C:N in the sediment is a mixture

Response: This was already explicitly stated in lines 379–380 of the previous submission: “The C:N ratio indicates that the sediment OC in CUN consists of a mixture of land-derived and internally-produced OC.” (now lines 411 – 413, page 22).

444. How about diffusive transport? Totally neglected

Response: Our study does not attempt to quantify CH₄ transport, neither via ebullition, nor via diffusion. This study was designed as a sediment study, not a gas flux study.

Fig5. A scatterplot instead?

Response: This figure was replaced by a different figure that shows continuous data. See below.

Figure 5. Regression model of average percentage of CH₄ saturation (%) in the sediment pore water and OC burial rate (g C m⁻² yr⁻¹). Each circle represents one sampling site.
448-457. I found this only marginally relevant

Response: We think it is important to point out that bubble release during sampling is likely, and that thus the reported shares of layers with supersaturated CH$_4$ is probably conservative, which also means than any differences between reservoirs should be interpreted with caution. This aspect was now clarified.

458. What the earlier CUN study says about the CH$_4$ ebullition? Do you have own measurements? If [CH] stays the same, what it means? A stable reservoir with no release but no production either / continuous production and emission at same rates/

Response: There is just one study that reports CH$_4$ ebullition on CUN, which is from Duchemin et al. (2000), and we use this data. Without a highly resolved record on both porewater CH$_4$ concentration and CH$_4$ ebullition flux, we can only speculate about the links.

474. But there are earlier CH$_4$ flux measurements.

Response: We use the earlier flux measurement (Duchemin et al. 2000) to discuss our results, but they have just two sampling points in the reservoir, which is hard to compare or link to our data.

475- Net effect on what? Reservoir radiative forcing, catchment C balance? What are the other components in the budgets?

Response: We rephrased to “net effect on the regional carbon budget”.

References:

Sedláček, J., Bábek, O., and Kielar, O.: Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic, Geomorphology, 254, 73-87, 2016.

High organic carbon burial but high potential for methane ebullition in the sediments of an Amazonian hydroelectric reservoir

Gabrielle R. Quadra¹, Sebastian Sobek², José R. Paranaíba¹, Anastasija Isidorova², Fábio Roland¹, Roseilson do Vale³, Raquel Mendonça¹

¹ Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, 36036 900, Brazil.

² Department of Ecology and Genetics, Limnology, Uppsala University, 752 36, Sweden.

³ Universidade Federal do Oeste do Pará, Instituto de Engenharia e Geociências, 68040 255, Brazil.

✉gabrielle.quadra@ecologia.ufjf.br
Abstract

Reservoir sediments sequester significant amounts of organic carbon (OC), but at the same time, high amounts of methane (CH$_4$) can be produced and emitted during the degradation of sediment OC. While the greenhouse gases emission of reservoirs has received a lot of attention, there is a lack of studies focusing on OC burial. In particular, there are no studies on reservoir OC burial in the Amazon, even though hydropower is expanding in the basin. Here we present results from the first investigation of OC burial and CH$_4$ concentrations in the sediments of an Amazonian hydroelectric reservoir. We performed sub-bottom profiling, sediment coring and sediment pore water analysis in the Curuá-Una reservoir (CUN; Amazon, Brazil) during rising and falling water periods. Spatially resolved average sediment accumulation rate was 0.6 cm yr$^{-1}$ and a average OC burial rate was 91 g C m$^{-2}$ yr$^{-1}$. This is the highest OC burial rate on record for low-latitude hydroelectric reservoirs. Such high rate probably results from a high OC deposition onto the sediment, which compensates the high OC mineralization at 28-30°C water temperature. Elevated OC burial was found near the dam, and close to major river inflow areas. C:N ratios between 10.3 and 17 (average \pm SD: 12.9 \pm 2.1) suggest that both land-derived and aquatic OC accumulate in CUN sediments. About 23% of the sediment pore water samples had dissolved CH$_4$ above the saturation concentration. This represents a higher share than in other hydroelectric reservoirs, indicating a high potential for CH$_4$ ebullition, particularly in river inflow areas.

Keywords: Amazon, carbon cycling, C:N ratio, dam, pore water, river inflow
Introduction

Although freshwater ecosystems represent a small fraction of the global area (~4% of terrestrial area) (Downing et al., 2012; Verpoorter et al., 2014), they play an important role in the global carbon cycle, both emitting carbon to the atmosphere and burying carbon in the sediments (Cole et al., 2007; Tranvik et al., 2009). Many studies have been conducted on inland water carbon emissions, while the organic carbon (OC) burial in inland water sediments is comparatively understudied on a global scale (Raymond et al., 2013; Mendonça et al., 2017). Since a part of the buried OC may offset a share of greenhouse gas emission, it is essential to include OC burial in the carbon balance of inland water ecosystems (Kortelainen et al., 2013; Mendonça et al., 2017).

Freshwater OC burial rate varies both in space and time due to many factors, such as land cover, hydrological conditions, OC and nutrient input and climate change (Radbourne et al., 2017; Stratton et al., 2019). Several studies have shown that reservoirs bury more OC per unit area than lakes, rivers and oceans (Mulholland and Elwood, 1982; Mendonça et al., 2017), which may be attributed to the high sedimentation rate caused by the extensive sediment trapping when water flow is dammed (Vörösmarty et al., 2003). Considering the importance of reservoirs as a carbon sink (~28 to 55% of total inland water OC burial; Mendonça et al., 2017) and the increasing number of hydroelectric dams (Zarfl et al., 2015), the limited number of studies on OC burial in reservoirs severely hampers the understanding of this important component in the carbon balance of the continents (Mendonça et al., 2017). In particular, large regions of the Earth are at present completely unsampled concerning inland water carbon burial. Approximately 90% of the sites sampled for carbon burial...
are in North America and Europe, while there are only few measurements in South American, African and Asian countries (Mendonça et al., 2017).

