Saltwater reduces CO₂ and CH₄ production in organic soils from a coastal freshwater forested wetland.

Kevan J. Minick*, Bhaskar Mitra, Asko Noormets, John S. King

*Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA

bDepartment of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843, USA

*Corresponding author: email kjminick@ncsu.edu; phone (919) 630-3307; fax NA

Keywords: extracellular enzyme activity, peat, methanogenesis, microbial biomass carbon, 13C
Abstract A major concern for coastal freshwater wetland function and health is saltwater intrusion and the potential impacts on greenhouse gas production. Coastal freshwater wetlands are likely to experience increased hydroperiod with rising sea level, as well as saltwater intrusion. These potential changes to wetland hydrology may also alter forest structure and lead to a transition from forest to shrub/marsh wetland ecosystems. Loss of forested wetlands is already evident by dying trees and dead standing trees (“ghost” forests) along the Atlantic Coast of the US, which will result in significant alterations to plant carbon (C) inputs, particularly that of coarse woody debris, to soils. We investigated the effects of salinity and wood C inputs on soils collected from a coastal freshwater forested wetland in North Carolina, USA, and incubated in the laboratory with either freshwater or saltwater (2.5 or 5.0 ppt) and with or without the additions of wood. Saltwater additions at 2.5 ppt and 5.0 ppt reduced CO₂ production by 41 and 37 %, respectively, compared to freshwater. Methane production was reduced by 98 % (wood-free incubations) and by 75-87 % (wood-amended incubations) in saltwater treatments compared to the freshwater treatment. Additions of wood resulted in lower CH₄ production from the freshwater treatment and higher CH₄ production from saltwater treatments compared to wood-free incubations. The δ¹³CH₄-C isotopic signature indicated that in wood-free incubations, CH₄ produced from the freshwater treatment was from the acetoclastic pathway, while CH₄ produced from the saltwater treatments was more likely from the hydrogenotrophic pathway. These results suggest that saltwater intrusion into subtropical coastal freshwater forested wetlands will reduce CH₄ fluxes, but long-term changes in C dynamics will likely depend on how changes in wetland vegetation and microbial function influences C inputs to the soil.
1 Introduction

Sea-level rise (SLR) threatens coastal regions around the world. Significantly, the rate of SLR is not uniform around the globe, with the highest rate occurring along the Atlantic coast of North America between Cape Hatteras and Cape Cod, due to factors including local currents, tides and glacial isostatic rebound (Karegar et al., 2017; Sallenger et al., 2012). Along with economic and cultural impacts, health of coastal forested ecosystems are expected to be impacted by sea-level rise (Langston et al., 2017). For instance, salinization of coastal freshwater wetlands will likely impact vegetation community dynamics and regeneration in low lying (< 1m) wetlands (Langston et al., 2017). Understanding how coastal wetland ecosystems respond to extreme events, long-term climate change and a rapidly rising sea is essential to developing the tools needed for sustainable management of natural resources, and the building of resilient communities and strong economies. Because it has more than 5,180 km² of coastal ecosystems and urban areas below 1 m elevation, the state of North Carolina is highly vulnerable to climate change and SLR and therefore saltwater intrusion (Riggs and Ames, 2008, Titus and Richman, 2001).

As sea level changes, coastal plant communities move accordingly up and down the continental shelf. In recent geologic time, sea level has risen about 3 m over the past ~2,500 years from sea level reconstructions adjacent to our study site (Kemp et al., 2011). The rate of SLR has varied greatly over that time, with periods of stability and change, and a geologically unprecedented acceleration in recent decades. The current distribution of coastal forested wetlands reflects the hydrologic equilibrium of the recent past climate, but the widespread mortality of such forests suggests that the rate of SLR is in a time of rapid change at a rate
potentially faster than the forest’s capacity to move upslope. Furthermore, dying coastal forests will alter the quantity and quality of organic matter inputs to the soil as vegetation shifts occur, as well as introduce a large pulse of woody debris into soils. This has the potential to alter C cycling processes responsible for storage of C in the soil or loss of C as CO₂ and CH₄ (Winfrey and Zeikus, 1977).

Wetlands store more than 25% of global terrestrial soil C in deep soil organic matter deposits due to their unique hydrology and biogeochemistry (Batjes, 1996; Bridgham et al., 2006). Carbon storage capacity is especially high in forested wetlands characterized by abundant woody biomass, forest floors of *Spagnum* spp., and deep organic soils. Across the US Southeast, soil organic C (SOC) in soils increases with proximity to the coast and is greatest in coastal wetlands (Johnson and Kern, 2003). Carbon densities are even higher in the formations of organic soils (Histosols) that occur across the region, typically ranging from 687 to 940 t ha⁻¹, but can be as high as 1,447 t ha⁻¹ (Johnson and Kern, 2003). As noted, forested wetlands, which historically have contributed to terrestrial C sequestration, are in serious decline and processes leading to destabilization of accumulated soil C are not represented in broad-scale ecosystem and land-surface models. The extent of changes in soil C cycling processes attributable to altered hydroperiod, saltwater intrusion and structural changes in vegetation in these ecosystems remains unclear.

Saltwater intrusion, a direct result of SLR, into freshwater wetlands alters soil C cycling processes (Ardón et al., 2016; Ardón et al., 2018), particularly that of methanogenesis (Baldwin et al., 2006; Chambers et al., 2011; Dang et al., 2018; Marton et al., 2012), and microbial activity (e.g., extracellular enzyme activity, Morrissey et al., 2014; Neubauer et al., 2013). Saltwater contains high concentrations of ions, particularly SO₄²⁻, which support high rates of sulfate
reduction compared to freshwater wetlands (Weston et al., 2011). Sulfate acts as a terminal electron acceptor in anaerobic respiration of soil organic C, and sulfate reducers will typically increase in abundance in response to saltwater intrusion and out-compete other anaerobic microorganisms particularly methanogens for C (Bridgham et al. 2013; Dang et al., 2019; Winfrey and Zeikus, 1977). The effect of \(\text{SO}_4^{2-} \) on soil C cycling and competitive interactions with other anaerobic microorganisms processes also appears dependent on the concentration of the ion (Chambers et al., 2011). Even within freshwater forested wetlands, hydrology and microtopography can interact to influence the amount of \(\text{SO}_4^{2-} \) within soils experiencing different levels of saturation and therefore rates of \(\text{SO}_4^{2-} \) reduction (Minick et al., 2019a). A majority of saltwater intrusion studies on soil C dynamics though have focused on tidal freshwater wetlands, whereas non-tidal freshwater wetlands have received relatively little attention, partially due to there being less dispersed geographically across the landscape. Nonetheless, they occupy critical zones within the coastal wetland ecosystem distribution and will be influenced by SLR differently than that of tidal wetlands. Tidal wetlands are likely to experience short-term pulses of saltwater with tidal movement of water, while sea level rise effects on saltwater intrusion into non-tidal wetlands may result in more long-term saltwater inundation. This difference in saltwater inundation period may influence rates of soil \(\text{CO}_2 \), \(\text{CH}_4 \) production, and microbial activity (Neubauer et al., 2013) and therefore should be considered in light of the hydrologic properties of specific wetlands. Saltwater intrusion into freshwater systems may also influence the \(\text{CH}_4 \) producing pathways (Dang et al., 2019; Weston et al., 2011), as a result of saltwater-induced shifts in methanogenic microbial communities (Baldwin et al., 2006; Chambers et al., 2011; Dang et al., 2019). Stable isotope analysis of \(\text{CO}_2 \) and \(\text{CH}_4 \) indicate that acetoclastic methanogenesis is the
major CH₄ producing pathway in these freshwater wetlands (Angle et al., 2016, Minick et al., 2019b), but the influence of saltwater on the pathway of CH₄ formation in non-tidal freshwater forested wetlands has rarely been studied, particularly through the lens of CO₂ and CH₄ stable C isotope analysis. As ¹³C isotopic analysis of CH₄ is non-destructive and is long-proven as a reliable indicator of the CH₄ production pathway (Whiticar et al., 1986), utilization of this analysis provides easily attainable information on the effects of freshwater compared to saltwater on CH₄ production dynamics in coastal wetland ecosystems experiencing SLR-induced changes in hydrology and vegetation.

