Distribution and Flux of Dissolved Iron of the Rajang and Blackwater Rivers at Sarawak, Borneo

Xiaohui Zhang¹, Moritz Müller², Shan Jiang¹, Ying Wu¹, Xunchi Zhu³, Aazani Mujahid⁴, Zhuoyi Zhu¹, Mohd Fakharuddin Muhamad⁴, Edwin Sien Aun Sia², Faddrine Holt Ajon Jang², Jing Zhang¹

¹State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
²Swinburne University of Technology, Faculty of Engineering, Computing and Science, 93350 Kuching, Sarawak, Malaysia
³School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
⁴Faculty of Resource Science & Technology, University Malaysia Sarawak, 94300, Sarawak, Malaysia

Correspondence to: Xiaohui Zhang (52163904020@stu.ecnu.edu.cn)
Abstract Dissolved iron (dFe) is essential for biogeochemical reactions in oceans, such as photosynthesis, respiration and nitrogen fixation. Currently, large uncertainties remain on riverine dFe inputs, especially for tropical rivers in Southeast Asia. In the present study, dFe concentrations and distribution along the salinity gradient in the Rajang River in Malaysia, and three blackwater rivers draining from peatlands, including the Maludam River, the Sebuyau River, and the Simunjan River, were determined. In the Rajang River, the concentration of dFe in fresh water (salinity<1) in the wet season (March 2017) was higher than that in the dry season (August 2016), which might be related to the resuspension of sediment particles and soil erosion from cropland in the watershed. In the Rajang Estuary, an intensive removal of dFe in low salinity waters (salinity<15) was observed, likely due to the salt-induced flocculation and the absorption onto suspended particulate matters (SPM). However, dFe concentration enhancements in the wet season occurred in some sampling sites, which may be related to the desorption from SPM and agriculture activities. On the other hand, dFe was conservatively distributed in high salinity waters (salinity>15), which may result from the association between dFe and pelagic organic matters. In the blackwater rivers, concentrations of dFe reached 44.2 μmol L⁻¹, indicating a great contribution from peatland. The dFe flux derived from the Rajang Estuary to the South China Sea was (6.4±2.3)×10⁵ kg yr⁻¹. For the blackwater river, the dFe flux was approximately (1.1±0.5)×10⁵ kg yr⁻¹ in the Maludam River. The anthropogenic activities may play an important role in the dFe yield, such as the Serendeng tributary of the Rajang River, and Simunjan River, where intensive oil palm plantations were observed.
1. Introduction

Iron (Fe) is an essential element for enzymes and deemed to be responsible for photosynthesis, respiration, and nitrogen fixation (Moore et al., 2009; Raven, 2010; Williams, 1981). In the past four decades, Fe has been identified as micronutrient, significantly supporting primary productivity in oceans (Brand and Sunda, 1983; Moore et al., 2009; Tagliabue et al., 2017). In particular, after a series of in-situ fertilization experiments, researchers verified the Fe limitation on the growth of phytoplankton and the critical role in the CO\textsubscript{2} fixation (Boyd et al., 2007; de Baar et al., 2005; Martin, 1990).

On a global scale, the riverine dissolved iron (dFe) transported to coastal oceans is estimated to be 1.5×109 mol yr-1 (Boyd and Ellwood, 2010; de Baar and de Jong, 2001; Jickells et al., 2005; Milliman and Farnsworth, 2011; Saitoh et al., 2008). Tropical rivers might contribute a significant amount of dFe based on studies from the Amazon River (Bergquist and Boyle, 2006; Gaillardet et al., 1997), and the Congo River (Coynel et al., 2005; Dupré et al., 1996). However, few studies have assessed dFe concentrations and transport in tropical rivers in Southeast Asia, even though those rivers can account for about 30\% of fluvial discharge to oceans (Milliman and Farnsworth, 2011).

Estuaries, as the interaction zone between surface water and coastal oceans, could fundamentally modulate dFe concentrations during the mixing, and hence change the magnitude of riverine dFe flux. There is a large volume of published studies on the behaviors of dFe in a wide range of estuaries (Boyle et al., 1977; Herzog et al., 2017; Oldham et al., 2017; Zhu et al., 2018). In particular, some estuarine environments are enriched with organic matters because of high primary productivity and terrestrial loading, as well as the great contributions from salt marshes and peatlands. These organic matters may deeply affect the distribution of riverine solutes (Hedges et al., 1997; Müller et al., 2015).

Generally, estuaries act as a sink for dFe due to the flocculation between the cations and the high molecular colloids (Bergquist and Boyle, 2006; Boyle et al., 1977; Stolpe and Hasselov, 2007). The magnitude of dFe removal in the estuary can be quantified by removal factors (RF). However, in some rivers with high concentrations of dissolved organic matters (DOM), conservative distribution of dFe was found, because of the chemical connection of Fe to DOM (Oldham et al., 2017; Sanders et al., 2015; Stolpe et al., 2010). More importantly, large populations in estuaries are frequently observed. Anthropogenic activities, such as coal mining, ore industry, and agriculture activities, could
significantly impact concentrations and distributions of dFe in estuaries (Braungardt et al., 2003; Morillo et al., 2005; Xue et al., 2016).

