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[bookmark: _Toc506920659][bookmark: _Toc29317][bookmark: _Toc520101974][bookmark: OLE_LINK128][bookmark: OLE_LINK127]1. Harvested trees
[bookmark: _Toc520101975][bookmark: _Toc20402][bookmark: _Toc506920660]1.1 Plot setup 
The purpose of plot selection was to establish fixed and permanent plots representing regional Eucalyptus growing conditions and to provide harvested tree data on the single-tree scale with adequate consideration of spatial heterogeneity. Patches were selected first and met the following six conditions: (1) patch records were available from FMPI data for 2009; (2) forest stands were classified as timber or commercial forest; (3) forest patches were disturbance-free during the previous seven years, including but not limited to logging, fire, and pests; (4) forest patches were not replanted; (5) patches contained closed canopy forests; and (6) patches were monocultures, not mixed stands. Based on these six conditions, 2,980 Eucalyptus patches were selected from the FMPI data and fixed and permanent plots were established. The 2,980 selected patches were divided into ten groups based on forest age. Each stand group had been planted at the same time. We calculated the mean basal area for each group and used this as the basis for fixed plot selection, which was obtained from specified plot design and sampling procedures. In parallel, we considered site conditions, forest use, and forest origin (natural vs. man-made), and subsequently established 30 permanent square plots (20 m × 20 m). We recorded fixed-plot conditions by assigning a code to each fixed plot and recorded environmental conditions, including the following direct and indirect attributes: age, community structure, canopy density, and understory shrub conditions. Finally, a full tree survey was conducted in each fixed plot to obtain the following: DBH for every tree ≥ 8 cm in diameter, tree height, and other tree attributes. 
[bookmark: _Toc20173][bookmark: _Toc506920661][bookmark: _Toc520101976]1.2 Selection and cutting of standard wood
Standard wood was selected following a full tree survey. The following selection criteria were used: (1) Wood was located within the plot; stems were representative of the plot, with no disturbances (e.g., pests, fire, or anthropogenic activities); and the wood was healthy. (2) Based on the full tree survey data, a tree sampling method was used to calculate average basal area and three trees closest to the average values were selected (i.e., standard trees). These standard trees were cut down and the average biomass was calculated and multiplied by the stems per unit area to obtain the total Eucalyptus biomass per unit area.
[bookmark: _Toc520101977][bookmark: _Toc9541][bookmark: _Toc506920662][bookmark: OLE_LINK7]1.3 Harvested tree measurements
Aboveground biomass was divided into three tissue types: stems, branches, and foliage. Four to six branches were systematically sampled from each tree at regular intervals over the entire crown length. Foliage was collected from each of the sampled branches. Stems were sectioned into meter-long pieces using a chainsaw.
The fresh weight of three tissue types was obtained in the field and 500 g of each tissue type (i.e., stems, branches, and foliage) were placed in plastic bags. The samples were stored under refrigeration during transportation to the laboratory. Fresh samples were oven dried at 85 °C to determine the constant dry weight.
[bookmark: _Toc520101978][bookmark: _Toc8048][bookmark: OLE_LINK139][bookmark: OLE_LINK138][bookmark: _Toc520101982]2. Introduction to machine learning
[bookmark: _Toc520101983][bookmark: _Toc506920664][bookmark: _Toc3430][bookmark: OLE_LINK15]2.1 Support vector machines for regression
[bookmark: OLE_LINK10]A support vector machine (SVM) is a type of categorized algorithm that improves generalized machine learning ability by minimizing structural risks in order to minimize empirical risk and confidence intervals. In this way, it achieves adequate statistical trends from a limited number of samples. Compared with traditional machine learning methods, SVM adopts the principle of minimizing structural risks. Along with minimizing sample point errors, SVM simultaneously narrows the upper bound of generalized error in the model to improve the generalization ability of the model and to solve the problems of excessive model learning, nonlinearity, and dimensionality (Ukil, 2002).
[bookmark: _Toc506920665]The SVM classification model was trained using a C-classification method, with longitude, DBH, tree height, and forest age as the selection characteristics and the biomass data from the 30 plots as model training samples. The Gaussian inner product function served as the kernel function.
[bookmark: _Toc28308][bookmark: _Toc520101984]2.2 Radial basis function artificial neural networks 
[bookmark: OLE_LINK13][bookmark: OLE_LINK28][bookmark: OLE_LINK31][bookmark: OLE_LINK32][bookmark: _Toc506920666][bookmark: _Toc520101985]The basic components of radial basis function artificial neural networks (RBF-ANNs) include an input layer, a hidden layer, and an output layer, which are able to provide the best approximation for nonlinear functions and optimal global performance (Elanayar and Shin, 1994). The change from the input layer space to the hidden layer space is nonlinear, whereas the spatial transformation from the hidden layer to the output layer space is linear. The RBF-ANN has good generalizability, requires fewer calculations, and has a faster learning speed than other machine learning algorithms. Therefore, the RBF-ANN avoids lengthy iterative calculations, such as those found in the learning algorithms of back propagation neural networks, and the possibility of falling into a local extremum. RBF-ANN is widely used in many fields, including meteorology (Nath et al., 2016), soil (Zakian, 2017), vegetation (Hilbert and Ostendorf, 2001), and engineering control (Sarimveis et al., 2004).