To the best of our knowledge, OC burial has so far not been studied in an Amazonian reservoir. However, it is likely that reservoirs in tropical rain forest areas bury OC at a comparatively high rate, as temperature and runoff were identified as important drivers of OC burial in lakes and reservoirs (Mendonça et al., 2017). Indeed, OC burial in Amazonian floodplain lakes was reported to be much higher than in other lakes (Sanders et al., 2017). Moreover, many new hydropower dams are planned in the Amazon due to the high potential of the area for hydroelectricity (da Silva Soito and Freitas, 2011; Winemiller et al., 2016). However, there is currently no data to gauge the potential effect of hydropower expansion in the Amazon on carbon burial.

Besides the significant potential of trapping OC in the sediment, reservoirs can be strong sources of methane (CH₄) to the atmosphere (Deemer et al., 2016). Several studies have shown a positive relationship between CH₄ production and temperature in freshwater ecosystems (Marotta et al., 2014; Wik et al., 2014; Yvon-Durocher et al., 2014; DelSontro et al., 2016; Aben et al., 2017), and also organic matter supply to sediment is an important regulator of CH₄ production and emission (Segers, 1998; Sobek et al., 2012; Grasset et al., 2018). Thus, tropical reservoirs, especially those situated in highly productive humid tropical biomes, such as the Amazon, may produce more CH₄ than temperate ones due to higher annual temperatures and availability of organic matter in their sediments (Barros et al., 2011; Mendonça et al., 2012; Fearnside and Pueyo, 2012; Almeida et al., 2013), although highly-emitting reservoirs can also be situated in temperate regions (Deemer et al., 2016). Further, in many reservoirs, CH₄ ebullition (i.e., emission of gas bubbles) is an important or
dominant emission pathway, but it is very difficult to measure due to its strong variability in space and time (McGinnis et al., 2006; Deemer et al., 2016). Measurements of dissolved CH$_4$ concentration in sediment pore water may, therefore, help to identify if ebullition is likely to occur (CH$_4$ concentrations close to the sediment pore water saturation), and thus to judge if the sediments act mainly as carbon sinks, or also as CH$_4$ sources. While CH$_4$ emission typically constitutes a very small flux in terms of carbon mass, it is highly relevant to climate since CH$_4$ is a ~34 times stronger greenhouse gas than CO$_2$ (IPCC, 2013). The transformation of sediment OC (i.e. previously fixed CO$_2$) to atmospheric CH$_4$ therefore represents an amplification of radiative forcing in the atmosphere. Both OC burial and CH$_4$ production take place in sediments. Here, we present results of a study approaching these processes on sediments of an Amazonian hydroelectric reservoir during hydrologically different seasons, which was motivated by an absence of such studies even though sediment carbon processing in Amazonian reservoirs may potentially be high. We aimed at providing a spatially-resolved quantification of OC burial, as well as a mapping of CH$_4$ saturation in the sediment porewater, which is indicative of the potential occurrence of CH$_4$ ebullition. Thereby, this study is intended to contribute to improved understanding of the potential biogeochemical effects of the current expansion of hydropower (Almeida et al., 2019) on the Amazonian carbon budget.

Material and methods

Study area

Curuá-Una is an Amazonian reservoir (CUN; 2°50′ S 54°18′ W) located in the Pará state (North of Brazil), created in 1977, and used mainly to produce energy. The
average water depth of CUN is 6 m (Fearnside, 2005; Paranaíba et al., 2018) and it has a maximum flooded area of 72 km² (Duchemin et al., 2000; Fearnside, 2005). The main tributary is the Curuá-Una River, contributing with most of the reservoir’s water discharge (57.4%), but rivers Moju (11.7%), Mojuí (4.4%), Poraquê (3.2%) and other small ones (2.9%) are also important (Fearnside, 2005). While tropical rain forest covers 90.8% of the total CUN catchment area, managed lands, which covers 8.9% of the total catchment, contribute with a high share (up to 41%) of the land cover in some sub-catchments (Fig. 1).

The reservoir is characterized by a high amount of flooded dead trees (area with trees covers ~90% of the total reservoir area), which may be expected to decrease water flow and promote sedimentation. According to a previous study (Paranaíba et al., 2018), CUN is oligotrophic (total nitrogen (TN): 0.7 mg L⁻¹, average; total phosphorus (TP): 0.02 mg L⁻¹, average), the surface water is warm (average ± SD: 30.1 ± 1.4 °C), slightly acidic (pH of 6.1 ± 0.7), with low conductivity (16 ± 11 μS cm⁻¹) and moderately oxygenated (6.7 ± 1.9 mg L⁻¹).