We used a laboratory experiment to investigate the effects of saltwater and wood additions on CO₂ production, CH₄ production, and microbial activity in a non-tidal temperate freshwater forested wetland in coastal North Carolina, US. Although many studies have focused on salinity pulses in tidal freshwater wetlands, less attention has been given to the effects of sustained saltwater intrusion on soil C dynamics. Therefore, we tested the effects of sustained saltwater intrusion over the course of a 98 day laboratory incubation on soil C cycling and microbial activity (e.g., microbial biomass C and extracellular enzyme activity). Furthermore, we added wood to a subset of incubations in order to tease out effects of hydrology and wood inputs on C cycling.

2 Methods

2.1 Field Site Description
The field site was located in the Alligator River National Wildlife Refuge (ARNWR) in Dare County, North Carolina (35°47'N, 75°54'W). The ARNWR was established in 1984 and is characterized by a diverse assemblage of non-tidal pocosin wetland types (Allen et al., 2011). ARNWR has a network of roads and canals, but in general contains vast expanses of minimally disturbed forested- and shrub-wetlands. Thirteen plots were established in a 4 km² area in the middle of a bottomland hardwood forest surrounding a 35-meter eddy covariance flux tower (US-NC4 in the AmeriFlux database; Minick et al., 2019a). Of the 13 plots (7 m radius), four central plots were utilized for this study. Over-story plant species composition was predominantly composed of black gum (*Nyssa sylvatica*), swamp tupelo (*Nyssa biflora*), bald cypress (*Taxodium distichum*), with occasional red maple (*Acer rubrum*), sweet gum (*Liquidambar styraciflua*), white cedar (*Chamaecyparis thyoides*), and loblolly pine (*Pinus taeda*). The understory was predominantly fetterbush (*Lyonia lucida*), bitter gallberry (*Ilex albra*), red bay (*Persea borbonia*), and sweet bay (*Magnolia virginiana*). The mean annual temperature and precipitation from climate records of an adjacent meteorological station (Manteo AP, NC, 35°55′N, 75°42′W, National Climatic Data Center) for the period 1981-2010 were 16.9 °C and 1270 mm, respectively. These wetlands are characterized by a hydroperiod that operates over short time scales and is driven primarily by variable precipitation patterns. Soils are classified as a Pungo series (very poorly managed dystic thermic typic Haplosaprist) with a deep, highly decomposed muck layer overlain by a shallow, less decomposed peat layer and underlain by highly reduced mineral sediments of Pleistocene origin (Riggs, 1996). Ground elevation is below < 1 m above sea level. Sea-level rise models of coastal NC show that ARNWR will experience almost complete inundation by 2100, with attendant shifts in ecosystem composition (DOD, 2010).
2.2 Sample Collection

Soil samples were collected on February 6, 2018, from surface organic soils by removing seven 10x10 cm\(^2\) monoliths from hummocks to the depth of the root mat (approximately 6.3 cm) using a saw and a 10x10 cm\(^2\) PVC square. The seven soil samples were composited by plot and stored on ice for transport back to the laboratory. In the laboratory, roots and large organic matter were removed by hand and gently homogenized. Soils samples were stored at 4°C for seven weeks before initiating the laboratory incubation.

Freshwater and saltwater for the experiment was collected from water bodies surrounding the ARNWR on March 7, 2018. Freshwater was collected from Milltail Creek, which runs Northwest from the center of ARNWR to Alligator River and is drainage for our forested wetland study site. Freshwater salt concentration was 0 ppt. Saltwater was collected from Roanoke Sound to the east of ARNWR and had a salt concentration of 19 ppt. Fresh- and salt-water were mixed together to get the desired salt concentration for the saltwater treatments (2.5 and 5.0 ppt). Four water samples of each fresh- and salt-water mixture were sent to the NCSU Environmental and Agricultural Testing Service laboratory for analysis of total organic C (TOC), ammonium (NH\(_4^+\)), nitrate (NO\(_3^-\)), phosphate (PO\(_4^{3-}\)), sulfate (SO\(_4^{2-}\)), calcium (Ca\(^{2+}\)), magnesium (Mg\(^{2+}\)), sodium (Na\(^+\)), potassium (K\(^+\)), and chlorine (Cl\(^-\)).

2.3 Incubation Setup
Incubation water treatments included: 1) soils incubated at 65 % water holding capacity (WHC) (Dry); 2) soils incubated at 100% WHC with freshwater (0 ppt); 3) soils incubated at 100% WHC with 2.5 ppt saltwater (2.5 ppt); and 4) soils incubated at 100% WHC with 5.0 ppt (5.0 ppt). A subsample of each soil was dried at 105°C to constant mass to determine gravimetric soil water content. Water holding capacity (WHC) was calculated by placing a subsample of fresh soil (~2 g fresh weight) in a funnel with a Whatman #1 filter and saturating with deionized H2O (dH2O). The saturated sample was allowed to drain into a conical flask for 2 h. After 2 h, the saturated soil was weighed, dried at 105°C to constant mass, and then weighed again to determine WHC.

