Supplement of Vertical partitioning of CO₂ production in a Dystric Cambisol

Patrick Wordell-Dietrich, Axel Don, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, and Christoph Leuschner

Correspondence to: Patrick Wordell-Dietrich (patrick.wordell-dietrich@tu-dresden.de)

Compensation algorithm of dependence of pressure and temperature for GMP221:

\[
c_{\text{i+1}} = c_i - k_{p1}[c_i] \times \left(\frac{p-1013}{1013} \right)^2 - k_{p2}[c_i] \times \left(\frac{p-1013}{1013} \right) \times p
- k_{t1}[c_i] \times \left(\frac{T-25}{25} \right)^3 - k_{t2}[c_i] \times \left(\frac{T-25}{25} \right)^2 - 16320 \times \left(- (k_{t3}[c_i]^2 + k_{t4}[c_i]) \times \frac{T-25}{25} \right)
\]

S1

where \(i \in \{1,2,3,4\} \), \(c_{\text{i+1}} \) [ppm] is the compensated CO₂ reading in the iteration process, \(c_i \) is the uncompensated reading in [ppm], \(p \) is the pressure in [hPa], \(T \) is the temperature in [°], and \(k_{p1}, k_{p2}, k_{t1}, k_{t2} \) and \(k_{t3} \) are empirical derived functions.

\[
k_{p1}[c_i] = A_{p1} \times c_i^4 + B_{p1} \times c_i^3 + C_{p1} \times c_i^2 + D_{p1} \times c_i
\]

S2

\[
k_{p2}[c_i] = A_{p2} \times c_i^3 + B_{p2} \times c_i^2 + C_{p2} \times c_i
\]

S3

\[
k_{t1}[c_i] = A_{t1} \times c_i^3 + B_{t1} \times c_i^2 + C_{t1} \times c_i + D_{t1}
\]

S4

\[
k_{t2}[c_i] = A_{t2} \times c_i^2 + B_{t2} \times c_i
\]

S5

\[
k_{t3}[c_i] = A_{t3} \times c_i^3 + B_{t3} \times c_i^2 + C_{t3} \times c_i
\]

S6

where \(c_i \) is the CO₂ concentration in [%] and \(A, B, C, D \) are empirical derived constants (Table S1).

Table S1: Empirical derived constants for temperature and pressure compensation

<table>
<thead>
<tr>
<th>(A_{p1})</th>
<th>(A_{p2})</th>
<th>(A_{p3})</th>
<th>(A_{p4})</th>
<th>(A_{t1})</th>
<th>(A_{t2})</th>
<th>(A_{t3})</th>
<th>(A_{t4})</th>
<th>(A_{t5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.97501</td>
<td>-9.3269E-3</td>
<td>0.046481</td>
<td>-3.0166</td>
<td>8.3600E-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-54.1519</td>
<td>0.14345</td>
<td>-1.02280</td>
<td>-8.8421</td>
<td>-2.4199E-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>479.778</td>
<td>15.7164</td>
<td>-37.4433</td>
<td>0.066814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11362.8</td>
<td>-49.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The compensated reading was calculated in an iterative process. In the first iteration loop \((i=1)\), \(c_2 \) was calculated from equation (1) by using \(c_1 \) for S2-S5. The obtained \(c_2 \) was then used in the following loop and so on. The iteration stops at the last \(c_5 \), which was the temperature and pressure corrected reading.
Figure S1. Box-whisker-plot of soil temperature for each soil depth and observatory (OB). Medians and means are shown as black and grey lines respectively.

Figure S2. Box-whisker-plot of volumetric water content for each soil depth and observatory (OB). Medians and means are shown as black and grey lines respectively.