Sampling

We carried out two samplings in the CUN reservoir. In February 2016, during the rising water period (Fig. S1), we used an Innomar SES-2000 parametric sub-bottom profiler operating at 100 kHz (primary frequency) and 15 kHz (secondary frequency) to determine the bathymetry and sediment thickness from which we planned to acquire spatially resolved sediment accumulation rates and OC burial rate, similar to Mendonça et al. (2014). Sediment thickness was difficult to observe with the sub-bottom profiler, though, presumably because of the widespread presence of gas bubbles in the sediment which reflect the sound waves very efficiently, preventing them from reaching the sub-
bottom layer. Therefore, OC burial rates were determined from sediment cores only. In September 2017, during the falling water period (Fig. S1), additional sediment cores were then taken to cover the reservoir as much as possible.

We took a total of 114 sediment cores during the two sampling occasions, approximately evenly distributed along the reservoir, both longitudinally and laterally, to measure sediment thickness and, thus, estimate sediment accumulation and OC burial rates (Fig. 1, Table S1). Cores were retrieved using a gravity corer equipped with a hammer device (UWITEC, Mondsee, Austria) to sample the entire sediment layer, including the pre-flooding material. The layer of transition between post- and pre-flooding material was visually identified. Visual identification is possible because the moment when the reservoir was flooded is the onset of a lacustrine depositional regime, which is characterized by different sediment texture and composition in relation to the pre-flooding soil or fluvial sediment (Fig. S2). The thickness of the post-flooding sediment was noted in all cores and used to calculate sediment accumulation rates (‘data analysis’). Nineteen sediment cores, from sites spread out evenly over the reservoir were sliced in 2 cm thick slices and dried at 40 °C for further laboratory analysis. The samples were weighed before and after drying and the results are, then, expressed in dry weight.
Figure 1. Organic carbon burial rate (OC burial; g C m⁻² yr⁻¹) of the Curuá-Una reservoir. The circles show the land cover of each sub-catchment, delineated by white lines. The numbers near the circles show the area in km² for each sub-catchment. The black dots represent the sediment sampling sites to estimate OC burial rates. The arrows represent the main river inflows. The houses represent settlements at the reservoir. The bottom-right map shows the location of the reservoir in Brazil (the green area is the Brazilian Amazon region) and the total extension of each sub-catchment.

In both sampling campaigns, targeted to rising and falling water periods, sediment cores were taken for the analysis of pore water CH₄ concentration profiles (n = 16 in February 2016 and n = 9 in September 2017). Of the nine cores taken in September 2017, eight were situated at sites previously sampled in February 2016, to compare the CH₄ concentrations between sampling occasions. It is difficult to sample
the exact same location at different periods due to the water level changes, GPS error and boat drifting. Thus, the repeated samplings at these eight sites were within < 100 m distance.

Water temperature and dissolved oxygen profiles were measured with a multiparameter sonde (YSI 6600 V2) in a total of 28 depth profiles, distributed across the reservoir at both sampling occasions. Air pressure and temperature were measured with a portable anemometer (Skymaster SpeedTech SM-28, accuracy: 3%), water depth was measured with a depth gauge (Hondex PS-7), and sediment temperature with a thermometer (Incoterm), which was inserted into the sediment right after core retrieval.

Carbon and nitrogen analysis

OC and TN concentrations were determined in a sub-set of 19 cores, distributed evenly across the reservoir area. In each of these cores, the first and second layers (0 to 4 cm deep, containing the fresher OC), the last sediment layer above the pre-flooding soil surface (containing the older OC) and one sample every ~8 cm in between (OC of intermediate age) were analyzed. This selection of layers for carbon and nitrogen analyses was motivated by the exponential decrease of OC mass loss rates during sediment degradation (Middelburg et al., 1993; Gälman et al., 2008). Linear interpolation was used to derive OC and TN concentrations of layers that were not measured.

Dried sediment samples were ground in a Planetary Ball Mill (Retsch PM 100) equipped with stainless steel cup and balls. Sediment was packed in pressed tin capsules and analyzed for TC and TN with a Costech 4010 elemental analyzer. The molar carbon to nitrogen (C:N) ratio in the surface layers was then calculated. The presence of carbonates was checked in the samples qualitatively by adding drops of acid and
checking visually for reaction. No evidence of solid carbonates was found, thus measurements of TC correspond to OC.

CH$_4$ concentration in pore water

The CH$_4$ concentration in pore water was measured according to Sobek et al., (2012) to determine if CH$_4$ is close to saturation concentration and, thus, prone to form gas bubbles. The saturation concentration, calculated here from temperature and pressure along the sediment profiles, represents the maximum concentration that dissolves in pore water, above which bubbles are formed. The presence of gas bubbles is indicative for an elevated probability of CH$_4$ ebullition, but not necessarily relates quantitatively to ebullition flux, since ebullition flux to the atmosphere is also dependent on water depth, sediment grain size, and pressure fluctuations (McGinnis et al., 2006; Maeck et al., 2014; Liu et al., 2016). The top 20 cm (February 2016) or 40 cm (September 2017) of the sediment cores were sampled every 2 cm. Deeper sediment was sampled every 4 cm until the bottom or pre-flooding material. Using a core liner with side ports, 2 ml of sediment were collected using a syringe with a cut-off tip, added to a 25 mL glass vial with 10 ml of distilled water, and closed with a 10 mm thick butyl rubber stopper. The slurry (2 mL sediment + 10 mL distilled water) was equilibrated with 13 mL headspace of ambient air (void volume of the glass vial) immediately after sampling by vigorously shaking the glass vial, and then the headspace was transferred to another syringe. The headspace was stored in the syringe, closed with a gas-tight valve, and then analyzed for CH$_4$ concentration within the same day using an Ultraportable Greenhouse Gas Analyzer (UGGA, Los Gatos Research) with a custom-made sample injection port. Then, the resulting peaks were integrated using R software (RStudio Version 1.1.383). The CH$_4$ concentration in the pore water was calculated from the headspace CH$_4$ concentration, based on the Henry’s law constants. The
saturation concentration of CH\(_4\) in each sediment layer was calculated based on air pressure, water depth, sediment temperature, and sample depth within the sediment core. The sediment layers with CH\(_4\) concentrations above 100% saturation were considered as prone to ebullition. This is a conservative assumption because it is likely that a part of the CH\(_4\) in the sediment was lost to the atmosphere due to pressure drop during core retrieval, as well as during sample processing.