Two sets of incubations were set up with the above mentioned water treatments. We added 13C-depleted American sweetgum (*Liquidamber styraciflua*) wood to half the incubation vessels (0.22 g wood per g soil) (wood-amended), while the other half were incubated without wood (wood-free). Trees were grown at the Duke FACE site under elevated CO2 concentrations (200 ppm CO2 above ambient) using natural gas derived CO2 with a depleted 13C signature compared to that of the atmosphere (Feng et al., 2010; Schlesinger et al., 2006). The site was established in 1983 after clear cut and burn (Kim et al., 2015). Trees were grown under elevated CO2 from 1994 to 2010 (Kim et al., 2015). Cookies were removed from harvested trees, dried at to a constant moisture level and stored at -20 °C until use. For the current incubation study, wood from control (non-fertilized) trees grown in the elevated CO2 were used. The bark layer was removed and the outer five to seven tree rings of multiple cookies was removed with a chisel. Wood was then finely ground in a Wiley Mill (Thomas Scientific, Swedesboro, NJ, USA) and analyzed for C content and 13C signature. Wood removed from the outer six tree rings
had a C content of 45.6 ± 0.21 % and δ13C value of -40.7 ± 0.06 ‰, which was within the range of -42 to -39 ‰ measured on fresh pine needles and fine roots (Schlesinger et al., 2006).

2.4 CO2 and CH4 Analysis

Headspace gas samples were collected from incubation vessels 15 times over the course of the 98 d incubation (days 1, 4, 8, 11, 15, 19, 25, 29, 29, 47, 56, 63, 70, 84, 98). Incubation lids were loosened between measurements to allow for gas exchange with the ambient atmosphere. Prior to each measurement, incubation vessels were removed from incubators, sealed tightly, and flushed at 20 psi for three minutes with CO2/CH4 free zero air (Airgas, Radnor, PA, USA). Following flushing, incubation vessels were immediately placed in the dark (2-6 h over the first 39 days and 12-18 h over the remainder of the incubation) before taking a gas sample for analysis. Approximately 300 mL of headspace gas was removed using a 50 mL gas-tight syringe and transferred to an evacuated 0.5 L Tedlar gas sampling bag (Restek, Bellefonte, PA, USA). Simultaneous analysis of CO2 and CH4 concentrations and δ13C isotopic signature were conducted on a Picarro G2201-i Isotopic CO2/CH4 Analyzer (Picarro Inc., Sunnyvale, CA USA). Flux rates of CO2-C and CH4-C were calculated as well as daily cumulative CO2-C and CH4-C production summed over the course of the 98 d incubation. Small subsamples of soil were removed periodically from each incubation vessel for extracellular enzyme analysis (see below). Incubation vessel water levels (mass basis) were checked and adjusted three times per week using either freshwater or saltwater. The proportion and rate of wood-derived CO2 at each sampling date was calculated using 13CO2 data and using the 13C of depleted wood (-40.07) in a two pool flux model, with the
depleted wood signature as the one end-point and the 13CO$_2$ of wood-free incubations as the other endpoint. Total wood-derived CO$_2$ was calculated using cumulative CO$_2$ produced over the 98 d incubation and the average 13CO$_2$ across the whole incubation.

2.5 Soil Characteristics

Soil organic C concentration and δ^{13}C was analyzed on initial soil samples and on soils from each of the thirty incubations following the 98 d incubation period. Initial SOC properties were measured on the four plot replicates prior to incubation. Soils were finely ground in a Wiley Mill (Thomas Scientific, Swedesboro, NJ, USA) prior to analysis on a Picarro G2201-i Isotopic CO$_2$/CH$_4$ Analyzer outfitted with a Costech combustion module for solid sample analysis (Picarro Inc., Sunnyvale, CA USA).

Soil pH and redox potential (Eh = mV) were measured in each incubation within one hour following sampling of headspace gas. Soil pH was measured on fresh soil samples with a glass electrode in a 1:2 mixture (by mass) of soil and distilled water (dH$_2$O). Soil redox potential (Eh = mV) was measured using a Martini ORP 57 ORP/°C/°F meter (Milwaukee Instruments, Inc., Rocky Mount, NC, USA).

2.6 Microbial Biomass Carbon and δ^{13}C Isotopic Signature

Microbial biomass C was estimated on soils collected from incubations on day 1 (after 24 hour post-treatment incubation) and day 98 (following the end of the incubation). The chloroform fumigation extraction (CFE) method was adapted from Vance et al. (1987) in order
to estimate MBC and δ^{13}C. Briefly, one subsample of fresh soil (approximately 0.5 g dry weight each) was placed in a 50 mL beaker in a vacuum desiccator to be fumigated. Another subsample was placed into an extraction bottle for immediate extraction in 0.5 M K$_2$SO$_4$ by shaking for 1 hr and subsequently filtering through Whatman #2 filter paper to remove soil particles. The samples in the desiccator were fumigated with ethanol-free chloroform (CHCl$_3$) and incubated under vacuum for 3 d. After the 3 d fumigation, samples were extracted similar to that of unfumigated samples. Filtered 0.5 M K$_2$SO$_4$ extracts were dried at 60 °C in a ventilated drying oven and then ground to a fine powder with mortar and pestle before analysis of C concentration and δ^{13}C on a Picarro G2201-i Isotopic CO$_2$/CH$_4$ Analyzer outfitted with a Costech combustion module for solid sample analysis (Picarro Inc., Sunnyvale, CA USA). Microbial C biomass was determined using the following equation:

$$\text{MBC} = \frac{\text{EC}}{k_{EC}}$$

where the chloroform-labile pool (EC) is the difference between C in the fumigated and non-fumigated extracts, and k_{EC} (extractable portion of MBC after fumigation) is soil-specific and estimated as 0.45 (Joergensen, 1996).

The δ^{13}C of MBC was estimated as the δ^{13}C of the C extracted from the fumigated soil sample in excess of that extracted from the non-fumigated soil sample using the following equation:

$$\delta^{13}C_{\text{MBC}} (\text{‰}) = \frac{(\delta^{13}C_f \times C_f - \delta^{13}C_{nf} \times C_{nf})}{(C_f - C_{nf})}$$
where C_f and C_{nf} is the concentration (mg kg\(^{-1}\) soil) of C extracted from the fumigated and non-fumigated soil samples, respectively, and $\delta^{13}C_f$ and $\delta^{13}C_{nf}$ is the \(^{13}\)C natural abundance (‰) of the fumigated and non-fumigated soil samples, respectively.

2.5 Extracellular Enzyme Analysis

The potential activity of five extracellular enzymes were quantified on initial soil samples (day 0) and on days 1, 8, 35, and 98 of the soil incubation. The specific enzymes measured were: \(\beta\)-glucosidase (BG; EC: 3.2.1.21), peroxidase (PER; EC: 1.11.1.7), \(\beta\)-glucosaminidase (NAGase; EC: 3.2.1.30), alkaline phosphatase (AP; EC: 3.1.3.1), and arylsulfatase (AS; EC: 3.1.6.1). Substrates for all enzyme assays were dissolved in 50 mM, pH 5.0 acetate buffer solution for a final concentration of 5 mM substrate.