[bookmark: _Toc18569]2.3 Random forest
[bookmark: OLE_LINK14]The random forest (RF) algorithm model is a relatively new machine learning technique and data mining method developed by Breiman in 2001. It is a modern classification and regression technology that combines self-learning technologies (Breiman, 2001). In order to achieve a better performance than individual classifiers, combinatorial learning approaches integrate several individual classifiers to determine the final classification of a case. If a single classifier is considered as a decision maker, the method of combinatorial learning is equivalent to a decision-making process involving multiple decision makers.
[bookmark: _Toc506920667][bookmark: _Toc520101986][bookmark: _Toc1562][bookmark: OLE_LINK42][bookmark: OLE_LINK41][bookmark: OLE_LINK223][bookmark: OLE_LINK220][bookmark: OLE_LINK222][bookmark: OLE_LINK221]3. Introduction to P-BSHADE
[bookmark: OLE_LINK54][bookmark: OLE_LINK55][bookmark: _Toc24392][bookmark: _Toc506920668]3.1 Overview of P-BSHADE
P-BSHADE is an extension of the BSHADE method, which stands for the best linear unbiased estimation (BLUE) model for biased-spatial-location data (Hu et al., 2013). With the BSHADE model, the spatial correlation and heterogeneity of the target data are added into the model using prior knowledge (such as forest AGB). In addition, through rectification of sample points, the BLUE model can estimate the target subjects. The strategy of the algorithm is to transform the problem into one of solving for the extremum of a multivariate function with constraint conditions, followed by using the Lagrange multiplier method and the overall estimate to acquire the corresponding parameters (Wang et al., 2011) (i.e., each sample in this method is given a certain weight, so that the variance between each sample and the true value is minimized to achieve rectification). 
Based on the BSHADE method, P-BSHADE is a BLUE-based interpolation method that considers both temporal and spatial heterogeneity. It can use biased samples to deduce the corresponding attributes of regions with missing samples. Therefore, the P-BSHADE model includes the following characteristics and assumptions: (1) the spatial distribution of the target data (such as temperature and forest AGB) is heterogeneous and (2) the correlations and differences among the target data in different forests (or sites) is included in the operation of the model (Xu et al., 2013). The performance of the P-BSHADE method has been tested using average annual temperature data in China from 1950 to 2000 (Xu, 2013). 
[bookmark: _Toc506920669][bookmark: OLE_LINK67][bookmark: OLE_LINK66][bookmark: OLE_LINK68][bookmark: OLE_LINK69][bookmark: _Toc393]3.2 P-BSHADE methods
[bookmark: OLE_LINK203][bookmark: OLE_LINK204][bookmark: OLE_LINK205]a. Objective
The objective is to interpolate the AGB data of the target sample plot (in the modeling process) or forest patch (in the model application process) using data acquired from other sample plots or forest patches. Here, we introduce the method used to interpolate the AGB data in the target sample plots. A theoretical description is expressed as:
[bookmark: OLE_LINK156][bookmark: OLE_LINK157]                           (A.1)
[bookmark: OLE_LINK136][bookmark: OLE_LINK135][bookmark: OLE_LINK137]where  is the estimated AGB of the jth sample plot by P-BSHADE ,  is the reference AGB of the ith sample plot ,  is the weight (contribution) of the ith reference sample plot AGB to the jth sample plot AGB to be interpolated (when ; when ). As expected, the estimates of the two properties in Eq. (1) are unbiased:
[bookmark: OLE_LINK164][bookmark: OLE_LINK165]                             (A.2)
Minimum estimation variance is expressed as:
                    (A.3)
where  is the statistical expectation and is the estimated AGB of the target plot.
[bookmark: OLE_LINK174][bookmark: OLE_LINK172][bookmark: OLE_LINK173][bookmark: OLE_LINK175][bookmark: OLE_LINK176]b. Ratio between data from the target sample plot and other sample plots
The ratio between data from the target sample plot and other sample plots is one of the most important inputs for estimating target sample plot AGB and is an index of heterogeneity in the AGB spatial distribution. The relationship between data from the target sample plot and the other sample plots is expressed as:
[bookmark: OLE_LINK192]                          (A.4)
In most cases, the AGBs of any two plots are not equal, and the relationship between them can be further expressed as the relative bias between the mathematical expectation of  and . Considering Eq. (1), Eq. (4) can be written as:
[bookmark: OLE_LINK200][bookmark: OLE_LINK199]                         (A.5)
This equation is generally valid for nonhomogeneous conditions. Clearly, the determination of  requires the coefficients   to be calculated, which is addressed in the following section.