Data analysis

The average sediment accumulation rate (SAR; cm yr\(^{-1}\)) was calculated for each of the 114 cores by dividing the thickness of the post-flooding sediment (cm) by the years since the reservoir construction (39 years in 2016 or 40 years in 2017), according to the equation:

\[
\text{Sediment accumulation rate} = \frac{\text{sediment thickness}}{\text{reservoir age}}
\]

This approach returns the average sediment accumulation rate over the lifetime of the reservoir (Renwick et al., 2005; Kunz et al., 2011; Mendonça et al., 2014; Quadra et al., 2019), and therefore incorporates any short-term variability in sediment deposition, for example, caused by an episodic change in sediment load or internal sediment movement. The large amount of core samples distributed evenly across the reservoir body also covers the spatial variability in sediment deposition, for example due to sediment focusing (sediment movement with preferential deposition in deeper areas).

OC burial rates (g C m\(^{-2}\) yr\(^{-1}\)) were calculated for the sub-set of 19 sites where OC content was analyzed. OC mass (g C) in each sediment slice was calculated as OC content (g C g\(^{-1}\)) multiplied by dry sediment mass (g). Total OC mass (g C) in the cores
was the sum of OC mass in all post-flooding sediment layers. Then, the average OC burial rate (g C m\(^{-2}\) yr\(^{-1}\)) for each of these 19 sites was calculated dividing the total OC mass in post-flooding sediment (g C) by the core surface area (2.8 x 10\(^{-3}\) m\(^{2}\)) and the reservoir age (yr) at the sampling dates, according to the equation:

\[
\text{Organic carbon burial rate} = \frac{\text{OC in reservoir sediment}}{\text{core area} \times \text{reservoir age}}
\]

The empirical relationship between SAR and OC burial rate (see Results; \(y = 159 x - 4.4; R^2 = 0.87\); Fig. S3) was used to estimate the OC burial rate (g C m\(^{-2}\) yr\(^{-1}\)) for the remaining 95 coring sites where OC content was not analyzed.

To produce spatially-resolved maps of SAR and OC burial rate, the data from the 114 cores were interpolated to the reservoir area using the Inverse Distance Weighted algorithm (IDW, cell size of approximately 22 m x 22 m). From the spatially-resolved average OC burial rate, the reservoir age (40 years) and total flooded area (72 km\(^{2}\)), we calculated the total OC stock in the reservoir sediment. Using the same approach, we interpolated the pore water CH\(_4\) concentration, and C:N ratio for the whole reservoir area. Spatial analyses were performed in ArcGIS 10.3.1 (ESRI).

To investigate any potential relationships between the land cover of sub-catchments and the spatial distribution of sediment characteristics and rates, land cover data were derived from maps of 1 km resolution (Global Land Cover Project, GLC2000), made available by the European Commission’s science and knowledge service, including 23 land cover classes. The classes found in the CUN watershed were then grouped in three main classes: (1) forest (tree cover, natural vegetation, shrub, and herbaceous cover); (2) managed areas (cultivated and managed areas, cropland and bare
areas); (3) and water bodies. The extent of the CUN watershed and sub-catchments were identified using the WWF HydroBASINS tool (HydroSHEDS, 2019).

To verify the differences between CH\textsubscript{4} concentrations in the two seasons (rising and falling water), the non-parametric Wilcoxon Test was performed using the software JMP 14.1.0 (SAS).

Results

Water column profiles

The water column temperature profiles showed a average of 30 ± 1 °C, 29 ± 1 °C and 29 ± 2 °C (average ± SD) in the surface, the middle and bottom layers, respectively. The dissolved oxygen average was 7 ± 1 mg L-1, 6 ± 1 mg L-1 and 5 ± 1 mg L-1 in the surface, the middle and bottom layer, respectively. These water profiles suggest that the relatively shallow water column does not develop stable stratification over any extended periods of time, even if short-lived stratification events can occur (Table S2).