Hydrolytic enzymes (BG and XYL) were measured using techniques outlined in Sinsabaugh et al. (1993). Approximately 0.5 g dry weight of soil sample was suspended in 50 mL of a 50 mM, pH 5.0 acetate buffer solution and homogenized in a blender for 1 min. In a 2 mL centrifuge tube, 0.9 mL aliquot of the soil-buffer suspension was combined with 0.9 mL of the appropriate 5 mM p-nitrophenyl substrate solution for a total of three analytical replicates. Additionally, duplicate background controls consisted of 0.9 mL aliquot of soil-buffer suspension plus 0.9 mL of acetate buffer and four substrate controls were analyzed consisting of 0.9 mL substrate solution plus 0.9 mL buffer. The samples were agitated for 2-5 hr. Samples were then centrifuged at 8,160 g for 3 min. Supernatant (1.5 mL) was transferred to a 15 mL centrifuge tube containing 150 \(\mu\)L 1.0 M NaOH and 8.35 mL dH\(_2\)O. The resulting mixture was vortexed and a subsample transferred to a cuvette and the optical density at 410 nm was
measured on a spectrophotometer (Beckman Coulter DU 800 Spectrophotometer, Brea, CA, USA).

The oxidative enzyme (PER) were measured using techniques outlined in Sinsabaugh et al. (1992). PER is primarily involved in oxidation of phenol compounds and depolymerization of lignin. The same general procedure for hydrolytic enzymes was followed utilizing a 5 mM L-3,4-Dihydroxyphenylalanine (L-DOPA) (Sigma-Aldrich Co. LLC, St. Louis, MO, USA) solution plus 0.2 mL of 0.3% H2O2 to all sample replicates and controls as the substrate. After set up of analytical replicates and substrate and background controls, the samples were agitated for 2-3 hr. Samples were then centrifuged at 8,160 g for 3 min. The resulting supernatant turns an intense indigo color. Supernatant (1.4 mL) was transferred directly to a cuvette and the optical density at 460 nm was measured on a spectrophotometer.

For all enzymes, the mean absorbance of two background controls and four substrate controls was subtracted from that of three analytical replicates and divided by the molar efficiency (1.66/µmol), length of incubation (h), and soil dry weight. Enzyme activity was expressed as µmol substrate converted per g dry soil mass per hour (µmol g⁻¹ h⁻¹).

2.6 Statistical Analysis

Water chemistry, cumulative CO₂ production, cumulative CH₄ production, cumulative enzyme activity, post-incubation SOC concentration and δ¹³C SOC, and wood-derived and wood-associated SOC, CO₂, and MBC were analyzed using one-way ANOVA (PROC GLM package). Microbial biomass C, MBC, pH, Eh, δ¹³CO₂, and δ¹³CH₄ were analyzed using repeated-measures ANOVA (PROC MIXED package) with time (Time) as the repeated measure.
and the incubation treatments as fixed effects. All data for wood-free and wood-amended soils were analyzed separately. Raw data were natural log-transformed where necessary to establish homogeneity of variance. If significant main effects or interactions were identified in the one-way ANOVA or repeated-measures ($P < 0.05$), then post-hoc comparison of least-squares means was performed. All statistical analyses were performed using SAS 9.4 software (SAS Institute, Cary, NC, USA).

3 Results

3.1 Water and Soil Properties

Freshwater had higher concentrations of TOC compared to the saltwater treatments (Table 1). Concentration of SO$_4^{2-}$, Cl$,\ Na^+,\ Ca^{2+},\ Mg^{2+},\ and\ K^+$ were higher in saltwater treatments compared to freshwater and were approximately twice as high in the 5.0 ppt saltwater treatment compared to 2.5 ppt saltwater (Table 1).

Initial hummock SOC concentration was 490 ± 27 g kg$^{-1}$ with a δ13C value of -28.5 ± 0.32 ‰. After 98 d of incubation, SOC concentration in wood-free incubations was lower in the 5.0 ppt saltwater treatment, although no difference in soil δ13C was found between treatments (Table 2). For wood-amended incubations, post-incubation SOC concentration was lower in the 5.0 ppt saltwater treatment compared to the dry and freshwater treatment (Table 2). The δ13C of wood-amended soils after 98 days of incubation was not different between treatments, but was depleted in 13C compared to wood-free soils.
Soil pH was significantly lower in the saltwater treatments in both wood-free and wood-amended soils compared to the dry and freshwater treatments (Table 3; Figure 1a-b). After an initial drop of pH in saltwater treatments to between 3.2 and 3.4 pH, pH steadily climbed back up to between 4.0 and 4.2 pH (Figure 1a-b). In wood-free soils, differences in soil Eh between treatments was variable over time, with both the 5.0 ppt saltwater treatment and the freshwater treatment having the lowest redox potential at different time points throughout the incubation (Table 3; Figure 1c), but never got below -124 mV on average. In wood-amended soils, Eh dropped quickly to between -200 and -400 mV over the first 30 days for saltwater incubated soils (Table 3; Figure 1d), before rising to between -100 to 0 mV for the rest of the incubation period. In freshwater incubated soils, Eh rose quickly back to between -50 to 0 mV by day 15 and remained at this level for the rest of the incubation period, while saltwater treatments had significantly lower Eh between days 8 and 25.

3.2 CO₂, CH₄, δ¹³CO₂-C, and δ¹³CH₄-C

In wood-free incubations, cumulative CO₂ production was not different between the dry and freshwater treatments, but were higher than that produced from saltwater treatments (Table 4; Figure 2a). Cumulative CO₂ produced from wood-amended soils was highest in the dry treatment compared to all other treatments (Table 4; Figure 2b). Wood-derived CO₂ (calculated as the difference between cumulative CO₂ produced from wood-amended and wood-free incubations) was highest in the dry treatment (Table 4; Figure 2c). This finding was also confirmed by calculating cumulative wood-derived C using the ¹³C two-pool mixing model, with
the highest proportion found in the dry treatment (54 ± 4.6 %) compared to soils incubated with freshwater (42 ± 1.7 %), 2.5 ppt saltwater (37 ± 1.0 %), and 5.0 ppt saltwater (38 ± 1.5 %).

Cumulative CH₄ production was highest in the freshwater treatment compared to the saltwater treatments in both wood-free and wood-amended incubations (Table 4; Figure 2d-e).

The difference between cumulative CH₄ produced from wood-amended and wood-free incubations was lower (and exhibited a negative response to wood additions) in the freshwater treatment compared to both saltwater treatments (Table 3; Figure 2f), which both had a slight positive response to wood additions.

The CO₂:CH₄ ratio, in wood-free incubations, was calculated only for soils incubated under saturated conditions with freshwater or saltwater. The CO₂:CH₄ ratio, in wood-free incubations, was highest in freshwater (6 ± 3.4), compared to the 2.5 ppt saltwater (136 ± 33.9) and 5.0 ppt saltwater (102 ± 30.3) (F = 24.8; P = 0.0002). The CO₂:CH₄ ratio, in wood-amended incubations, was highest in freshwater (9 ± 0.8), compared to the 2.5 ppt saltwater (53 ± 20.3) and 5.0 ppt saltwater (107 ± 37.7) (F = 9.2; P = 0.007).