c. Weight estimation
A main challenge in estimation is finding the weights, , that satisfy the unbiased condition and that minimize estimation variance:
           (A.6)

These weights can be calculated by minimizing the estimation variance and taking unbiasedness into account:

          (A.7)

where  is a Lagrange multiplier. The minimized variance in the estimation error can then be written as:
   (A.8)
[bookmark: _Toc10010]4 Forest Management and Planning Inventory (FMPI) data
The FMPI data for the entire study area were provided by the Forestry Department of Fujian Province, China. This forest inventory used large-scale sampling methods to collect detailed information about the characteristics and conditions of each forest type. The FMPI data consisted of irregular polygons that were drawn based on the structured characteristics of the forest. Each polygon was homogeneously structured. In this study, we selected FMPI data for Eucalyptus plantation forests (2,980 patches).
In every patch, all trees with a diameter at breast height (DBH) greater than 8 cm were measured. The data contained patch area, tree age (which was the same for all trees in a given patch because they were planted at the same time), plantation density, mean DBH, mean tree height, and total volume of each patch. All variables were measured within each forest patch and the average values were used as the factor value for each patch. The accuracy of forest patch variables was tested using systematic sampling. A 95% sampling precision was required. Table B.1 lists the statistical description of the forest patch data.
[bookmark: _Toc4190]5 Robustness of combined models
We established 22 independent sample plots (Figure C.2) and conducted non-destructive measurements of each tree in July 2019. We then repeated the plot-level model construction workflow for these data and evaluated the models. The independent sample plots were widely distributed throughout the eastern section of the study area.
[bookmark: _Toc29678]6 Model application and upscaling of AGB mapping
We applied the chosen optimal model to each Eucalyptus forest patch (2,980 patches) and estimated the total AGB for all patches in the study area. We regarded the irregular polygon forest patches from the FMPI as a homogenous sample plot and applied the optimal plot-level model to upscale forest AGB. We compared this upscaled forest AGB with the AGB map obtained by an allometric model and calculated the relative error (RE) (see Equation A.9) of AGB between the two methods. 
                   (A.9)
where  represents the predictive AGB value of each irregular polygon forest patch by the optimal model and  is the predicted AGB value of each irregular polygon forest patch by the allometric model.
The allometric model was expressed as Equation, where DBH is the diameter at breast height (m), H is the tree height (m), and a and b are constants. This model is acknowledged as a fast, simple, and basic method to calculate regional AGB. In our study, we used the AGB, mean H, and mean DBH of the 30 sample plots to create the plot-level allometric model.
[bookmark: OLE_LINK20][bookmark: OLE_LINK21]Figure C.3 shows the spatial distribution of the AGBs predicted by the RF & P-BSHADE model. The range of AGBs was 7.54-89.93 Mg·ha−1, with an average AGB of 41.21 Mg·ha−1, a median AGB of 43.53 Mg·ha−1, a standard deviation of 18.83 Mg·ha−1, and a coefficient of variation of 45.69%. 
[bookmark: OLE_LINK19][bookmark: OLE_LINK26][bookmark: _Toc3774]The total AGB of the Nanjing area (2,980 forest patches) estimated by RF & P-BSHADE was 122,812.1 Mg·ha−1 and that estimated by the allometric model was 123,021.5 Mg·ha−1. The relative percent difference in total AGB between the two methods was 0.17%. Meanwhile, the MRE of AGB between the two methods ranged from 0.04% to 99.8%, with an average MRE of 19.93%.
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[bookmark: _Toc520101991]
[bookmark: _Toc506920673][bookmark: _Toc520101993]
[bookmark: _Toc23864]Table B.1 Statistical description of forest patch data.