Sediment accumulation and organic carbon burial rates

SAR in the coring sites (n = 114) varied from 0 to 1.7 cm yr-1 (0.6 ± 0.4 cm yr-1, 95% confidence interval: 0.5-0.7 cm yr-1; Table S1). In some areas of rocky or sandy bottom, especially near river inflows and along the main river bed, sediment could not be retrieved with our corer and SAR was considered as zero (total of 10 sites). OC burial rate in the coring sites (n = 114) varied from 0 to 269 g C m-2 yr-1 (91 ± 61 g C m-2 yr-1, 95% confidence interval: 80-102 g C m-2 yr-1; Table S1). The highest values of OC burial were observed near the dam, at the confluence of the major inflowing rivers, and in the inflow area of the main tributary, Curuá-Una River (Fig. 1). Our sampling
was representative of the whole system, from the margins, where there is a greater presence of dead tree trunks, to the river bed, where the sedimentation was lower (Fig. 1). Therefore, the simple average OC burial from the cores resulted in the same average OC burial rate derived from the spatial interpolation (91 g C m$^{-1}$ yr$^{-1}$). The total burial rate for the CUN reservoir area was 6.5 x 1010 g C yr$^{-1}$, corresponding to an accumulation of 0.3 Tg C in CUN sediments since its construction.

C:N ratio and land cover

The C:N ratio of the surface layers of sediment (n = 19), used as an indicator of organic matter source, varied from 10.3 to 17 (12.9 ± 2.1, Table S3, Fig. 2). Higher C:N ratios were observed in the dam area and at the river inflows (Fig. 2).

Tropical rain forest was the dominant land cover in CUN, covering from 60.6 to 98.6% of the sub-catchment areas. Managed areas covered 1.4 to 40.9% of the sub-catchments areas, with the higher values occurring in the northwestern tributaries, which were also smaller compared to the southern ones (Fig 1). Water surfaces covered 0.3% of the total CUN catchment area (Table S4).
Figure 2. C:N ratio of surface sediment in Curuá-Una reservoir. The black dots represent the sampling sites. The houses represent the settlements at the reservoir.

Pore water CH$_4$ profiles and saturation

The overall average CH$_4$ concentration in pore water from CUN was 1729 ± 1309 µmol L$^{-1}$ of CH$_4$ with similar averages during rising (1700 ± 1637 µmol L$^{-1}$ of CH$_4$, Fig. S4) and falling water (1764 ± 2243 µmol L$^{-1}$ of CH$_4$, Fig. S4) periods. At eight sites, we could make paired observations of CH$_4$ concentration in sediment pore water at both rising and falling periods (Fig. 3). These data show that the seasonal difference of CH$_4$ concentration in pore water was low and not significant ($S = 33213$, $Z = -1.27863$, Prob>|Z| = 0.20). Of the 25 pore water CH$_4$ profiles, 20 contained at least one sample with pore water CH$_4$ above the 100% saturation concentration; of the total of 386 pore water samples, 90 samples (23%) were above the CH$_4$ saturation concentration. Pore water CH$_4$ saturation was higher in river inflow areas, especially in...
sampling sites in the Curuá-Una main river. The confluence of the rivers and the dam area were also characterized by high pore water CH$_4$ (Fig. 4). The widespread appearance of gas bubbles in the sediment is in accordance with the sub-bottom profiler data, which for a large part of the reservoir could not be used to identify sub-bottom structures, because of a very strong acoustic reflector in surficial sediment, presumably gas bubbles.
Figure 3. Paired observations of pore water CH$_4$ profiles during rising (R) and falling (F) water periods at eight different sampling sites across the reservoir. Black lines represent the CH$_4$ saturation concentration (µmol L$^{-1}$) and grey lines represent the
measured CH$_4$ concentration (μmol L$^{-1}$) over sediment depth. The numbers following the letters F and R correspond to the site codes in Table S1.

Figure 4. Percentage of sediment layers with CH$_4$ concentration above saturation. The black dots represent the sampling sites to produce the interpolation. The houses represent the settlements at the reservoir.

Discussion

Despite the intense OC mineralization in the tropics, this study found that OC burial in the sediment of the Amazonian Curuá-Una reservoir was high when compared to sub-tropical and other tropical reservoirs, probably due to the high carbon inputs from the forest. However, autochthonous material was also an important component of CUN sediment. CH$_4$ concentrations in the sediment pore-
water were frequently supersaturated, indicating that the sediment of CUN also
has the potential to emit CH$_4$ to the atmosphere via ebullition.