The δ¹³CO₂-C and wood-derived CO₂ (estimated by ¹³C two-pool mixing model) exhibited a time by treatment interaction for both wood-free and wood-amended incubations (Table 3; Figure 3a-b). In general, δ¹³CO₂-C in wood-free and wood-amended incubations was depleted in the dry treatment (and remained steady throughout the incubation period) compared to all other treatments, especially after day 15. The proportion of wood-derived CO₂ was initially higher in saltwater treatments but gradually dropped over the course of the incubation, while the proportion of wood-derived CO₂ remained steady (approximately 50 %) for a good portion of the incubation but increased in the final couple measurements periods to a maximum of 75 % (Figure 3c).
The δ13CH\textsubscript{4}-C (Table 3; Figure 4) exhibited a treatment and time effect (Table 3; Figure 4a-b), but only for wood-free incubations. For wood-free incubations, average 13CH\textsubscript{4}-C across the course of the incubation was most enriched in the freshwater treatment (-67.8 ± 2.4 ‰) compared to the 2.5 ppt (-80.1 ± 2.4 ‰) and 5.0 ppt (-82.3 ± 2.0 ‰) saltwater treatments (Figure 4C). No difference in the δ13CH\textsubscript{4}-C was found in wood-amended incubations (Figure 4b, d), ranging from between -78 to -75 ‰ for all treatments.

3.3 Microbial Biomass Carbon and Extracellular Enzyme Activity

Initially, in wood-free incubations, MBC was highest in the 2.5 ppt saltwater treatment compared to the dry treatment (Table 3; Table 5). Following the 98 day incubation, MBC in wood-free incubations was highest in the dry treatment, with no differences between the other treatments. In wood-amended soils, no difference in MBC was found initially, but following the 98 day incubation MBC was highest in the dry treatment followed by the freshwater treatment with the MBC of the saltwater treatments being the lowest. Initial δ13C of MBC did not differ between treatments in either the wood-free or wood amended soils (Table 3; Table 5). After the 98 day incubation, 13C of MBC in the wood-free treatments was most depleted in the freshwater treatment and most enriched in the 5.0 ppt saltwater treatment. In wood-amended incubations, 13C of MBC was most depleted in the dry treatment and most enriched in the freshwater and 5.0 ppt saltwater treatments. Furthermore, the proportion of wood-derived MBC (as estimated by 13C mixing model calculations) was highest in the dry treatment (31 %) and the 2.5 ppt saltwater treatment (21%) compared to the freshwater treatment (4%) (Table 5).
In wood-free incubations, activity of BG, PER, and NAGase were higher in the dry treatment compared to the saltwater treatments (Table 4; Table 5). Activity of AS was higher in the dry and freshwater treatments compared to saltwater treatments, in both wood-free and wood-amended incubations. In wood-amended incubations, BG and NAGase were highest in the dry treatment compared to the saltwater treatments. In the freshwater treatment, wood addition reduced activity of BG and NAGase compared to wood-free incubations (Figure 5a-b), but enhanced PER activity (Figure 5c). Wood addition also reduced AS and P activity across all treatments compared to wood-free incubations (Figure 5d-e).

4 Discussion

As forests within the lower coastal plain physiographic region of the southeastern US continue to experience increasing stresses from sea level rise on hydrology, changes in microbial C cycling processes should be expected. Our results, combined with other field and lab experiments, confirm that saltwater intrusion into coastal freshwater wetlands can result in reductions in CO₂ and CH₄ fluxes (Ardón et al., 2016; Ardón et al., 2018), but this will be balanced by long- and short-term effects of saltwater intrusion on C cycling processes (Weston et al., 2011) as well as changes in C inputs due to forest-marsh transition. Further, increased coarse woody debris inputs to soils may reduce CH₄ emissions under freshwater conditions, but enhance CH₄ emissions under saltwater conditions. Our results also clearly demonstrate that substantial quantities of CH₄ can be produced from soils with redox potential between -100 to 100 mV, which may be related to the specific pathway of CH₄ production (acetoclastic versus hydrogenotrophic), and challenges the widespread assumption that methanogenesis only occurs.
at very low redox potentials. The ARNWR is characterized by a hydroperiod that operates over short time scales and is driven primarily by variable precipitation patterns (Miao et al., 2013), which results in the influx of oxygenated waters. Periodic in situ measurements of redox potential indicate that standing water is relatively aerated (Eh = 175 - 260 mV), while surface soils of hummocks when not submerged are more aerated (Eh = 320 mV) than submerged hollow surface soils (Eh = 100 - 150 mV) and deeper organic soils (20-40 cm depth; Eh = 50 - 90 mV). Furthermore, our results indicate that additions of new C to soils as wood may result in short-term reductions in redox potential as anaerobic processes are enhanced due to the added C substrate and terminal electron acceptors are quickly reduced. As SLR continues to rise over the next century, more persistent saltwater intrusion may occur as rising brackish waters mix with non-tidal freshwater systems having important implications for both above- and below-ground C cycling dynamics. Although our study only looked at these effects in a controlled laboratory experiment, these data provide a baseline understanding of potential changes in C cycling dynamics due to SLR.

Saltwater additions decreased CO₂ production compared to freshwater in the wood-free soils, although MBC and extracellular enzyme activity were not different between these treatments. This has been found in other pocosin wetland soils on the coast of North Carolina (Ardón et al. 2018). Variable effects of salinity (and or sulfate additions) have been found on soil respiration, with some studies showing an increase (Marton et al., 2012; Weston et al., 2011), a decrease (Lozanovska et al. 2016; Servais et al. 2019), or no change (Baldwin et al., 2006). Krauss et al. (2012) found that permanently flooded saltwater treatments (expected in non-tidal wetlands) in a simulated coastal swamp mesocosm reduced soil respiration, whereas saltwater pulses (expected in tidal wetlands) had a variable effect on soil respiration. Alternatively, CO₂
production was not reduced in the saltwater compared to freshwater treatments in wood-amended soils, while MBC was lower in the saltwater compared to freshwater, which suggests a shift in microbial carbon use efficiency.

Methane production was higher in the freshwater compared to saltwater treatments in both wood-amended and wood-free incubations. Numerous other studies have found that saltwater reduces \(\text{CH}_4 \) fluxes compared to freshwater, both within the field and laboratory. Reduced \(\text{CH}_4 \) production from saltwater treated soils primarily results from the availability of more energetically favorable terminal electron acceptors (primarily \(\text{SO}_4^{2-} \)), which leads to the competitive suppression of methanogenic microbial communities by sulfate reducing communities (Bridgham et al., 2013; Chambers et al., 2011; Winfrey and Zeikus, 1977), as methanogens and sulfate reducers compete for acetate and electrons (Le Mer and Roger, 2001).

