Associate Editor Decision: Publish subject to minor revisions (review by editor) (05 Aug 2018) by Zhongjun Jia

Comments to the Author:

Dear Dr. Zhu,

Thank you for submitting your revised MS to BG

I had a quick look at your manuscript, and feel that the major concerns have been adequately addressed.

However, I would like to raise your concern about some minor points.

(1) The title can be rephrased as: Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China. As you can see, both reviewers, particularly reviewer#1 has major concern about the volume of your sample size. Although your reply appears reasonable, the key driver of soil respiration and its temperature sensitivity is not conclusively deciphered. I would like to say no single paper could resolve this problem, and your attempt to tackle this question is welcomed. In addition, the need for more measurements might be highlighted at the text in the conclusion section.

Response: Thanks for your good suggestions. We have changed our original title to “Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China”. In addition, we have highlighted the need for more measurements for soil respiration and its temperature sensitivity. Please see line 585–591 in the revised manuscript (“track change” version).

(2) The advantage and disadvantage of ANOVA and paired t test need to be discussed for its ecological implication, rather than simply stating the methods used.

Response: Thanks for your good suggestions. In our manuscript, we mainly used ANOVA and paired t to explore the differences among groups. Here, the paired t test was used to compare the differences between growing season and non-growing season soil respiration (Rs), and between autotrophic respiration and heterotrophic respiration, and the Q_{10} values among different measurement depths from same sites, because these
variables were from the same sites and in one-to-one correspondence. In addition, in our manuscript, we used both ANOVA and paired t to examine the effects of depth on Q_{10}. To clarify the ecological implication between these two statistical methods, we have briefly described their differences. Please see line 220–228 in the revised manuscript (“track change” version).

Yours sincerely

Zhongjun
Responses to reviewers’ comments on the manuscript bg-2018-83

Title: Patterns and controls of soil respiration and its temperature sensitivity in grassland ecosystems across China

Authors: Jiguang Feng, Jingsheng Wang, Yanjun Song, Biao Zhu

Dear Dr. Jia,

Thank you very much for your kind work. Both reviewers’ comments are very constructive and helpful. We have considered these comments and made a major revision of original manuscript. In the revised manuscript, we used “track changes” option to highlight where we revised, and we show the detailed response (in blue text) to each comment in this document.

We are looking forward to receiving your decision.

Thank you and best regards.

Yours sincerely,

Dr. Biao Zhu (Corresponding author) on behalf of all authors

College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Telephone: +86 10 62745258
Email address: biaozhu@pku.edu.cn
Referees’ comments:

Anonymous Referee #1:

General comments

This manuscript made a contribution by compiling published data of soil respiration and temperature sensitivity related to soil respiration from five types of Chinese grasslands. The spatial extend of the dataset covers a large region. The temporal extend of the dataset is at the annual scale. It seems that the majority of the data points in this dataset have not been integrated into any published synthesis yet. Some aspects of the manuscript deserve attention. The authors carried out some basic correlation analyses on this dataset, and found some inconsistencies as compared with results in some published reports. One inconsistency was the correlation between annual soil respiration rate (Rs) and total soil nitrogen content (or total soil carbon content, because soil C and N tend to go together). As normally expected, most published reports showed highly significant correlation between Rs and soil C & N, but not this manuscript. The actual causes of this inconsistency were unclear. Another inconsistency was that the manuscript did not find any significant correlations between climatic variable (e.g., temperature and precipitation) and Q_{10} values measured at 5 cm or 10 cm depth, which is in contrast to published results. Again, clear causes of this inconsistency were not offered.

Response: Thanks for the constructive comments. We show our response to the three main comments on the inconsistency between our results and previous studies.

The first inconsistency was the correlation between annual soil respiration rate (Rs) and total soil nitrogen. In this study, we found that annual soil respiration did not significantly correlate with soil total nitrogen ($p = 0.10$, Fig. 2f), which was not consistent with previous results at the regional and global scale. Not surprisingly, we found that soil organic carbon was closely associated with soil total nitrogen ($p < 0.01$, Table S3). But, annual soil respiration increased closely with soil organic carbon ($p < 0.001$, Fig. 2e). The non-significant correlation between soil total nitrogen and annual soil respiration might be due to the limited sample size in soil total nitrogen compared to soil organic carbon.
(24 vs. 40), and/or due to the fact that soil total nitrogen might not well represent nitrogen availability for plants and microbes.