SAR and OC burial in an Amazonian reservoir

When a river enters a reservoir, the water flow tends to decrease, favoring the
deposition of suspended particles (Fisher, 1983; Scully et al., 2003). Typically, reservoir
sedimentation rates are higher in the inflow areas and lower near the shores (Morris and
Fan, 1998; Sedláček et al., 2016). CUN showed high SAR near the inflow areas,
especially in the main tributary, but in contrast to other reservoirs (e.g. Mendonça et al.,
2014), we did not observe any decrease in SAR towards the margins (i.e. the shore). In
CUN, sediment accumulation across the entire reservoir area is favored by the shallow
topography of the area, and by the presence of dead tree trunks along the reservoir
including the margins, which reduce water flow and wave-driven resuspension.
Accordingly, our data show that SAR was randomly distributed in relation to the water
column depth (**Fig. S5**). Some reservoirs show higher sedimentation rates near the dam,
which can be called ‘muddy lake area’ (Morris and Fan, 1998; Sedláček et al., 2016),
and occurs in reservoirs where the fine sediment is transported all the way to the dam
(Morris and Fan, 1998; Jenzer Althaus et al., 2009; Sedláček et al., 2016; Schleiss et al.,
2016). CUN may be one of those cases (**Fig. 1**), possibly because water retention time is
low in the main river channel which is narrow and well separated from the dead tree
area, permitting transport of fine-grained sediment until the deeper dam area, where
sediments tend to accumulate (Lehman, 1975; Blais and Kalff, 1995). Sediment
accumulation was also high at the confluence of the three main tributaries (**Fig. 1**),
probably due to sediment deposition as water flow slows down when the rivers enter the
main body of the reservoir.
Although average SAR in CUN (0.6 cm yr\(^{-1}\)) was only slightly higher than that of non-Amazonian reservoirs in Brazil (e.g. Mendonça et al., 2014: 0.5 cm yr\(^{-1}\); Franklin et al., 2016: 0.4 cm yr\(^{-1}\)), OC burial rates were much higher in CUN than in other hydroelectric reservoirs in the tropics and sub-tropics. For example, OC burial was four times lower in Lake Kariba (23 g C m\(^{-2}\) yr\(^{-1}\), Zimbabwe, Kunz et al., 2011) and about two times lower in Mascarenhas de Moraes (42 g C m\(^{-2}\) yr\(^{-1}\), Brazil, Mendonça et al., 2014) and other Brazilian reservoirs (40 ± 28 g C m\(^{-2}\) yr\(^{-1}\), Brazil, Sikar et al., 2009) when compared to CUN. Even though natural lakes tend to bury OC at lower rates than artificial reservoirs (Mendonça et al., 2017), some Amazonian floodplain lakes showed higher OC burial rates than the CUN reservoir (266 ± 57 g C m\(^{-2}\) yr\(^{-1}\); Sanders et al., 2017). This is probably due to their smaller sizes which may result in a higher SAR since there is little area for sediment deposition, but high sediment load from the river during periods of high discharge. While a comparison with the latest global estimate of OC burial in reservoirs – median of 291 g C m\(^{-2}\) yr\(^{-1}\) (Mendonça et al., 2017) may lead to the conclusion that OC burial in CUN is low, it must be accounted that this global estimate (Mendonça et al., 2017) includes many small agricultural reservoirs (farm ponds), which are generally highly eutrophic systems that receive high sediment inputs from agriculture, resulting in extremely high OC burial rates (Downing et al., 2008). Hence, if compared to other hydroelectric reservoirs at low latitudes, our conclusion remains that OC burial in CUN is high. Importantly, comparisons of average SAR and OC burial rate between studies may be complicated by different sampling schemes, as sedimentation can vary in space and time (Radbourne et al., 2017; Stratton et al., 2019); for example, while in some studies, sites along the margins with zero sedimentation were sampled (e.g. Mendonça et al., 2014; our study), in other studies it was not (Moreira-Turcq et al., 2004; Knoll et al., 2014).
The high OC burial in CUN when compared to other low-latitude hydroelectric reservoirs is probably due to the high OC inputs from the productive Amazonian rain forest (Zhang et al., 2017), which compensates the intense sediment mineralization rates caused by high temperature. Using the linear regression model from a compilation of mineralization in freshwater sediments from the literature (Cardoso et al., 2014),

\[
OC_{\text{mineralization}} = (1.52 + 0.05) \times \text{Temperature}
\]

and the average temperature of the bottom water in CUN (29°C), sediment OC mineralization is estimated at a average of 325 g C m\(^{-2}\) yr\(^{-1}\). This estimation assumes the same sample size as OC burial (n = 114), and consequently that the random error of each individual prediction (Cardoso et al., 2014) largely averages out and becomes negligible (<1 g C m\(^{-2}\) yr\(^{-1}\)) for the average of predicted OC mineralization. This estimate of the average sediment OC mineralization rate is in the upper end of the range of values found for Brazilian reservoirs (Cardoso et al., 2014), but may even be conservative given that the CUN reservoir is located in a highly productive biome with high organic matter supply. The total OC deposition rate onto the sediment (OC mineralization + OC burial) of CUN is thus 418 g C m\(^{-2}\) yr\(^{-1}\), returning a estimated average OC burial efficiency of 22 % (OC burial efficiency = OC burial / OC deposition rate; Sobek et al., 2009). As expected, due to the positive effect of temperature on mineralization, the estimated average OC burial efficiency in the CUN reservoir is low in comparison to other reservoirs (at least 41% in the tropical lake Kariba (Kunz et al., 2011); average of 67% in the sub-tropical Mascarenhas de Moraes reservoir (Mendonça et al., 2016); average of 87% in the temperate lake Wohlen reservoir (Sobek et al., 2012)). A low OC burial efficiency allows high OC burial only if OC deposition onto the sediment is high enough, and we suggest that the
high productivity of the surrounding Amazonian rainforest constitutes a strong OC supply to CUN sediments.