Currently, only limited records on the dFe concentrations were provided in peatland draining rivers (Batchelli et al., 2010; Krachler et al., 2010; Oldham et al., 2017). The dFe distribution in the peatland draining estuaries is also largely unknown. Southeast Asia hosts a large area of peatlands along the coastal belts, with a coverage of approximately 9% on a global scale (Dommain et al., 2011; Joosten, 2012). For dFe research in Malaysia, to the authors’ best knowledge, the dFe concentration was only determined (1) in the fresh water at Pelagus, where the high concentration of dFe was observed, resulting from sediment diffusion (Siong, 2015); (2) in Bebar, a blackwater river in Pahang, Malaysia, the concentration of dFe was up to 30 μmol L⁻¹, but the information about the distribution and biogeochemistry of dFe was missing (Shuhaimiothman et al., 2009). Such knowledge limitation may markedly influence the regional dFe budget estimation.

To fill this gap, two cruises were conducted in Sarawak state, Borneo, Malaysia, including the largest river in Sarawak State (the Rajang River) and three peat-draining rivers. This study aims to determine (1) the concentration and distribution of dFe, (2) the seasonal variation of dFe in the Rajang River, (3) the dFe yields and the magnitude of riverine fluxes to the coastal areas.

2. Materials and methods

2.1 Study area

Malaysia has the second largest peatland areas (about 2.6×10⁴ km²) in Southeast Asia (Mutalib et al., 1992). Sarawak State accounts for the largest peatland area in Malaysia, and has a wide spread of blackwater rivers (Joosten, 2012; Wetlands International, 2010). Approximately 23% of the peatland is defined as relatively undisturbed in Malaysia, in which 17% are in Sarawak (Wetlands International, 2010). Since the mid-1980s, rubber, textiles, metals, food processing, petroleum, and electronics have been developed, and have become the major economic support in Malaysia (Trade Chakra, 2009). As a response, deforestation rate in Sarawak increased to 2% yr⁻¹ from 1990 to 2010 (Miettinen et al., 2012), and this rate is attributed to oil and rubber plantations (Joosten, 2012).

The Rajang River, i.e. the largest river in Malaysia, flows from the Iran Mountain to the South China Sea (Fig. 1a and b), with a length of 530 km. The drainage basin is 5.1×10⁴ km² (Milliman and
Farnsworth, 2011; Staub and Esterle, 1993). The drainage area of the Rajang Estuary is 6,500 km2, and 50% is covered with extensive peat in a depth of greater than 3 m (Staub and Gastaldo, 2003). The climate in the Rajang watershed is classified as tropical ever-wet type (Morley and Flenley, 1987), while the precipitation varies between dry and wet seasons. Water discharge rate for the Rajang River reaches 6000 m3 s$^{-1}$ in the wet season (December to March), with an average discharge of about 3600 m3 s$^{-1}$ (Jeeps, 1963; Staub et al., 2000; Staub and Gastaldo, 2003). Sibu city is assumed to be the boundary between the Rajang drainage basin and the Rajang Estuary (Staub et al., 2000; Staub and Esterle, 1993). Apart from mineral soils from the upper stream, the Rajang Estuary also receives a materials from the adjacent hill regions and the Retus River (Staub and Gastaldo, 2003). There are several tributaries for the Rajang River in the estuary, including Igan, Serendeng, and Rajang. The Igan tributary is the major outlet for freshwater (Jiang et al., 2019). Mangroves distributed in the brackish-water area in the southwestern of the estuary. *Casuarina* was observed in the northeastern and coastal area (Scott, 1985). The thick coverage of vegetation, especially mangroves, in the Rajang Estuary produces the high-ash, high-sulfur, degraded sapric peats (Lampela et al., 2014). Tide is diurnal to semidiurnal type in the Rajang Estuary and could extend to Sibu city (Staub et al., 2000; Staub and Gastaldo, 2003). The range increases from the northeast (1.5 m) to the southwest (2.5 m). Sediments in the Rajang Estuary are composed of gley soils, podzols soils, and alluvia soils (Staub and Gastaldo 2003). Gley consists of mixed-layered illite-smectite, illite, and chlorite. Gley is frequently observed in the central and southwestern part of the estuary (Staub and Gastaldo, 2003). Podzols is gray-white to white clay, which is composed of kaolinite and illite. Podzols is found in some low-lying areas and the landward part of the Rajang Estuary (Staub and Gastaldo, 2003). Alluvial soils, which is made up of illite, smectite, and kaolinite, is found in the landward part of the estuary (Staub and Gastaldo, 2003). The input of total suspended solids from the Rajang River is up to 30 Mt yr$^{-1}$ (Milliman and Farnsworth, 2011). Peatland-draining rivers (Maludam, Simunjan, Sebuyau) are blackwater rivers, characterized by tea-color, acidic, and oxygen deficit as described by Kselik and Liong (2004). The Maludam River is a pristine river with minor human influences, since the majority of the river is located in the Maludam National Park (the second largest park in Sarawak). The peat thickness in the river bed reaches 10 m (Forest Department, 2014). The catchment of Maludam River is 91.4 km2 and the average discharge
is $4.4 \pm 0.6 \, m^3 \, s^{-1}$ (Müller et al., 2015). However, other two blackwater rivers are undergoing severe human activities disturbance, mostly from the plantations of commercial crops like oil palm and sago, as shown in Fig. 1d (Wetlands International, 2010).