The second inconsistency was that this study did not find any significant correlations between climatic variables (i.e. mean annul temperature (MAT) and mean annual precipitation (MAP)) and \(Q_{10} \) values measured at 5 or 10 cm depth. This was not consistent with previously published results. But, we found \(Q_{10} \) measured at 5 or 10 cm soil depth was significantly decreased with increasing soil temperature, partly supporting the previous statement that \(Q_{10} \) tends to be higher in colder regions. Additionally, although the single factor of precipitation or temperature only explained a small proportion of the spatial variation of \(Q_{10} \), the combined factors of MAT and MAP, or soil temperature and soil moisture, explained a significant proportion of the spatial variation of \(Q_{10} \) across Chinese grasslands at regional scale (Table S4). Please see the discussion in section 4.2.3 Controls of environmental factors on \(Q_{10} \).

As the authors stated in the manuscript, the soil respiration in this context has two main components: autotrophic respiration of plant roots, and heterotrophic respiration of soil microbes. Therefore, the soil respiration should be controlled by both plant-related variables and soil-related variables. But unfortunately, there were only 7 data points that have autotrophic and heterotrophic respiration measured separately (and probably using questionable methods). Consequently, \(R_s \) and \(Q_{10} \) data could not be discussed in relations to plant-related variables and soil-related variables. Furthermore, these \(Q_{10} \) values were calculated using the seasonally changing temperature data which often highly co-vary with plant growth (therefore, the seasonal increase of root respiration). As a result, the seasonal increase of root respiration would contribute to abnormally high \(Q_{10} \) values. This key aspect definitely needs authors’ attention. Changes in the Introduction, Materials and Methods, and Discussion sections are required accordingly.

Response: Thanks for the constructive comments. When discussing annual soil respiration among grassland types, we analyzed autotrophic (root) respiration and heterotrophic (microbial) respiration, respectively, for example, section 4.1.1 Annual soil
respiration among grassland types. In addition, as the substrate of microbial decomposition, soil organic carbon (SOC) affects soil respiration. In addition, soil pH mainly controls heterotrophic respiration via regulating soil microbial activities. Therefore, the discussions related to SOC and pH were associated with plant-related variables and soil-related variables. But, the few samples \((n = 7)\) from heterotrophic respiration and autotrophic respiration measured separately limited the in-depth discussions. We have pointed out this issue and highlighted the needs for more measurements in the section 5 Conclusion.

As you stated, the seasonal dynamics of plant growth affect root respiration and thereby seasonal \(Q_{10}\). At large scale, the seasonal amplitude of plant activity among different sites varied largely, which could affect the calculated seasonal \(Q_{10}\). Indeed, a previous global synthesis study found that seasonal amplitude of plant activity fundamentally dominates seasonal \(Q_{10}\) among different study sites compared with other environmental factors (Wang et al. 2010). But, in this study, we could not analyze the effects of seasonal variation of root respiration on \(Q_{10}\) due to the limited samples \((n = 7)\) from autotrophic (root) respiration. In addition, the seasonal dynamics of plant growth at a given site might also affect the calculated \(Q_{10}\). In this study, our dataset included \(Q_{10}\) estimated at different time scale for measuring soil respiration. We categorized them into three types according to plant growth stage, including growing season \(Q_{10}\), non-growing season \(Q_{10}\), and annual \(Q_{10}\). In this case, we also conducted a one-way ANOVA analysis to examine the effects of measurement period (including growing season, non-growing season and annual scale) on \(Q_{10}\) derived by soil temperature at the depth of 5 and 10 cm, and found that measurement period did not significantly affect \(Q_{10}\) derived by soil temperature at the depth of 10 cm, but significantly affected \(Q_{10}\) derived by soil temperature at the depth of 5 cm. (Fig. S7). We have discussed this result in section 4.4 Uncertainties. Following your suggestions, we have revised the related content in the sections of Introduction, Materials and Methods (Section 2.2 Data analysis), and Discussion (section 4.2.3 Controls of environmental factors on \(Q_{10}\) and Section 4.4 Uncertainties).
Specific/Minor comments

Line 25: ‘latitude and’ should be removed here. These geographic features (e.g., latitude, longitude, altitude or elevation) may be used as proxies for temperature or precipitation in data analysis only when temperature or precipitation data were not available. So authors should consider eliminate all parts of the manuscript that use these geographic features in statistical analyses and any related discussion.
Response: Thanks for your good suggestion! We have eliminated all parts of the manuscript that use these geographic features in statistical analyses and any related discussion. In the revised manuscript, we added statistical analyses and discussion of soil temperature and soil moisture.