Dang et al. (2019) did find partial recovery over time of the methanogenic community following saltwater inundation to freshwater soil cores, but interestingly this community resembled that of microbes performing hydrogenotrophic methanogenesis and not acetoclastic methanogenesis. Activity of arylsulfatase was also lower in saltwater amended soils. This also indicates a functional change in the microbial community, as microbes in the saltwater treatment are utilizing the readily available \(\text{SO}_4^{2-} \) pool, while microbes in the freshwater and dry treatments are still actively producing \(\text{SO}_4^{2-} \)-liberating enzymes to support their metabolic activities. Findings by Baldwin et al. (2006) support the effects of saltwater on changing the microbial community structure as well, in which reductions in \(\text{CH}_4 \) production in NaCl treated freshwater sediments were accompanied by a reduction in archaeal (methanogens) microbial population, establishing a link between shifting microbial populations and changing \(\text{CH}_4 \) flux rates due to saltwater intrusion.
Changes in fresh- and salt-water hydrology due to rising seas is leading to dramatic shifts in the dominant plant communities within the ARNWR and across the southeastern US (Connor et al., 1997; DOD, 2010; Langston et al., 2017). This has the potential to alter the soil C balance due to introduction of large amounts of coarse woody debris as trees die. In our laboratory experiment, additions of wood resulted in changes in both CO₂ and CH₄ production, but the direction of change depended on if soils were incubated with freshwater or saltwater. Wood additions increased CO₂ production except in the freshwater treatment. This was particularly evident in the dry treatment where wood additions increased CO₂ production by approximately 32%. For the dry treatment, wood-amended soils had the highest MBC and NAGase activity as microbes were likely immobilizing more N to support metabolic activities in the presence of added C (Fisk et al., 2015; Minick et al., 2017). Higher respiration with wood additions in the saltwater treatments likely resulted from enhanced metabolic activity of sulfate reducing microbes in the presence of an added C source. On the other hand, wood additions resulted in a decline in CH₄ production from the freshwater treatment, while slightly enhancing CH₄ production from the saltwater treatments. Wood additions also resulted in much lower redox potential, particularly in the saltwater treatments, and coupled with ¹³CH₄ stable isotope composition may have driven the higher levels of CH₄ production (via hydrogenotrophic methanogenesis) in the wood plus saltwater treatments. The suppression of CH₄ production by wood additions in the freshwater treatment was somewhat surprising given the positive effects of C additions on CH₄ production recently found in freshwater sediments (West et al. 2012), but likely resulted from enhancement of other, more energetically favorable redox reactions with the addition of a C source (e.g., wood). Furthermore, wood additions to freshwater incubations resulted in a decrease in MBC and activity of BG and NAGase enzymes compared to wood-free
incubations, but an increase in PER activity. This suggests that the microbial communities have altered their functional capacity in response to wood-addition when exposed to freshwater. The CO₂:CH₄ ratio further indicated that, in freshwater, CH₄ production was quite high in relation to CO₂ production. This ratio was significantly higher though for saltwater treatments as CH₄ production dropped drastically compared to freshwater.

Changes in the CH₄ production due to saltwater additions appears to be related to the dominant CH₄ producing pathway. The 13CH₄ isotopic signature in wood-free freshwater incubated soils indicated that acetoclastic methanogenesis was the dominant CH₄ producing pathway, while hydrogenotrophic methanogenesis dominated in the saltwater treatment. Acetoclastic methanogenesis produces isotopically enriched CH₄ compared to that of the hydrogenotrophic methanogenesis (Chasar et al., 2000; Conrad et al. 2010; Krohn et al. 2017; Sugimoto and Wada, 1993; Whiticar et al., 1986; Whiticar 1999), given that methanogens discriminate against heavier 13CO₂ during the hydrogenotrophic methanogenesis. The differences in C discrimination between the two pathways is greater for the hydrogenotrophic compared to the acetoclastic pathway which results in more depleted (-110 to -60 ‰) and more enriched (-60 ‰ to -50 ‰) 13CH₄, respectively. This has been confirmed in field and laboratory experiments (Conrad et al. 2010; Krohn et al. 2017; Krzycki et al., 1987; Sugimoto and Wada, 1993; Whiticar et al., 1986; Whiticar, 1999). Baldwin et al. (2006) also found that saltwater additions promoted the hydrogenotrophic methanogenic pathway. Further, Dang et al (2019) showed that saltwater additions to soil cores resulted in a shift in the relative abundance of hydrogenotrophic methanogens, supporting the idea that saltwater may alter not only the flux of CH₄ but also the production pathway. Chambers et al. (2011) found a shift in the methanogenic microbial community under saltwater treatments as well, which could have implications for the dominant...
pathway of methane production. Previous work at our site showed that freshwater saturated soils from different microsites (hummocks, hollows, and subsurface Oa horizon soil) also had δ13CH4 values more like that found from CH4 produced via acetoclastic methanogenesis (Minick et al., 2019b).

Findings from this study indicate that substantial changes in the greenhouse gas flux and microbial activity are possible due to saltwater intrusion into freshwater wetland ecosystems but that the availability of C in the form of dead wood (as forests transition to marsh) may alter the magnitude of this effect. Sea level rise will likely lead to dramatic changes in vegetation, particularly transitioning forested wetlands into shrub or marsh wetlands. As forested wetlands are lost, dead trees could provide a significant source of C to already C-rich peat soils. The long-term effect of forest to marsh transition on ecosystem C storage will likely depend on the balance between dead wood inputs and effects of sea level rise and vegetation change on future C inputs and soil microbial C cycling processes. Future work should include investigation of these C cycling and microbial processes at the field-scale and expand to a wider range of non-tidal wetlands within the southeastern US region.

Author contribution

All authors contributed to the conception and design of the study. KM wrote the first draft of the manuscript. KM collected the samples from the field and performed laboratory analysis. All authors contributed to manuscript revision and approved the submitted version.

Competing Interest
The authors declare that they have no conflict of interest.

Acknowledgements

We thank numerous undergraduate researchers for their invaluable help collecting samples from the field and analyzing samples in the laboratory. We also thank the anonymous reviewers for their comments, which significantly improved the manuscript. Primary support was provided by USDA NIFA (Multi-agency A.5 Carbon Cycle Science Program) award 2014-67003-22068. Additional support was provided by DOE NICCR award 08-SC-NICCR-1072, the USDA Forest Service Eastern Forest Environmental Threat Assessment Center award 13-JV-11330110-081, and Carolinas Integrated Sciences and Assessments award 2013-0190/13-2322. The USFWS Alligator River National Wildlife Refuge provided helpful scientific discussions, the forested wetland research site, and valuable in-kind support.

References

oxygenated soils is a substantial fraction of wetland methane emissions, Nature communications, 8, 1567, doi: 10.1038/s41467-017-01753-4, 2017.

Department of Defense (DOD): Responding to climate change, Natural Selections, 6, 2-4, 2010.

