Supplementary Material

Plot Characteristics

Data from the Global Ecosystem Monitoring (GEM) network were used from seven one-hectare permanent sample plots at four locations across the east and west Amazon (Table 1). Differences between soil and species composition at each location were sufficient to avoid significant pseudoreplication effects (1, 2). The two north eastern plots (CAX04 and CAX06) are located in the Caxiuanã National Forest in Pará State, Brazil. These relatively infertile, slow-growing but high biomass plots (~ 200 MgC ha$^{-1}$) are typical of the eastern Amazon. Plots typically experience a long but modest intensity dry season from July to December, when rainfall does not exceed 100mm month$^{-1}$ (3, 4). CAX04 is located on sandy loam, vetic acri soil (all soil classifications applied here are World Reference Base Classification (FAO 2014)), whereas CAX06 occupies a clay-rich ferralsol, causing species composition to differ between plots (2, 5). The south western Peruvian plots (TAM05 and TAM06) of the Tambopata Biological Reserve in the Madre de Dios region are subject to a moderate dry season from May to September (6). The region’s geomorphology is a result of it being situated on old floodplains of the Tambopata River (7). TAM05 is located on a Pleistocene terrace (7), whilst the palm rich forest of TAM06 is located on a Holocene floodplain (6). Soils at TAM05 are relatively infertile cambisols compared to the more fertile alisols found at TAM06 (8). The Bolivian plots (KEN01 and KEN02) located in the Hacienda Kenia in Guarayos Province, Santa Cruz, experience a strong dry season between April and September and occupy the transition zone between humid Amazonian forests and chiquitano dry forests (9). Both plots are situated on relatively fertile sandy loam cambisols (2), though soil depth varies, with KEN01 positioned on deeper soil in a slight topographic depression (Table 3), whilst KEN02 occupies more shallow soil over Precambrian rock (7), leading to a difference in species composition between plots (9). The south eastern plot of the Fazenda Tanguro, Mato Grosso State was subject to an intense dry season between May and September. The old growth forest plot sits close to the dry forest-savannah transition zone (2) and occupies relatively infertile sandy ferralsol soil (7).
SPA Leaf Respiration Model

The Reich, Tjoelker (10) model predicting leaf respiration as a function of leaf N content was integrated into SPA. In align with the approach taken by Atkin, Bloomfield (11), we also adjust the baseline respiration rate as a function of the temperature during the warmest quarter:

\[b = 1.025 - 0.036 \ WQ \]

\[\text{leaf}_{\text{resp}} = 10^b \ N_{\text{leaf}}^{1.411} \]

\[\text{leaf}_{\text{resp, t}} = 2.0^{0.1(T_{\text{air}} - 20)} \ \text{leaf}_{\text{resp}} \]

\[\text{leaf}_{\text{resp, total}} = C_{\text{leaf}} \times 2 \times \text{leaf}_{\text{resp, t}} \]

Where;

- \(b \) is a nitrogen scalar to account for differences in \(WQ \), \(WQ \) is the temperature (°C) during the warmest quarter,
- \(\text{leaf}_{\text{resp}} \) is the respiration rate of leaves (nmol g\(^{-1}\) leaf mass s\(^{-1}\)), \(N_{\text{leaf}} \) is the nitrogen content of the leaf (mmol g\(^{-1}\) leaf mass),
- \(\text{leaf}_{\text{resp, t}} \) is the temperature adjusted respiration rate (nmol g\(^{-1}\) leaf mass s\(^{-1}\)),
- \(T_{\text{air}} \) is air temperature (°C),
- \(\text{leaf}_{\text{resp, total}} \) is the total leaf respiration (nmol g\(^{-1}\) s\(^{-1}\)), and
- \(C_{\text{leaf}} \) is the foliar C stock (gC m\(^{-2}\)).

SPA Non-Structural Carbon Pool

For the purpose of the presented study, LAI was forced in model runs. Where leaf NPP requirements could not be met by daily C assimilated, leaf growth was supplemented by the labile carbon pool as follows:

\[\text{NPP}_i = \text{GPP}_i - \text{Ra}_i \]

\[\text{NPP}_{\text{leaf, i}} = (\text{LAI}_i - \text{LAI}_{i-1}) \times \text{LCA} \]

If \(\text{NPP}_{\text{leaf, i}} > \text{NPP}_i \), then;
\[NSC_i = NSC_{i+1} - (NPP_{\text{leaf}} - NPP_i) \]

If \(NSC_i < NSC_{i+1} \) then:

\[NPP_{i+1} = NPP_{i+1} - NSC_{\text{frac}} \]

\[NSC_{i+1} = NSC_i + NSC_{\text{frac}} \]

Where:

- \(NPP \) is modelled net primary productivity,
- \(GPP \) is modelled gross primary productivity,
- \(Ra \) is modelled autotrophic respiration,
- \(NPP_{\text{leaf}} \) is modelled leaf net primary productivity,
- \(LAI \) is the field estimated leaf area index,
- \(LCA \) is the field estimated leaf C content per unit leaf area,
- \(NSC \) is the non-structural carbon pool,
- \(NSC_{\text{frac}} \) is the fraction of NPP redirected towards the NSC pool, and
- \(i \) is the daily timestep.

References