Line 28: The % heterotrophic respiration was only based on 7 data points, therefore, should not be in the abstract. Similarly, if the authors really want to make the “key” point of growing season vs. non-growing season, they should have given clear descriptions about how the separation was done accurately and reliably.
Response: Thanks for your good suggestions! We have eliminated the contents related to % heterotrophic respiration and % growing season in the abstract. In addition, we described how the growing season and non-growing season were defined. The growing season was from May to October, and the non-growing season was from November to April in the second year.

Lines 29-31: This sentence needs a re-write so that the meaning becomes clear.
Response: Thanks for your good suggestion. We have re-written the sentence in the revised manuscript.

Line 33: Remove the sentence about latitude and longitude here (the reason is given at line 25).
Response: Thanks for your good suggestions. We have removed all the sentences related to latitude and longitude in the revised manuscript.
Lines 35-38: Authors need to substantiate about ‘how have they advanced the understanding’ here.
Response: Thanks for your good suggestion. We have revised the abstract and substantiated which understandings were advanced (line 41-45).

Line 53: “on the large scale”? Do you really want to ‘step’ on the large scale by the wall? My guess is that you really want to state: ‘at a large scale’ here. This correction should be made throughout the entire manuscript.
Response: Thanks for your good suggestions. We have changed “on the large scale” to “at a large scale” throughout the entire manuscript.

Lines 67-68: Move the “and” to the place before the last part of the sentence, before “leaf area index”.
Response: Thank you. We have moved the “and” before “leaf area index”.

Line 83: “As known to all …” The sentence is awkward.
Response: Thank you. We have re-written the sentence.

Line 133 and line 137: How could equations (1) and (2) have the same right sides? Also, what is the time factor for the T here? Is it measured at hourly, daily, weekly or annually time period?
Response: Thanks for your good suggestion. The equation (2) in the original manuscript was not correct. We have corrected equation (2). Here, the T represents the soil temperature recorded when measuring soil respiration. In this study, we only selected Q_{10} data when soil respiration measurement time was not less than four months (see section 2.1. Data collection). Here, the time period among case studies was not consistent with each other. Some studies provided the weekly time period, and some studies provided the monthly time period.

Line 155: Please define the “R-square and the model” here.
Response: Thanks for your suggestion. We have defined the “R-square and the model” in the section 2.1. Data collection when the R² first appeared in the manuscript.

Line 174: Why using “a constant of 0.58” here? I think it should be 0.5 now (see Pribyl 2010, Geoderma 156: 75–83).
Response: Thanks for your good suggestion. We have carefully read the article you provided (Pribyl 2010), in which the author suggested that the constant of 0.50 is more accurate than the conventional factor of 0.58. At present, the conversion factor of 0.50 was widely used. We have converted soil organic matter to soil organic carbon by the constant of 0.50. Meanwhile, we re-analyzed the content related to soil organic carbon, and revised the corresponding text throughout the entire manuscript and the supplementary information.

Line 263: “Q_{10-ST10}” is not shown by Figure 5. Did you mean Q_{10-ST5}?
Response: Thanks for your comment. Here, the Q_{10-ST5} was correct. In the original manuscript, the caption of Figure 5 missed the information of Q_{10-ST10}, but the figures in Figure 5 were right. Now, we have added the missing information of Q_{10-ST10} in the caption of Figure 5.

Line 267: Not “Table S3”, should be Table S4.
Response: Thanks for your correction. We have changed Table S3 to Table S4.

Line 302: “untimely” should be ‘ultimately’
Response: Thanks for your correction. We have corrected the word.

Lines 308-315: The discussion here is unclear.
Response: Thanks for your good suggestion. We have re-written this part of discussion (line 364-370).

Line 320: “n=20” here, but there were only 6 dots in the figure?
Response: Thanks for your corrections. Here, we miswrote the sample size. Indeed, there only 6 dots for the relationships of Rs and belowground biomass. We have changed $n = 20$ to $n = 6$.

Lines 331-352: These low R-square values could be a serious problem for this manuscript. How did you deal with this issue?
Response: Thank you for the comment. In this study, we obtained Q_{10} and its R^2 calculated using the equation (1) and (2). We only selected the R^2 values when the exponential fitting between soil respiration (Rs) and soil temperature were statistically significant ($p < 0.05$). If the p values were larger than 0.05 in case study, we did not select the Q_{10} and its R^2 value. In spite of this, the R^2 in some case studies were very low. As presented in this study, only 37.3% of R^2 for Q_{10} was larger than 0.7, indicating that most of the seasonal variation of Rs rate cannot be well explained by soil temperature using the van’t Hoff equation. In section 4.2.1 R^2 for Q_{10} in Chinese grasslands, we discussed the R^2 for Q_{10} in detail, and pointed out that for ecosystems (e.g., grassland and desert) in arid and semi-arid regions, Rs could be better estimated by the combined factors of soil temperature and moisture.