2.2 Sample collection and process

The sampling stations are outlined in Fig. 1. The surveys in the Rajang River were conducted in August 2016 (dry season) and March 2017 (wet season). Each survey lasts 4 to 5 days, covering both flooding tides and ebbing tides. The samples include fresh river samples, brackish water in different river tributaries and coastal saline water. In the Rajang watershed, the selection of sampling stations is dependent on the salinity, anthropogenic activities. In March 2017, the blackwater rivers, as aforementioned, were included in the filed. During the cruises, surface water samples were collected, using a pole sampler. The front of the sampler was attached to a 1 L high-density polyethylene bottle (Nalgene). The length of the pole is 3-4 m to avoid the contamination from the ship. Water samples were filtered through acid-cleaned 0.4 μm pore size polycarbonate membrane filters (Whatman) into a polyethylene bottle (Nalgene), then frozen at -20°C, and packed in triple bags. The samples then thawed at room temperature in the clean laboratory and acidified with ultrapure HCl to pH 1.7 in an ultra clean lab. All bottles used in the sample collection and storage were prepared in the clean laboratory, by rinsing with Milli-Q water, immersing in 2% Citranox detergent for 24 h, rewashing with Milli-Q water for 5-7 times, leaching for 7 days in 10% HCl, rinsing with Milli-Q water 5-7 times again, filling 0.06 mol L$^{-1}$ ultrapure HCl for 2 days at 60°C, and sealing in plastic bags.

2.3 Sample analyses

The concentration of dFe was preprocessed using the single batch resin extraction and the isotope dilution method (Lee et al., 2011). It was quantified on a multi-collector inductively coupled plasma mass spectrometer in high-resolution mode (Neptune, Thermo). The inlet system contained an Apex IR desolvator (AEI) with a perfluoroalkoxy microconcentric nebulizer (ESI) at a solution uptake rate of 50 μL min$^{-1}$. All tubes used for the analyses were acid leached for two days with 10% HCl at 60°C, rinsed 5 times with Milli-Q water, later filled with 0.06 mol L$^{-1}$ ultrapure HCl in a class 100 flow bench, and leached for another 2 days at 60°C. The analytical procedural blank and detection limit (three times the standard deviation of the procedural blank) were both 0.06 nmol L$^{-1}$. The accuracy...
of the method was tested by analyzing intercalibration samples including one open ocean SAFe D1 and one estuary water SLEW-3. Measured dFe concentrations for SAFe D1 and SLEW-3 were 0.66±0.05 nmol L\(^{-1}\) and 10.0±0.4 nmol L\(^{-1}\) compared to consensus values of 0.70±0.03 nmol L\(^{-1}\) and 10.2±1.2 nmol L\(^{-1}\) (Zhang et al., 2015).

During the field investigation, salinity, temperature, pH, and dissolved oxygen (DO) concentrations were detected \textit{in-situ} with a probe (AP2000, Aquared, U.K.). In the Rajang River, suspended particulate matters (SPM) samples were collected with pre-combusted 0.7 μm pore size Whatman GF/F filters, and SPM concentration was calculated by the weight difference of filters before and after filtration. Dissolved organic carbon (DOC) samples were collected by filtering through 0.2 μm pore size nylon filters. For the samples collected in August 2016, DOC concentrations were determined on an Aurora 1030W total organic carbon analyzer. Reproducibility for concentrations was ±0.2 mg L\(^{-1}\). DOC concentrations were measured at the Centre for Coastal Biogeochemistry at Southern Cross University (Lismore, Australia). For the samples collected in March 2017, DOC concentrations were determined by the high-temperature catalytic oxidation method with Total Organic Carbon Analyzer (Shimadzu), and the coefficient of variation was 2\% (Wu et al., 2013).

2.4 The calculation of dFe flux and yield

To estimate the magnitude of dFe flux from tropical rivers to coastal water, the following equation is adopted:

\[Q = C \times V \times (1 - RF) \]

where \(Q\) is dFe flux, \(C\) is the mean dFe concentration at freshwater endmember (S<1), \(V\) is the river discharge, \(RF\) is the removal factor, based on the ratio of the integration area of dFe concentration versus salinity to that of the theoretical dilution line intercepts (Hopwood et al., 2014). Riverine dFe yield is the ratio of dFe flux to the drainage area.

3. Results

3.1 Hydrographic properties in the Rajang and blackwater rivers

In August 2016 (the dry season), the salinity in the Rajang water samples ranged from 0.0 to 32.0, which increased from Sibu city to the coastal zone (Table 1). In March 2017 (the wet season), the salinity varied from 0.0 to 30.1 (Table 1). In Serendeng tributary, some high salinity samples inside
the river mouth in the wet season were found. The concentration of SPM ranged from 24.2 mg L\(^{-1}\) to 327.2 mg L\(^{-1}\), and decreased from freshwater to seawater, but the highest turbidity water varied among channels and seasons. In August 2016, the SPM peak was observed near the river mouth in Serendeng tributary but moved landward in other tributaries (Fig. 2b). In March 2017, the peak of SPM was located in freshwater in the Rajang tributary. DO in March 2017 (mean: 6.1±0.7 mg L\(^{-1}\)) was higher than August 2016 (mean: 3.8±0.6 mg L\(^{-1}\)), and decreased along the transportation in the Rajang drainage basin as shown in Fig. 2c. The DO distribution in the Rajang Estuary varied between two seasons. The high value was found in the west estuary in March 2017 (Fig. 2c, 2h). Water pH in the Rajang River increased along the salinity gradient with a mean value of 7.1±0.5 (August 2016) and 7.1±0.6 (March 2017), as outlined in Fig. 2d and 2i.