The C:N ratio indicates that the sediment OC in CUN consists of a mixture of land-derived and internally-produced OC. The surface sediment C:N ratio varied from 10.3 to 17.0 (Table S3), and the C:N ratios of phytoplankton are typically 6-9, of aquatic macrophytes >10, of land plants >40 (Meyers and Ishiwatari, 1993; Grasset et al., 2019) and of Amazonian topsoils 10 to 14 (Batjes and Dijkshoorn, 1999). Although we refrained from making quantitative analysis based on C:N ratios, higher C:N values at the river inflow areas (Fig. 2) may indicate input from the highly productive watershed and thus the high load of land-derived OC to the sediment. Tropical rain forest is the dominant land cover in the CUN catchment (91%, Fig. 1), which may suggest that that the high OC burial rates in CUN are related to a high OC input from the watershed. However, there was no strong relation between OC burial rate and C:N ratio (Fig. S7A), even though the C:N ratio has been shown to affect the OC burial efficiency (Sobek et al., 2009). Possibly, the strong effect of SAR on OC burial masked the potential effect of the C:N ratio. In addition, the middle section of the reservoir was characterized by relatively low C:N ratio, indicating a significant share of aquatic OC in the sediment (Fig. 2). Likely, the higher water transparency downstream from the river inflow areas due to particle settling stimulate aquatic primary production. Possibly, also sewage input from riverside communities (represented as houses in Fig. 2) contributes with N to the reservoir and thus further stimulates aquatic production, since a comparatively low C:N ratio was found near these settlements. Also, even at low C:N ratios, OC burial rates were high (Fig. S6A). Hence, it is evident that internally-produced OC makes up an important contribution to the OC buried in the sediments of CUN. The source of buried OC has an important implication in terms of accounting for
the sediment carbon as a new sink or not (Prairie et al., 2017), since the burial of aquatic OC can be ascribed to aquatic primary production in the reservoir, which would not have taken place in the absence of the dam, and thus represents a new carbon sink. However, our data do not allow us to make a quantitative estimate of the share of the CUN sediment carbon stock that is of aquatic origin, and thus may be accountable as a new carbon sink resulting from river damming (Prairie et al., 2017).

The spatial pattern of OC burial suggests that the catchment size affects sediment load and sedimentation, since the largest sub-catchment (6966 km²), entering CUN from the south, corresponds with high OC burial rates in the southern river inflow area (Fig. 1). The northwestern tributaries, which drain only 2111 and 300 km², are not associated with high OC burial in the northeastern tributary (Fig. 1), possibly because they are smaller, even though they have a higher share of managed land (34 and 41%, respectively) than the southern sub-catchment (4%). Apparently, even though land management increase erosion (Syvitski and Kettner, 2011), we cannot detect any such effect on sediment OC burial. Also concerning the C:N ratio, an effect of land cover is not evident, since the inflow area of the forest-dominated sub-catchment in the southwest (2855 km²; 99% forest) had a similar C:N ratio as the tributary of the northwestern sub-catchments, with their higher share of managed land. Possibly, the effect of land cover is masked by other factors affecting sediment OC and C:N, such as internal productivity and local particle settling patterns.

Despite being high compared to other hydroelectric reservoirs, OC burial in CUN represents only 15% of the total carbon emission to the atmosphere reported for the CUN reservoir (509 g C m² yr⁻¹, Duchemin et al., 2000). Similarly, a study conducted in a boreal Canadian reservoir found that OC burial corresponded to 10% of reservoir carbon emission (Teodoru et al., 2012), although burial in other reservoirs
can be close to (70%, Mendonça et al., 2014) or even much higher than the total carbon emission to the atmosphere (1600%, Sobek et al., 2012). The magnitudes of carbon burial in relation to the emission in reservoirs depends on many factors (Mendonça et al., 2012). Therefore, although freshwater carbon emission tends to be consistently higher than OC burial in Amazonian freshwater systems (Mendonça et al., 2012), we cannot speculate in how far the results of this study applies to other reservoirs in the Amazon region since many factors affect the carbon processing in inland waters.

High potential for CH$_4$ ebullition

The high amount of pore water CH$_4$ profiles with samples above the CH$_4$ saturation concentration indicates a high likelihood of gas bubble formation in most of the sampled sites, and thus the possibility of CH$_4$ ebullition (Table S5). Importantly, however, the link between bubble presence in the sediment and CH$_4$ ebullition flux is entirely qualitative, and can not be used to estimate the magnitude of CH$_4$ ebullition. Sites with higher OC burial rate, i.e. river inflow areas, especially the Curuá-Una river, the confluence of the three main rivers and the dam area, also showed a tendency towards higher extent of CH$_4$ saturation (Fig. 4). However, while the relationship between average CH$_4$ saturation and OC burial at the different sites was positive, it was also weak, but clearly shows the overall high level of CH$_4$ saturation in CUN sediments (Fig. 5). Hence, the CH$_4$ production in CUN sediments may rather be influenced by the OC supply rate to anaerobic sediment layers than by the reactivity of the sediment OC, since there was no association between the C:N ratio and the extent of CH$_4$ saturation (Fig. S7B). Links between high sedimentation rate and sediment CH$_4$ pore water concentration as well as CH$_4$ ebullition have been reported previously (Sobek et al., 2012; Maeck et al., 2013), and in addition, fresh land plant-derived organic matter such as leaves transported by the rivers may fuel
substantial CH$_4$ production at anoxic conditions (Grasset et al., 2018). This highlights that sediment accumulation bottoms close to river inflow areas can be prone to exhibit high CH$_4$ ebullition (DelSontro et al., 2011), not least because the shallow water column in inflow areas (Fig. S6) facilitates CH$_4$ bubble transport to the atmosphere.

![Regression model of average percentage of CH$_4$ saturation (%) in the sediment pore water and OC burial rate (g C m$^{-2}$ yr$^{-1}$). Each circle represents one sampling site.](image)

Figure 5. Regression model of average percentage of CH$_4$ saturation (%) in the sediment pore water and OC burial rate (g C m$^{-2}$ yr$^{-1}$). Each circle represents one sampling site.