Lines 405-425: This section is really rough. The quality of the discussion needs improvement.
Response: Thanks for your good suggestion. We have revised this part (line 478-508).

Lines 453-457: To me, Fig. 7 actually showed huge differences between those three methods.
Response: Thanks for your comment. Here, we guess you mean Figure S7. The differences might be not only due to the measurement methods, but also be due to the differences among grassland types. To eliminate the influences of grassland type, we also compared the measurement method effects within each grassland type. As presented in the new Figure S7, the ANOVA analyses showed that there were generally no significant differences for Q_{10} (at the soil depth of 5 and 10 cm) among measurement methods,
whether the data was pooled across all grasslands or within each grassland type. For Rs, there was only one sample from alkali absorption (AA, Rs = 202.5), which seems to be much lower than dynamic closed chamber (DCC, Rs = 589.2) and static closed chamber (SCC, Rs = 459.9). Considering this AA data for Rs was from temperate typical steppe (TTS), we also compared this value (202.5) measured by AA to those measured by DCC and SCC within TTS. We found that the value of 202.5 (AA) was lower than 548.3 (DCC), but close to 193.0 (SCC). Therefore, including the single data measured by the alkali absorption method in our synthesis does not meaningfully change the results of Rs and Q_{10}.

Lines 471-473: The sentence structure is problematic.
Response: Thanks for your comment. We have re-written the sentence.

Lines 468-481: The Conclusion really needs lots of improvement.
Response: Thanks for your good suggestion. We have revised this part.

Anonymous Referee #2:

General comments
In this paper, the authors used published data to analyze the variations of soil CO$_2$ respiration rates and their temperature sensitivity (Q_{10}) across Chinese grasslands. Furthermore, their relationships with some abiotic and biotic factors were analyzed. The results could advance the understanding of the variation and control factors of soil CO$_2$ respiration rates and their temperature sensitivity (Q_{10}).
Response: Thank you very much for your encouragement.

Specific comments:
Line 72: shown
Response: Thanks for your correction. We have corrected the word.

Line 137: Correct the equation 2
Response: Thanks for your good suggestion. We have corrected the equation. Please see line 154 in the text.

Line 148-151: The Q_{10} values were divided into five soil depth with different soil temperature
Response: Thanks for your good suggestion. We have revised the sentence. Please see line 172-173 in the text.

Line 178: shown
Response: Thanks for your correction. We have corrected the word.

Line S2: add the measuring methods
Response: Thanks for your good suggestion. We guess you mean add the measuring methods in line 187-188 in the original manuscript. Following your suggestion, we have added the measuring methods in the supplement file.

Line 192, Fig. 4: Why choose paired sample t-test to analyze the significant differences of the Q_{10} among the different soil depths?
Response: In this study, most studies reported the Q_{10} values derived by soil temperature at one or two different soil depths. For example, one study includes Q_{10} at 5 and 10 cm soil depth, one study includes Q_{10} at 10 and 15 cm soil depth, and another study includes Q_{10} at 10, 15 and 20 cm soil depth. Under this condition, the Q_{10} at the five soil depths was not paired. Therefore, when combining all Q_{10} from different studies and comparing Q_{10} derived by the five soil depths, the differences for Q_{10} among soil depths might be result from grassland type, rather than soil depth. Therefore, we choose paired sample t-test to analyze the significant differences of the Q_{10} among the different soil depths. When treating the similar data, previous studies also applied the paired sample t-test to analyze
the significant differences, such as Peng et al (2009) and Wang et al (2010). However, several studies used one way analysis of variance (ANOVA) to compare the differences for Q_{10} among different soil depths, such as Song et al (2014), Xu et al (2015). Therefore, we also applied ANOVA to analyses the differences among different soil depths, which can also present the patterns of Q_{10} among soil depths. To clarify the ecological implication between these two statistical methods, we have briefly described their differences. Please see line 220–228 in the revised manuscript. The results from paired sample t-test were presented in the manuscript (Fig. 4), and the results from ANOVA were presented in the supplement file (Fig. S3).