In blackwater rivers, salinity ranged from 0.0 to 23.5 in the Maladam River and 0.0 to 13.6 in the Sebuyau River. The samples in the Simunjan River are only fresh water. All three blackwater rivers were frequently anoxic (DO < 2 mg L\(^{-1}\)). The mixing between river water and ocean water markedly increased DO. Moreover, pH in these blackwater rivers was relatively low, especially in the Maladam River (minimum 3.7). DOC increased steadily in fresh water but decreased sharply in estuaries. The distributions of these properties in blackwater rivers are shown in the Supplement.

3.2 dFe in Rajang and its Estuary

The contour of dFe in the Rajang surface water is shown in Fig. 2. The dFe concentrations in the Rajang freshwater ranged from 2.8 to 7.3 μmol L\(^{-1}\) (mean: 5.2±1.8 μmol L\(^{-1}\)) in August 2016, and ranged from 4.2 to 8.3 μmol L\(^{-1}\) (mean: 6.4±2.0 μmol L\(^{-1}\)) in March 2017. In the Rajang Estuary, the concentration of dFe ranged from 1.7 nmol L\(^{-1}\) to 7.0 μmol L\(^{-1}\) (mean: 1.1±2.2 μmol L\(^{-1}\)) and 4.2 nmol L\(^{-1}\) to 11.3 μmol L\(^{-1}\) (mean: 4.2±4.0 μmol L\(^{-1}\)) in the dry and the wet season, respectively. The concentration of dFe in the wet season was higher than the dry season both in the Rajang freshwater and the Rajang Estuary.

The relationships between dFe concentrations and other factors, such as salinity, SPM, DOC, DO and pH in the Rajang Estuary can be found in Fig. 3. In the dry season, dFe concentration decreased exponentially in low salinity water (salinity<15) though we did not include the tidal influence. A linear relationship was found between dFe and SPM in low salinity area (R\(^2\)=0.29, p<0.05). In the high salinity area (S>15), dFe tended to be conservative (Fig. 3a), and displayed a linear relationship...
with DOC ($R^2=0.45$, $p<0.05$), DO ($R^2=0.50$, $p<0.05$), and pH ($R^2=0.39$, $p<0.05$). In the wet season, dFe concentration was higher in the Igan tributary compared to other two branches. There was an intensive dFe addition between salinity 5-15, mainly in the Serendeng tributary (Fig. 3a). Specifically, the linear correlation between dFe and SPM was found in the water samples when salinity was <15 in the wet season ($R^2=0.11$, $p<0.05$) (Fig. 3b), especially in the Serendeng distributary. Moreover, a significant positive relationship between dFe and DOC was also identified in the wet season in low salinity water ($R^2=0.61$, $p<0.001$) (Fig. 3c). DO was negatively correlated with dFe in high salinity area ($R^2=0.97$, $p<0.001$), with a similar pattern in the dry season. The relationship between pH and dFe was insignificant in the wet season.

3.3 dFe in blackwater rivers

The average dFe concentration in three blackwater rivers were 14.6±6.7 μmol L$^{-1}$ (the Maludam River), 44.2±11.8 μmol L$^{-1}$ (the Simunjan River), and 17.6±12.0 μmol L$^{-1}$ (the Sebuyau River). The dFe concentration increased along the river flow (Fig. 4a), but decreased during the mixing. The distribution of dFe in blackwater rivers tended to be conservative in the estuary of Maludam and Sebuyau (Fig. 4b), which was different from the pattern in the Rajang Estuary. Moreover, there was a significant positive correlation between dFe and DOC in the blackwater rivers (Fig. 4c), except the Maludam River because of low DOC in high salinity region ($S=20.0$).

4. Discussion

4.1 Seasonal variation of dFe in the Rajang freshwater

In the dry season, dFe concentrations in the Rajang water (near the Sibu city) ranged from 2.8 to 7.3 μmol L$^{-1}$. In the wet season, dFe concentrations increased (Fig. 2). Considering the limited temperature variation in the tropical zone, the dFe elevation may be related to the stronger weathering derived from intensive precipitations. In particular, once precipitations elevated (in the wet season), water mass from the upper stream scoured the soils along the river banks, carring the Fe-enriched terrestrial particles to the down stream (Meade et al., 1985; Taillefert et al., 2000). Moreover, the agriculture activities in the watershed, such as tillage, can result in the rapid leaching in the wet season (Lehmann and Schrøth, 2003; Tabachow et al., 2001), especially in 2017 (the occurrence of La Niña events) (Jiang et al. 2019). Additionally metal elements were transported from the catchement to the
Rajang River (Johnes and Hodgkinson, 1998; Withers et al., 2001). In addition, the changes of soil structure during agriculture activities can influence the exchange route of dissolved matters in vertical profiles; hence the large proportion of dFe is likely to be transported during the rainfall via water exchanges (Haygarth et al., 1998; Johnes and Hodgkinson, 1998). Such dFe addition from the cropland was also observed in many other study areas, like the Krishna river drainage area (Kannan, 1984), the Palar and Cheyyar river basin (Rajmohan and Elango, 2005), and the Guadalquivir River (Lorite-Herrera and Jiménez-Espinosa, 2008). Eventually, the terrestrial-borne dFe injected into the Rajang River via hydrological connections in the riparian ditches, and hence contributed quantities of dFe to rivers from terrestrial runoff and flood discharges (Yan et al., 2016).