Compared to other reservoirs, CUN had a higher share of sites (20 of 25) with pore water CH$_4$ concentration over the saturation threshold. In the Mascarenhas de Morais reservoir (Brazil), 6 of 16 sites with pore water CH$_4$ concentration over the saturation threshold were found (Mendonça et al., 2016). In Lake Wohlen (Switzerland), 4 of 8 sites with pore water CH$_4$ concentration over the threshold were found (Sobek et al., 2012). However, these differences should be interpreted with caution. Using the 100% saturation concentration as a threshold may underestimate the
potential for ebullition, since changes in the pressure may result in bubbles release
during sediment sampling, especially in layers above 100% saturation. Therefore, our
results of the degree of pore water CH$_4$ saturation, as well as the results from the
literature cited above, are conservative.

We did not find statistical difference between CH$_4$ pore water concentration
during rising and falling periods (Fig. 3), although other studies suggest a strong
influence of water level or pressure changes on CH$_4$ ebullition (Mattson and Likens,
1990; Eugster et al., 2011; Maeck et al., 2014). Interestingly, 2 of the 8 sites with
generally low CH$_4$ pore water concentration were low at both sampling occasions,
indicating that there may be an important spatial component in sediment CH$_4$
production and saturation (Fig. 3, sites F24 x R16 and F57 x R39), which however was
not related to the C:N ratio or OC burial rate at these sites.

Conclusions

The comparatively high OC burial rate of the Amazonian CUN reservoir
probably results from high OC deposition onto the sediment, since the warm water (28-
30°C) implies a high sediment OC mineralization rate. The forest seems to be a major
OC source to the reservoir although the relatively low C:N ratio in some parts of the
reservoir suggests an also significant aquatic contribution to sediment OC burial. In
some parts of the reservoir, particularly in the river inflow areas, sediments are probably
a CH$_4$ source by ebullition. Therefore, large inputs from a highly productive forest
probably boost the OC burial rate, as well as CH$_4$ production, with a still unknown net
effect on the regional carbon budget. Given the planned expansion of hydropower
dams in the Amazon region, and the high OC burial rate in CUN shown here, future
studies should quantify how OC burial and CH$_4$ emission may be affected by new
Amazonian hydroelectric reservoirs. Moreover, it will be critical to quantify the effect of the new Amazonian reservoirs on the ocean’s carbon budget, since the CUN dam alone retains yearly 7,500 tons of OC and a part of it would likely reach the ocean in the absence of the dam.

Data availability. All the data used in this study can be found in the manuscript and in the Supplement.

Author contributions. GRQ, JRP, AI, RM, RV carried out the sampling campaigns. GRQ processed the data. AI analyzed the samples. GRQ and JRP prepared the figures. RM, SS, FR designed the study. All authors contributed to interpreting data and writing the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgments. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement n° 336642. S.S. received additional support by the program Pesquisador Visitante Especial, Ciência sem Fronteiras, n° 401384/2014–4. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001. F.R. has been supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant no. 401384/2014–4). We are thankful for the support from ELETRONORTE during the field campaigns.

References

global carbon cycle: integrating inland waters into the terrestrial carbon budget,

da Silva Soito, J. L., and Freitas, M. A. V.: Amazon and the expansion of hydropower
in Brazil: Vulnerability, impacts and possibilities for adaptation to global climate
change, Renewable and Sustainable Energy Reviews, 15, 3165-3177, 2011.

Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T., Barros, N.,
emissions from reservoir water surfaces: a new global synthesis, BioScience, 66, 949-
964, 2016.

ebullition and diffusion from northern ponds and lakes regulated by the interaction
between temperature and system productivity, Limnology and Oceanography, 61, S62-
S77, 2016.

heterogeneity of methane ebullition in a large tropical reservoir, Environmental science
& technology, 45, 9866-9873, 2011.

and size distribution of streams and rivers, Inland waters, 2, 229-236, 2012.

eutrophic impoundments over the last century, Global Biogeochemical Cycles, 22,
2008.

Fearnside, P. M.: Do hydroelectric dams mitigate global warming? The case of Brazil's Curuá-Una Dam, Mitigation and Adaptation Strategies for Global Change, 10, 675-691, 2005.

Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M.,
Butman, D., Striegl, R., Mayorga, E., and Humborg, C.: Global carbon dioxide
Renwick, W. H., Smith, S. V., Bartley, J. D., and Buddemeier, R. W.: The role of
impoundments in the sediment budget of the conterminous United States.
Sanders, L. M., Taffs, K. H., Stokes, D. J., Sanders, C. J., Smoak, J. M., Enrich-Prast,
floodplain lakes: A significant component of Amazon budgets?, Limnology and
Schleiss, A. J., Franca, M. J., Juez, C., and De Cesare, G.: Reservoir sedimentation,
Scully, M., Friedrichs, C. T., and Wright, L.: Numerical modeling of gravity-driven
sediment transport and deposition on an energetic continental shelf: Eel River, northern
Sedláček, J., Bábek, O., and Kielar, O.: Sediment accumulation rates and high-
resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings,
Morava River catchment area, Czech Republic, Geomorphology, 254, 73-87, 2016.
Segers, R.: Methane production and methane consumption: a review of processes
Sikar, E., Matvienko, B., Santos, M., Rosa, L., Silva, M., Santos, E., Rocha, C., and
Bentes Jr, A.: Tropical reservoirs are bigger carbon sinks than soils, Internationale

footprint of a newly created boreal hydroelectric reservoir, Global Biogeochemical Cycles, 26, 2012.