Paerl, H. W., Crosswell, J. R., Van Dam, B., Hall, N. S., Rossignol, K. L., Osburn, C. L., Hounshell, A. G., Sloup, R. S., and Harding, L. W.: Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics:
implications for biogeochemical cycling and water quality in a stormier world,

Riggs, S. R.: Sediment evolution and habitat function of organic-rich muds within the Albemarle estuarine system, North Carolina, Estuaries 19, 169–185,

Table 1. Total organic C (TOC) and ion concentrations in freshwater (0 ppt), 2.5 ppt saltwater, and 5.0 ppt saltwater. Standard errors of the mean are in parenthesis (n=4). Values with different superscript lowercase letters are significantly different ($P < 0.05$).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TOC</th>
<th>SO$_4^{2-}$</th>
<th>Cl$^-$</th>
<th>Na$^+$</th>
<th>NH$_4^+$</th>
<th>NO$_3^-$</th>
<th>PO$_4^{3-}$</th>
<th>Ca$^{2+}$</th>
<th>Mg$^{2+}$</th>
<th>K$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ppt</td>
<td>44 (0.3)a</td>
<td>1 (0.1)a</td>
<td>17 (0.2)a</td>
<td>8 (0.1)a</td>
<td>0.00 (0.000)a</td>
<td>0.00 (0.000)a</td>
<td>1 (0.0)a</td>
<td>1 (0.0)a</td>
<td>0.2 (0.0)a</td>
<td></td>
</tr>
<tr>
<td>2.5 ppt</td>
<td>40 (0.7)b</td>
<td>162 (1.3)b</td>
<td>1391 (42.8)b</td>
<td>538 (19.2)b</td>
<td>0.06 (0.004)b</td>
<td>0.06 (0.000)a</td>
<td>0.01 (0.000)a</td>
<td>23 (0.3)b</td>
<td>64 (2.6)b</td>
<td>19 (0.3)b</td>
</tr>
<tr>
<td>5.0 ppt</td>
<td>38 (0.1)b</td>
<td>319 (6.5)c</td>
<td>2695 (22.6)c</td>
<td>1039 (15.9)c</td>
<td>0.07 (0.004)b</td>
<td>0.07 (0.004)a</td>
<td>0.01 (0.000)b</td>
<td>44 (1.0)c</td>
<td>125 (2.1)c</td>
<td>36 (0.4)c</td>
</tr>
</tbody>
</table>
Table 2. Post-incubation soil organic C (SOC) concentration (g kg\(^{-1}\)), SOC \(^{\delta^{13}}\)C (‰), wood-derived SOC (%) (estimated from \(^{13}\)C two pool mixing model) for soil samples collected from the field and incubated for 98 d in the laboratory under dry conditions (Dry) or fully saturated with freshwater (0 ppt) or saltwater (2.5 and 5.0 ppt) and with (+ Wood) or without addition of \(^{13}\)C-depleted wood. Pre-incubation data was measured from the four replicates prior to incubation and therefore have the same for each treatment. Standard errors of the mean are in parenthesis (n=4). Data from wood-free and wood-amended soils were analyzed separately. Values followed by different superscript lowercase letters are significantly different between the four treatments of the non-wood or wood amended soils (\(P < 0.05\)).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Post-SOC Concentration (g kg(^{-1}))</th>
<th>Post-SOC (^{\delta^{13}})C (‰)</th>
<th>Wood-derived SOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>495 (1.5)(^{b})</td>
<td>-29.5 (0.20)(^{a})</td>
<td>.</td>
</tr>
<tr>
<td>0 ppt</td>
<td>493 (3.3)(^{b})</td>
<td>-29.5 (0.18)(^{a})</td>
<td>.</td>
</tr>
<tr>
<td>2.5 ppt</td>
<td>488 (4.9)(^{b})</td>
<td>-29.5 (0.20)(^{a})</td>
<td>.</td>
</tr>
<tr>
<td>5.0 ppt</td>
<td>460 (8.6)(^{a})</td>
<td>-29.5 (0.16)(^{a})</td>
<td>.</td>
</tr>
<tr>
<td>Dry + Wood</td>
<td>491 (4.7)(^{ab})</td>
<td>-30.4 (0.30)(^{a})</td>
<td>8 (2.5)</td>
</tr>
<tr>
<td>0 ppt + Wood</td>
<td>502 (4.6)(^{a})</td>
<td>-30.7 (0.22)(^{a})</td>
<td>12 (0.4)</td>
</tr>
<tr>
<td>2.5 ppt + Wood</td>
<td>477 (4.9)(^{bc})</td>
<td>-30.6 (0.35)(^{a})</td>
<td>10 (1.4)</td>
</tr>
<tr>
<td>5.0 ppt + Wood</td>
<td>470 (4.6)(^{c})</td>
<td>-30.4 (0.14)(^{a})</td>
<td>10 (2.0)</td>
</tr>
</tbody>
</table>
Table 3. Results (F-values and significance) from the repeated measures ANOVA of pH, Eh, microbial biomass C (MBC), δ^{13}C isotopic signature of MBC, δ^{13}CO$_2$ and δ^{13}CH$_4$ measured in soils collected from a coastal freshwater forested wetland and incubated in the laboratory for 98 d under fully saturated with either freshwater or salt water (2.5 ppt and 5.0 ppt). Data from wood-free and wood-amended soils were analyzed separately.

<table>
<thead>
<tr>
<th>Source</th>
<th>pH</th>
<th>Eh</th>
<th>MBC</th>
<th>MBC 13C</th>
<th>δ^{13}CO$_2$</th>
<th>δ^{13}CH$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood-Free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>26.6***</td>
<td>4.5*</td>
<td>3.7*</td>
<td>3.2*</td>
<td>351.7***</td>
<td>60.5***</td>
</tr>
<tr>
<td>Time</td>
<td>4.4***</td>
<td>40.7***</td>
<td>40.9***</td>
<td>15.8**</td>
<td>24.2***</td>
<td>8.3***</td>
</tr>
<tr>
<td>Treatment x Treatment</td>
<td>1.22</td>
<td>3.7***</td>
<td>27.3***</td>
<td>3.3*</td>
<td>6.4***</td>
<td>1.1</td>
</tr>
<tr>
<td>Wood-Amended</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>29.0***</td>
<td>13.6***</td>
<td>39.9***</td>
<td>2.6</td>
<td>129.8***</td>
<td>0.3</td>
</tr>
<tr>
<td>Time</td>
<td>18.3***</td>
<td>30.1***</td>
<td>111.0***</td>
<td>3.7</td>
<td>34.8***</td>
<td>1.4</td>
</tr>
<tr>
<td>Treatment x Treatment</td>
<td>1.4</td>
<td>3.4***</td>
<td>24.2***</td>
<td>5.5**</td>
<td>8.3***</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*P < 0.05, **P < 0.01, ***P < 0.0001
Table 4. Results (F-values and significance) from the one-way ANOVA of cumulative gas production and extracellular enzyme activity (BG: β-glucosidase; PER: peroxidase; NAGase: glucosaminidase; AP: alkaline phosphatase; and AS: arylsulfatase) from soils collected from a coastal freshwater forested wetland and incubated in the laboratory for 98 d under dry conditions or fully saturated with either freshwater or salt water (2.5 ppt and 5.0 ppt). Data from wood-free and wood-amended soils were analyzed separately.