4.2 dFe in the Rajang Estuary

In the Rajang Estuary, there was an intensive removal of dFe when the salinity < 15, especially in the dry season (Fig. 3a). This may be mainly related to the flocculation of the negatively charged colloids with cations in the fresh-saline water mixing. This has been observed in many rivers and simulation experiments (Boyle et al., 1977; Oldham et al., 2017; Zhu et al., 2018). Furthermore, dFe was negatively correlated with SPM in low salinity waters (Fig. 3b), indicating that the dFe removal may also be linked to the absorption of SPM as described by other researches (Beusekom and Jonge, 1994; Homoky et al., 2012; Zhang et al., 1995). However, there was exceptionally high dFe concentration at salinity 5-15 in the Serendeng tributary in the wet season. On the one hand, it may result from peatland soils in the adjacent area, because the peatland soils host abundant dFe and organic ligand, and these organic compounds could enhance the solubility of Fe during the transport (Krachler et al., 2010; Oldham et al., 2017; Shuhaimiothman, 2009). On the other hand, there could be other processes for dFe addition in the Rajang Estuary, such as the desorption of SPM-bounded Fe to the river water. The balance between adsorption and desorption of trace metal ions onto/from SPM is complicated. These two processes could occur simultaneously and be influenced by different environmental conditions, like SPM content, pH, salinity, and adsorption strength between ions and SPM (Hatje et al., 2003; Jiann et al., 2013; Zhang et al., 2008). It has been confirmed that the partition coefficient of dFe decreased with increasing SPM concentration, and became inversely proportional to the SPM concentration, termed as particle concentration effect (Benoit, 1995; Jiann et al., 2013; Turner and Millward, 2002). Furthermore, Zhu et al. (2018) suggested that desorption from particles was the
main reason for dFe enhancement in the river mouth of the Changjiang. Although we didn’t conduct any adsorption/desorption experiments in these cruises, we could deduce that the great dFe increase at salinity 5-15 in the wet season may be also related to the desorption because of the high SPM content. Moreover, the samples in these area was collected during a spring tide, and the high concentration of SPM was within the range of the result in the Texas river (Jiann et al., 2013) and some observations in the Changjiang estuary (Zhu et al., 2018), where dFe enhancements resulted from the desorption of SPM. Furthermore, the intensive agricultural activities in the Serendeng distributary changed the soil structure and contributed a considerable amount of SPM at flood tide, which may stimulate the dFe desorption.

In the high salinity zone (S>15), the dFe tended to be conservative. The positive relationship between dFe and DOC in the dry season (Fig. 3c) may be a mirror of the chemical association of dFe and DOM. Specifically, the combination between dFe and organic matter, especially the pelagic organic matter, can resist to salt-induced aggregation and lead to an input of bioavailable dFe to the coastal zone (Breitbarth et al., 2009; Krachler et al., 2005; Stolpe and Hassellov, 2007). The multiple linear regression analysis of dFe and environmental factors, including salinity, SPM, DOC, DO, and pH (dry season: $R^2=0.52$, $p<0.05$; wet season: $R^2=0.73$, $p<0.05$), was also used to explore the observed patterns. It showed that salinity and SPM were the main factors for the distribution of dFe in the Rajang Estuary ($p<0.05$). For pH, the correlation between dFe and pH was limited in the wet season, suggesting a little impact of pH on dFe. In the dry season, the concentration of dFe was negatively correlated with pH (Fig. 3e), because Fe-enriched sediments can be acidified and mineralized by inorganic acids (H$_2$CO$_3$, HNO$_3$, and H$_2$SO$_3$) and organic acids (oxalic acid, citric acid, and siderophore) generated from the chemical weathering and biological progress (Banfield et al., 1999; Lerman et al., 2007). The biogeochemical behavior of dFe in the Rajang River that we discussed above is summarized and conceptualized in Fig. 6a.

4.3 dFe in blackwater rivers

In blackwater rivers, the dFe was accumulated from the upper stream to the downstream before mixing. In the mixing zone, high concentrations of dFe were rapidly diluted (Fig. 4b). As evidenced by the water color, these peat-draining rivers are characterized by extremely high levels of terrigenous DOM (Martin et al., 2018; Zhou et al., 2018). Given such high concentrations of DOM and the positive
correlation between dFe and DOC (Fig. 4c), peatland should be a strong source for dFe. Consequently, the gradual enrichment of dFe along the rivers was observed. Compared with the Maludam River, i.e. the drainage from an undisturbed peatland, dFe concentrations in the Sebuyau River and the Simunjan River were significantly higher (Table 1). The difference in the dFe concentration among three blackwater rivers may come from the variation of environmental parameters around the drainage basin, especially the vegetation types and anthropogenic activities. The palm oil plantations covered a significant area in the watershed of the Sebuyau River and Simunjan River, as shown in Fig. 1d. In order to stimulate seedings in plantations, the empty fruit bunches and the palm oil mill effluent were returned to the cropland after oil extraction (Carron et al., 2015; Nelson et al., 2015), indicating an enhancement in terrestrial organic matter. The intensive agriculture activities, such as tillage, also facilitated the transport of terrestrial dFe into the Sebuyau River and the Simunjan River as discussed in chapter 4.1.