	
	Number of patches
	Minimum
	Maximum
	Mean
	Standard deviation

	Age (years)
	2,980
	1
	51
	5.05
	2.42

	Stand density (stems/ha)
	2,980
	135
	3450
	1377.63
	241.10

	DBH (cm)
	2,980
	5.0
	60.0
	12.30
	3.55

	Tree height (m)
	2,980
	1.5
	48.50
	13.40
	3.99


Note: Of the 2,980 forest patches, for which the maximum age was 51 years, only 24 forest patches were older than 10 years, all of which were identified as mature forest.

[bookmark: _Toc520101994][bookmark: _Toc506920674][bookmark: _Toc22330]Table B.2 Tree structures for calculating the biomass of the 90 harvested trees.

	Age
	DBH
	Height
	Individual biomass (kg)
	
	Age
	DBH
	Height
	Individual biomass (kg)

	(yr)
	(cm)
	(m)
	Aboveground
	
	(yr)
	(cm)
	(m)
	Aboveground

	1
	3.3
	4.3
	1.9376
	
	6
	15.0
	20.8
	82.2273

	
	3.0
	4.0
	2.2500
	
	
	15.3
	20.8
	99.3969

	
	3.2
	4.3
	1.8514
	
	
	15.0
	21.1
	102.5718

	
	2.1
	3.3
	1.1061
	
	
	15.3
	19.9
	97.7377

	
	2.1
	3.4
	1.0697
	
	
	15.0
	21.2
	93.3897

	
	2.4
	3.3
	1.3143
	
	
	14.5
	20.8
	89.4676

	
	3.4
	4.6
	2.2976
	
	
	14.6
	19.4
	81.7034

	
	3.3
	4.7
	2.3782
	
	
	15.0
	19.4
	81.8693

	
	3.3
	4.5
	2.0494
	
	
	14.6
	20.1
	87.1974

	2
	7.6
	10.1
	14.4861
	
	7
	18.0
	20.4
	119.9316

	
	8.0
	8.5
	14.7833
	
	
	17.8
	20.8
	106.3167

	
	8.1
	9.9
	14.3030
	
	
	18.0
	20.4
	143.0096

	
	7.2
	10.5
	12.1682
	
	
	16.7
	20.0
	113.6738

	
	7.0
	10.4
	11.7154
	
	
	16.6
	20.9
	99.6045

	
	7.0
	10.8
	11.1324
	
	
	16.4
	21.4
	98.7499

	
	7.2
	9.2
	12.3033
	
	
	16.9
	19.8
	102.7874

	
	7.2
	9.5
	11.0665
	
	
	16.9
	20.2
	97.2996

	
	7.0
	8.1
	10.2483
	
	
	15.6
	20.3
	89.5590

	3
	6.1
	6.3
	5.5350
	
	8
	14.3
	21.1
	89.6489

	
	7.0
	6.9
	8.8532
	
	
	14.5
	19.8
	72.6971

	
	6.4
	6.8
	7.5987
	
	
	14.0
	19.2
	90.9861

	
	6.2
	7.6
	6.3156
	
	
	16.4
	19.7
	99.4468

	
	7.2
	7.9
	9.5706
	
	
	16.4
	20.1
	97.8657

	
	7.2
	7.7
	9.7457
	
	
	17.2
	21.2
	112.4650

	
	6.1
	6.9
	6.4039
	
	
	14.0
	17.7
	63.5059

	
	6.2
	9.4
	9.2803
	
	
	15.0
	20.3
	81.3824

	
	5.4
	6.6
	5.7853
	
	
	14.9
	19.3
	84.1050

	4
	11.1
	18.6
	36.7169
	
	9
	16.9
	25.5
	110.3010

	
	12.1
	17.3
	50.7412
	
	
	17.2
	25.1
	146.4738

	
	11.8
	17.3
	44.8078
	
	
	17.5
	24.5
	130.5710

	
	8.9
	11.7
	16.5647
	
	
	16.1
	23.5
	117.4427

	
	9.2
	17.4
	27.9658
	
	
	15.8
	22.9
	106.7083

	
	8.8
	15.2
	24.5316
	
	