<table>
<thead>
<tr>
<th>Source</th>
<th>CO₂</th>
<th>CH₄</th>
<th>BG</th>
<th>PER</th>
<th>NAGase</th>
<th>AP</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood-Free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>20.4***</td>
<td>15.6***</td>
<td>7.2**</td>
<td>11.9**</td>
<td>9.5**</td>
<td>0.9</td>
<td>15.8**</td>
</tr>
<tr>
<td>Wood-Amended</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>13.3**</td>
<td>36.7***</td>
<td>16.6**</td>
<td>2.5</td>
<td>32.0***</td>
<td>2.3</td>
<td>31.2***</td>
</tr>
</tbody>
</table>

*P < 0.05, **P < 0.01, ***P < 0.0001
Table 5. Initial (1 d) and final (98 d) microbial biomass C (MBC) concentration (mg kg\(^{-1}\)), MBC 13C (‰), wood-derived MBC (%), and cumulative extracellular enzyme activity (µmol g\(^{-1}\)) (BG: β-glucosidase; PER: peroxidase; NAGase: glucosaminidase; AP: alkaline phosphatase; and AS: arylsulfatase) for soils incubated under dry conditions (Dry) or saturated with freshwater (0 ppt) or saltwater (2.5 and 5.0 ppt) and with (+ Wood) or without addition of 13C-depleted wood. Standard errors of the mean are in parenthesis (n=4). Values followed by different superscript lowercase letters are significantly different between the four treatments for the wood-free or wood-amended soils ($P < 0.05$).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Initial MBC Concentration (mg kg(^{-1}))</th>
<th>Final MBC Concentration (mg kg(^{-1}))</th>
<th>Inital MBC 13C (‰)</th>
<th>Final MBC 13C (‰)</th>
<th>Wood-derived MBC (%)</th>
<th>BG</th>
<th>PER</th>
<th>NAGase</th>
<th>AP</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>2238 (400)a</td>
<td>4077 (387)a</td>
<td>-27.0 (0.43)a</td>
<td>-28.4 (0.28)a</td>
<td>547 (37)a</td>
<td>176 (14)a</td>
<td>240 (20)a</td>
<td>7599 (1038)a</td>
<td>47 (2)a</td>
<td></td>
</tr>
<tr>
<td>0 ppt</td>
<td>3982 (196)ab</td>
<td>2657 (344)b</td>
<td>-27.3 (0.19)a</td>
<td>-28.9 (0.16)a</td>
<td>479 (18)ab</td>
<td>197 (38)a</td>
<td>194 (11)ab</td>
<td>6308 (517)a</td>
<td>47 (8)a</td>
<td></td>
</tr>
<tr>
<td>2.5 ppt</td>
<td>7334 (1177)a</td>
<td>2495 (195)b</td>
<td>-27.8 (0.51)a</td>
<td>-27.9 (0.03)a</td>
<td>389 (33)b</td>
<td>412 (75)b</td>
<td>159 (9)b</td>
<td>6539 (183)a</td>
<td>19 (3)b</td>
<td></td>
</tr>
<tr>
<td>5.0 ppt</td>
<td>6483 (104)ab</td>
<td>2114 (135)b</td>
<td>-27.0 (0.30)a</td>
<td>-27.4 (0.15)a</td>
<td>379 (27)b</td>
<td>490 (30)b</td>
<td>154 (8)b</td>
<td>6387 (529)a</td>
<td>15 (2)b</td>
<td></td>
</tr>
<tr>
<td>Dry + Wood</td>
<td>4444 (579)a</td>
<td>5174 (249)a</td>
<td>-29.3 (0.40)a</td>
<td>-32.1 (0.44)a</td>
<td>31 (4.9)a</td>
<td>554 (37)a</td>
<td>243 (22)a</td>
<td>7247 (887)a</td>
<td>40 (2)a</td>
<td></td>
</tr>
<tr>
<td>0 ppt + Wood</td>
<td>5376 (330)a</td>
<td>1832 (102)b</td>
<td>-29.8 (0.37)a</td>
<td>-29.4 (0.15)b</td>
<td>41 (1.1)b</td>
<td>349 (24)b</td>
<td>275 (44)a</td>
<td>4965 (459)b</td>
<td>36 (3)a</td>
<td></td>
</tr>
<tr>
<td>2.5 ppt + Wood</td>
<td>5173 (405)a</td>
<td>748 (124)a</td>
<td>-30.1 (0.25)a</td>
<td>-30.4 (0.95)a</td>
<td>21 (7.8)a</td>
<td>368 (12)b</td>
<td>365 (30)a</td>
<td>5548 (653)a</td>
<td>14 (3)b</td>
<td></td>
</tr>
<tr>
<td>5.0 ppt + Wood</td>
<td>2123 (400)b</td>
<td>790 (87)c</td>
<td>-29.9 (0.43)a</td>
<td>-29.7 (0.37)b</td>
<td>18 (1.9)ab</td>
<td>369 (13)b</td>
<td>326 (38)a</td>
<td>5893 (495)a</td>
<td>13 (2)b</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. pH for wood-free soils (A) and wood-amended soils (B) and redox potential for wood-free soils (C) and wood-amended soils (D) measured over the course of the 98 d laboratory incubation. Symbols represent mean with standard error (n=4). Treatment means with different lowercase letters are significantly different within a sampling time point (P < 0.05).
Figure 2. Cumulative CO$_2$ production for wood-free soils (A), wood-amended soils (B), and the wood-associated CO$_2$ production (C); and cumulative CH$_4$ production for wood free soils (D), wood amended soils (E), and the wood-associated CH$_4$ production (F). Bars represent mean with standard error (n=4). Bars with different uppercase letters are significantly different ($P < 0.05$).
Figure 3. The δ¹³CO₂ values measured over the course of the 98 d laboratory incubation for wood-free soils (A), wood-amended soils (B), and the proportion of wood-derived CO₂ (C). Bars represent mean with standard error (n=4). Treatment means with different lowercase letters are significantly different within a sampling time point (P < 0.05).
Figure 4. The δ^{13}CH$_4$ values measured over the course of the 98 d laboratory incubation for wood-free soils (A) and wood-amended soils (B) and the average δ^{13}CH$_4$ across the entire incubation for wood-free soils (C) and wood-amended soils (D). Symbols or bars represent mean with standard error (n=4). Treatment means with different lowercase letters are significantly different within a sampling time point ($P < 0.05$).
Figure 5. Wood-associated (Wood-Amended – Wood Free) enzyme activity. Bars represent mean with standard error (n=4). Treatment means with different upper letters are significantly different (P < 0.05).