During the cruise, the high salinity samples were not obtained in the Maludam and Sebuyau rivers. For the samples with the salinity range from 0 to 20, the dFe removal is insignificant, which is markedly different from the trend obtained in the Rajang Estuary (Fig. 4b). The significant positive correlation between dFe and DOC concentration reinforced the tight connection between dFe and organic ligands in blackwater rivers (Fig. 4b). Recent studies have also pointed out that organic ligands originating from peatland enhanced the iron-carrying capacity of the river water (Krachler et al., 2005; Oldham et al., 2017). Approximately 20% of dFe didn’t flocculate during a laboratory mixing experiment (Krachler et al., 2010). The biogeochemical behavior of dFe in blackwater rivers that we discussed above is summarized and conceptualized in Fig. 6b.

4.4 dFe fluxes and yields

For the Rajang River, the mean dFe concentration at the river endmember of two seasons was 5.5±2.0 μmol L⁻¹, and mean removal factor was 98.0±0.6% . Removal factor of dFe varied on a global scale. The Rajang RF was predominant among the recent results (Table 2). Coupled with the discharge rate (about 3600 m³ s⁻¹), the dFe flux from the Rajang River was estimated to be (6.4±2.3)×10⁵ kg yr⁻¹ based on the equation (1). For the Maludam River, the concentration of river endmember was 14.6±6.8 μmol L⁻¹, and RF=0 due to the conservative distribution. The dFe flux in the Maludam River was approximately (1.1±0.5)×10⁵ kg yr⁻¹, produced from 432 km² peatland in the Maludam National
In blackwater rivers, the dFe concentration and yield were much higher than the records from Rajang River. It is the same magnitude with the Rajang dFe flux, suggesting that the dFe input were considerable in blackwater rivers. Malaysia hosts peatland area about 25,889 km², the dFe flux can be (6.6±3.0)×10⁶ kg yr⁻¹ on the basis of the yield from the Maludam River. Consequently, the blackwater rivers contributed 10 times greater dFe than the Rajang River to the coastal zone in Malaysia, even though their discharges are small (Milliman and Farnsworth, 2011). This terrestrial dFe may play an important role in supporting primary producers in the adjacent ocean (Breitbarth et al., 2009; Laglera and Berg, 2009).

The concentration and yield of dFe varied among tropical rivers as shown in Fig. 5. Compared with subtropical rivers, like the Changjiang (Zhu et al., 2018) and the Mississippi River (Shiller, 1997; Stolpe et al., 2010), the tropical rivers contributed a great amount of dFe, such as the Amazon River (Aucour et al., 2003; Bergquist and Boyle, 2006) and the Congo River (Coynel et al., 2005; Dupré et al., 1996). For rivers hold a similar discharge rate and drainage area with the Rajang River, like the Fraser River, a temperate river in Canada, dFe concentrations and yield was significantly lower than that derived from the Rajang River (Cameron et al., 1995). One reason for the high concentration and yield in tropical rivers likely results from intensive weathering, leaching of the rocks and sediments, and abundant plantations under high temperature and heavy precipitations (Bergquist and Boyle, 2006; Fantle and Depaolo, 2004). Compared with other tropical rivers, such as the Amazon River and the Congo River, the dFe concentration in the Rajang River was similar, however dFe yield was lower in the Rajang River. This may be related to the difference of plantation types (Aucour et al., 2003; Coynel et al., 2005; Dupré et al., 1996). The peatland soils in the Rajang Estuary may contribute to the higher dFe yield, as the Niger River passing through a dry savanna (Picouet et al., 2002). Different from the Niger River, the Senaga River drains from a savannah-rainforest area, and contains a considerable amount of SPM, similar to the Rajang River. The dFe yield was comparable with the Rajang River. As for some small tropical rivers, like the Swarna River (Tripti et al., 2013), the Nyong River (Olivié-Lauquet et al., 1999), the Periyar River (Maya et al., 2007) and the Chalakudy River (Maya et al., 2007), the dFe concentration was similar to the Rajang River, but with higher dFe yields and DOC concentrations. In these small tropical rivers, the drainage basins were covered with organic matter enriched sediments, which may be a great source of dFe.

In blackwater rivers, the dFe concentration and yield were much higher than the records from Rajang
River. The high concentration of DOM is likely to be the main reason of high dFe contents in the blackwater rivers, such as the situations in the Kiiminkijo River (Heikkinen, 1990), the Tannermoor River (Krachler et al., 2005), the Halladale River (Krachler et al., 2010), the Bebar River (Gastaldo, 2010), and the Taieri River (Hunter, 1983) (Fig. 5b). The human impacts, such as agricultural activities and the plantations of oil palm, may also contribute to a bulk of dFe to the blackwater rivers.