	15.9
	23.3
	112.0993

	
	13.2
	17.9
	56.0009
	
	
	18.4
	26.6
	168.4229

	
	13.1
	18.2
	58.7273
	
	
	18.4
	24.7
	144.5210

	
	12.4
	17.8
	51.5655
	
	
	18.3
	26.0
	167.0830

	5
	13.2
	19.7
	62.9911
	
	10
	18.2
	27.0
	136.6728

	
	13.9
	16.5
	68.7846
	
	
	18.5
	25.0
	163.4031

	
	12.9
	16.1
	58.5322
	
	
	18.2
	26.2
	150.9330

	
	13.4
	19.3
	81.9325
	
	
	14.0
	18.5
	69.9841

	
	13.4
	19.4
	84.0987
	
	
	13.9
	22.1
	76.9977

	
	13.1
	18.9
	73.2317
	
	
	13.9
	24.0
	91.4171

	
	13.4
	19.0
	70.4283
	
	
	17.6
	23.8
	118.4468

	
	12.9
	17.1
	70.5207
	
	
	17.6
	22.2
	149.1616

	
	13.8
	18.6
	96.5537
	
	
	17.6
	25.6
	138.2509





[bookmark: _Toc12886][bookmark: _Toc520101995]Table B.3 Construction of the optimal model.

	Leave-one-out
	Model 1
	Model 2
	…
	Model 7

	Validation data            (Plot AGB)
	Training data                            (Plot AGB and predictor variables)
	Simulated data1            (Simulated AGB 1)
	Simulated data2            (Simulated AGB2)
	Simulated data            (Simulated AGB)
	Simulated data7            (Simulated AGB7)

	[bookmark: OLE_LINK4]Plot ID
	Plot ID
	Plot ID
	Plot ID
	Plot ID
	Plot ID

	1
	2-30
	1 S1
	1 S2
	…
	1 S7

	2
	1,3-30
	2 S1
	2 S2
	…
	2 S7

	3
	1-2,4-30
	3 S1
	3 S2
	…
	3 S7

	…
	…
	…
	…
	…
	…

	29
	1-28,30
	29 S1
	29 S2
	…
	29 S7

	30
	1-29
	30 S1
	30 S2
	…
	30 S7

	AGB (group M)
	
	AGB (group1)
	AGB (group2)
	…
	AGB (group7)

	
	
	
	
	
	

	
	
	MAE1, MRE1 and RMSE1
	MAE2, MRE2 and RMSE2
	…
	MAE7, MRE7 and RMSE7



[bookmark: _Toc506920675][bookmark: _Toc6477]Table B.4 Statistical description of AGB and selected variables for sample plots.

	Variables
	Mean
	Median
	Standard deviation
	Coefficient of variation
	Minimum
	Maximum

	Aboveground biomass, AGB (t/ha)
	47.34
	46.64
	34.46
	0.73
	1.02
	135.79

	Longitude
	117.48
	117.47
	0.02
	0.13*10-5
	117.446
	117.503

	[bookmark: OLE_LINK3][bookmark: OLE_LINK2]Diameter at breast height, DBH (cm)
	12.29
	13.19
	4.48
	0.36
	2.19
	17.99

	Tree height, h (m)
	12.98
	14.42
	4.72
	0.36
	2.83
	18.23

	Age (years)
	5.5
	5.5
	2.92
	0.53
	1
	10




[bookmark: _Toc506920676][bookmark: _Toc520101996][bookmark: _Toc16497][bookmark: OLE_LINK85][bookmark: OLE_LINK84][bookmark: OLE_LINK6][bookmark: OLE_LINK5]Table B.5 List of model accuracy indexes and their definitions.