5. Conclusions
In this study, dFe was investigated in the Rajang River and three blackwater rivers in Sarawak, Malaysia. The conclusions are as follow:

1. There was a significant seasonal variation of dFe concentration in the Rajang freshwater with a higher dFe concentration in the wet season, likely due to the increased leaching and terrestrial erosion. The dFe removal was intensive in low salinity area (salinity<15) of the Rajang Estuary due to the salt-induced flocculation and absorption onto the SPM. On the contrary, dFe tended to be conservative in the high salinity area (salinity>15), which may be due to the binding between dFe and the organic matter. In addition, there were significant additions of dFe in some tributaries due to the desorption of SPM and anthropogenic inputs.

2. The concentration of dFe in the blackwater rivers was 3-10 times higher than that of the Rajang River, which was related to the contribution of peatland soil. Anthropogenic activities in the watershed also influenced the dFe concentration in blackwater rivers. Different from the pattern observed in the Rajang River, there wasn’t remarkable dFe removal in blackwater river estuaries.

3. The dFe yield in blackwater rivers was much higher than that of the Rajang River. This result indicated that the dFe flux from blackwater rivers can be crucial for coastal zones in Malaysia. This study improved the understanding of dFe distribution in the Rajang River and confirmed its regional influence. In addition, we provided the direct evidence that blackwater rivers had an extremely high yield of dFe. Furthermore, anthropogenic activities may have a critical impact on the concentration and distribution of dFe in these tropical rivers in Malaysia.

Acknowledgment
The present study was kindly funded by the National Natural Science Foundation of China (41476065). Further funding was provided under the MOHE FRGS 15 Grant
(FRGS/1/2015/WAB08/SWIN/02/1), SKLEC Open Research Fund (SKLEC-KF201610) and Overseas Expertise Introduction Project for Discipline Innovation (111 Project, B08022). We would like to thank the Sarawak Forestry Department and Sarawak Biodiversity Centre for permission to conduct collaborative research in Sarawak waters under permit numbers NPW.907.4.4 (Jld.14)-161, Park Permit No WL83/2017, and SBC-RA-0097-MM. Thanks to Lukas Chin and the “SeaWonder” crew for their support during the cruises. Technical support by Dr. Patrick Martin and Dr. Gonzalo Carrasco at Nanyang Technological University during the cruises and Ms. Yun Xue, Ms. Shuo Jiang and Ms. Wanwan Cao at East China Normal University in the laboratory analysis are also gratefully acknowledged.

References

Boyd, P. W. and Ellwood, M. J.: The biogeochemical cycle of iron in the ocean, Nature Geoscience,
3, 675, 2010.

Heikkinen, K.: Seasonal changes in iron transport and nature of dissolved organic matter in a humic
river in northern Finland, 1990.

Jiann, K.T., Santschi, P. H., and Presley, B. J.: Relationships between geochemical parameters (pH, DOC, SPM, EDTA Concentrations) and trace metal (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) concentrations in river waters of texas (USA), Aquatic Geochemistry, 19, 173-193, 2013.

Krachler, R., Jirsa, F., and Ayromlou, S.: Factors influencing the dissolved iron input by river water
to the open ocean, Biogeosciences, 2, 311-315, 2005.

Kselik, R. A. L. and Liong, T. Y.: Hydrology of the peat swamp in the Maludam National Park, Betong Division, Sarawak, Alterra, the Netherlands/Forest Department Sarawak and Sarawak Forestry Corporation, Malaysia, 2004.

Martin, J. M., Guan, D. M., Elbaz-Poulichet, F., Thomas, A. J., and Gordeev, V. V.: Preliminary assessment of the distributions of some trace elements (As, Cd, Cu, Fe, Ni, Pb and Zn) in a pristine aquatic environment: The Lena River estuary (Russia), Marine Chemistry, 43, 185-199,

Milliman, J. D. and Farnsworth, K. L.: River discharge to the coastal ocean: runoff, erosion, and delivery to the coastal ocean, 2011.

Morillo, J., Usero, J., and Gracia, I.: Biomonitoring of trace metals in a mine-polluted estuarine system (Spain), Chemosphere, 58, 1421-1430, 2005.

Wetlands International: A quick scan of peatlands in Malaysia, wetlands international, Petaling Jaya, Malaysia, 50 pp., 2010.

Zhu, X., Zhang, R., Wu, Y., Zhu, J., Bao, D., and Zhang, J.: The remobilization and removal of Fe in...
Table 1. Range and average of Salinity (S), pH, suspended particulate matter (SPM), dissolved oxygen (DO), dissolved iron (dFe), and dissolved organic carbon (DOC).

<table>
<thead>
<tr>
<th>River-Time</th>
<th>Station</th>
<th>S</th>
<th>pH</th>
<th>SPM (mg L⁻¹)</th>
<th>DO (mg L⁻¹)</th>
<th>dFe (μmol L⁻¹)</th>
<th>DOC (μmol L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajang-August 2016</td>
<td>28</td>
<td>0-32.0</td>
<td>6.5-8.1</td>
<td>24.2-129</td>
<td>2.7-4.8</td>
<td>0.002-7.3</td>
<td>181-357</td>
</tr>
<tr>
<td>(dry season)</td>
<td></td>
<td>(11.7±12.1)</td>
<td>(7.2±0.5)</td>
<td>(62.3±30.4)</td>
<td>(3.8±0.6)</td>
<td>(2.3±0.9)</td>
<td>(218±78.2)</td>
</tr>
<tr>
<td>Rajang-March 2017</td>
<td>15</td>
<td>0-30.1</td>
<td>6.0-7.1</td>
<td>47.1-327</td>
<td>4.6-7.6</td>
<td>0.004-11.3</td>
<td>98.1-238</td>
</tr>
<tr>
<td>(wet season)</td>
<td></td>
<td>(11.9±12.3)</td>
<td>(7.1±0.7)</td>
<td>(151±70.4)</td>
<td>(6.1±0.7)</td>
<td>(4.6±4.1)</td>
<td>(165±41.8)</td>
</tr>
<tr>
<td>Maludam-March 2017</td>
<td>9</td>
<td>0-20.0</td>
<td>3.7-7.6</td>
<td>0.4-388</td>
<td>1.1-6.8</td>
<td>6.3-23.8</td>
<td>353-4581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5.4±6.1)</td>
<td>(4.6±1.4)</td>
<td>(53.1±121)</td>
<td>(2.7±1.9)</td>
<td>(14.6±6.8)</td>
<td>(3609±1229)</td>
</tr>
<tr>
<td>Sebuyau-March 2017</td>
<td>8</td>
<td>0-13.6</td>
<td>4.3-7.0</td>
<td>0.4-388</td>
<td>1.4-5.9</td>
<td>3.0-33.6</td>
<td>364-2078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5.4±6.1)</td>
<td>(5.2±1.1)</td>
<td>(53.1±121)</td>
<td>(3.2±1.9)</td>
<td>(17.6±12.0)</td>
<td>(1396±671)</td>
</tr>
<tr>
<td>Simunjan-March 2017</td>
<td>6</td>
<td>0-0.4</td>
<td>4.7-6.3</td>
<td>14-481</td>
<td>1.0-2.6</td>
<td>25.8-59.2</td>
<td>818-3121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5.2±0.6)</td>
<td>(135±197)</td>
<td>(1.9±0.7)</td>
<td>(44.2±11.8)</td>
<td>(2157±950)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Concentration of dFe and removal factor (RF) in some rivers.

<table>
<thead>
<tr>
<th>Rivers</th>
<th>Estuary location</th>
<th>Climate</th>
<th>dFe (μmol/L, ‘*’ in nmol/L)</th>
<th>RF (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lena</td>
<td>Russia</td>
<td>arctic</td>
<td>0.54</td>
<td>67.5</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Changjiang</td>
<td>China</td>
<td>subtropical</td>
<td>44.6*</td>
<td>79.1</td>
<td>1, 4</td>
</tr>
<tr>
<td>Jiulongqiang</td>
<td>China</td>
<td>subtropical</td>
<td>17.9*</td>
<td>37.7</td>
<td>5</td>
</tr>
<tr>
<td>Columbia</td>
<td>United States</td>
<td>subtropical</td>
<td>71.4*</td>
<td>72.5</td>
<td>6</td>
</tr>
<tr>
<td>Garonne</td>
<td>France</td>
<td>temperate</td>
<td>0.1</td>
<td>59.7</td>
<td>7</td>
</tr>
<tr>
<td>Merrimack</td>
<td>United States</td>
<td>temperate</td>
<td>3.7</td>
<td>44.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Amazon</td>
<td>Brazil</td>
<td>tropical</td>
<td>1.9</td>
<td>77.8</td>
<td>1.9, 10</td>
</tr>
<tr>
<td>Congo</td>
<td>Congo</td>
<td>tropical</td>
<td>3.2</td>
<td>57.3</td>
<td>11, 12</td>
</tr>
<tr>
<td>Rajang</td>
<td>Malaysia</td>
<td>tropical</td>
<td>5.5</td>
<td>98</td>
<td>1, this study</td>
</tr>
</tbody>
</table>

* RF is the ratio of the integration of dFe concentration versus salinity and the product of theoretical dilution line intercepts (Hopwood et al., 2014).

* dFe yield is a ratio of dFe flux and drainage area.

Figure 1. Locations of sample stations in Malaysia (a), including the Rajang River, the Maludam River, the Sebuyau River, and the Simunjan River (b). In figure (c) and (d), the green layer indicates oil palm plantations, based on the dataset from Global Forest Watch (http://gfw2-data.s3.amazonaws.com/country/mys/zip/mys_oil_palm.zip).
Figure 2. Spatial distributions of salinity (a) (f), suspended particulate matter (SPM) (b) (g), dissolved oxygen (DO) (c) (h), pH (d) (i), dissolved iron (dFe) (e) (j) in the Rajang River in August 2016 and March 2017.
Figure 3. Dissolved iron (dFe) correlation with salinity (S) (a), suspended particulate matter (SPM) (b), dissolved organic carbon (DOC) (c), dissolved oxygen (DO) (d), and pH (e) in Rajang estuary. The solid lines were the linear regressions between dFe and other factors, and the colors of the lines were coincident with the data points in different salinity range.
Figure 4. The correlations between distance (a), salinity (S) (b), dissolved organic carbon (DOC) (c), and dissolved iron (dFe) in blackwater rivers: Maludam, Sebuyau and Simunjan. The solid lines were the linear regressions between dFe and other factors, and the colors of the regression lines were coincident with the data points.

*We adopted the station at the upper stream as distance = 0, and the downstream direction as positive.
Figure 5. The concentration and yield of dFe in large rivers (a) and blackwater rivers (b).

Figure 6. A schematic representation of dFe biogeochemical behaviors in the Rajang River (a) and blackwater rivers (b)