	Model accuracy index
	Description
	Interpretation

	[bookmark: OLE_LINK1]Mean Absolute Error
(MAE)
	Mean absolute error is the mean of the absolute deviations of all individual measurements from arithmetical mean values.
	This represents the mean of absolute deviations of the true biomass of the 30 sample plots from the average biomass of the 30 sample plots obtained by a given prediction method. Because the deviations are expressed in absolute values, the mean absolute error is not cancelled out by positive and negative numbers. Therefore, the mean absolute error can better reflect the actual prediction error.

	Mean Relative Error
(MRE)
	Mean relative error is the average value of the relative error, which is usually expressed as the absolute value (i.e., the absolute value of mean relative error). The relative error is the ratio of the absolute error to the measured value or the average of multiple measurements.
	This represents the average value of the ratio of the absolute error (the absolute value of the difference between the true value and the simulated value) for the biomass of each of the 30 sample plots to the predicted values. It is used to analyze the accuracy and precision of the results.

	Root Mean Square Error
(RMSE)
	Square root of the ratio between the square of the deviation of the observed value from the true value and n, the number of observations. In actual measurement, the number of observations, n, is always limited and the true value can only be substituted by the most reliable (best) value.
	This represents the average of the square root of the following value: for real and simulated values of the biomass of each of the 30 sample plots, the square of their difference is divided by 30. Because the results are very sensitive to extremely large or small errors in a set of measurements, it can better reflect the precision of the measurement.

	The Normalized Root Mean Square Error (nRMSE)
	The normalized root mean square error is the RMSE divided by the average of the observed values of a variable being predicted.
	When comparing the modelling accuracies of different studies presenting different forest types, nRMSE is more meaningful because the intrinsic AGB variability is very different between drastically different forest types (e.g., a tropical rainforest (large) and a Eucalyptus plantation (small)).


[bookmark: OLE_LINK92][bookmark: _Toc506920677][bookmark: OLE_LINK91][bookmark: _Toc520101997][bookmark: _Toc10262]Table B.6 Leave-one-out cross-validation for machine learning (support vector machine, artificial neural network, and random forest), spatial statistical analysis (P-BSHDE), and results from paired combinations of the two types.

	Method
	MAE
	MRE
	RMSE
	nRMSE

	[bookmark: OLE_LINK105][bookmark: OLE_LINK104][bookmark: OLE_LINK103]SVM
	11.168 
	0.2479
	10.388
	0.2182

	[bookmark: OLE_LINK102]ANN
	12.149 
	0.267
	10.388
	0.2182

	RF
	10.155 
	0.259 
	9.429
	0.1980

	P-BSHADE
	18.371 
	0.391
	14.077
	0.2957

	SVM-＆P-BSHADE
	6.883 
	0.125
	6.304
	0.1324

	ANN-＆P-BSHADE
	10.136 
	0.205
	9.633
	0.2023

	RF-＆P-BSHADE
	5.679 
	0.130
	5.299
	0.1113


[bookmark: _Toc520101998][bookmark: _Toc506920678]

[bookmark: _Toc18023]S3
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[bookmark: _Toc520101999][bookmark: _Toc506920679][bookmark: _Toc26215]Figure C.1 Spatial autocorrelation report.
[image: ]
[bookmark: _Toc25983]Figure C.2 The location of experimental sample plots (blue dots) and independent sample plots (black dots).
[image: ]
[bookmark: _Toc6947]Figure C.3 Upscaled AGB map produced using RF & P-BSHADE.
[image: ]
[bookmark: _Toc12511]Figure C.4 Comparison of upscaling by RF & P-BSHADE with upscaling by the allometric model. The green dashed line corresponds to a 1:1 relationship; each dot represents an individual forest patch; the solid yellow line indicates the trend line for the dots.
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