Line 209: there are no results for the temperate desert steppe in Table 1
Response: In this study, we focused on soil respiration at the annual scale. Meanwhile, we also checked the original data. Indeed, we found that there was no annual soil respiration measured in temperate desert steppe in China when we searched references. Therefore, our results for annual soil respiration rate did not include temperate desert steppe (Table 1), and we noted this condition in the captions of Table 1.

Line 233 and Line 239: five soil depths
Response: Thanks. We have corrected the writing.

Line 248: 1.73±0.08
Response: Thanks. We have changed $2.65±0.08$ to $1.73±0.08$.

Line 267: Table S4
Response: Thanks. We have corrected the writing.

Line 271-286, most of the contents are descriptive and repeated with results
Response: Thanks for your comment. We have re-written this part (line 313-332).

Line 364 relatively colder and higher than what?
Response: Thanks for your comment. We have described it in detail.

Fig. 2, 5: indicate the n values for each regression analysis
Response: Thanks for your good suggestion. We have indicated the n values for each regression analysis.

Fig. 3 Line 675 (e) and (g)
Response: Thanks. We have corrected the word.

Table S1: what R^2 represent for? What the ranges of soil temperature and soil moisture?
Response: Thanks. Here, in Table S1, the R^2 represent the determination coefficient for the relationship between soil temperature and soil respiration rate based on equation (1) and (2). In order to clearly distinguish this type of R^2 from the R^2 in regression analyses in Figure 2 and Figure 5, we changed all this type of R^2 to R_Q^2 through the entire manuscript. We have revised the related descriptions in detail, please see the definition of R_Q^2 in section 2.1 Data collection and related content in the revised manuscript. For soil temperature and soil moisture, these two parameters are provided with different time scale in case studies, for example some studies provided monthly or weekly mean temperature and moisture, some studies provided daily mean temperature and moisture, and some studies provided daily temperature and moisture. In this case, we could not accurately obtain the ranges of these two parameters, and we did not include the ranges of soil temperature and soil moisture in our dataset and analysis.

Table S2: show the n values. Are there values of soil temperature and soil moisture?
Response: Thanks. We have indicated the n values for each item in Table S2. Meanwhile, we have added soil temperature and soil moisture in Table S2. As the two key environmental factors, these two parameters might also control soil respiration and its temperature sensitivity (Q_{10}). Therefore, we also analyzed the relationships between these two parameters and annual soil respiration and Q_{10} derived by soil temperature at the depth of 5 and 10 cm, respectively.
Table S3: show the n values. Are there values of soil temperature and soil moisture?

Response: Thanks. We have indicated the n values in Table S3. Meanwhile, we have added analysis of soil temperature and soil moisture in Table S3.

Fig. S1, S5, S6: show the n values

Response: Thanks for your good suggestion. We have indicated the n values in Figure S1, S5 and S6.

Fig. S7: is data for method comparison from the same or similar sites? Otherwise, there may be many factors affect the annual Rs and Q_{10}.

Response: Thanks for your comment. Here, the data for method comparison is from all sites. Indeed, when combining all data from different sites, the method comparisons for Rs and Q_{10} are affected by many factors, such as grassland types, soil properties. As presented in the section 3.2.1 and 3.2.3, the Rs and Q_{10} are affected by many environmental factors. Under this condition, one of the ways to address this issue is using data from the same or similar sites to compare the differences among measuring methods. We treated the grasslands within each grassland type as similar sites. Here, in order to eliminate the influences of other factors, we also compared the measurement method effects within each grassland type. As presented in the new Figure S7, the ANOVA analyses showed that there were generally no significant differences for Rs, Q_{10} derived by soil temperature at the depth of 5 and 10 cm among measurement methods, whether the data was pooled across all grasslands or within each grassland type. Due to the only one sample of annual Rs measured by alkali absorption (AA), we could not compare it to the other two methods using ANOVA analysis. Considering the value measured by AA was very close to that by static closed chamber (SCC), the effects of measurement methods on Rs could be neglected.

References used in our responses:

Patterns and controls of soil respiration and its temperature sensitivity in grassland ecosystems across China

Jiguang Feng¹, Jingsheng Wang², Yanjun Song³, Biao Zhu¹

¹Department Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
²Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
³Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, the Netherlands

Correspondence to: B. Zhu (biaozhu@pku.edu.cn)

Abstract. Soil respiration (Rs), a key process in the terrestrial carbon cycle, is very sensitive to climate change. In this study, we synthesized 54 measurements of annual Rs and 171 estimates of Q₁₀ value (the temperature sensitivity of soil respiration) in grasslands across China. We quantitatively analyzed their spatial patterns and controlling factors in five grassland types, including temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm-tropical grassland. Results showed that the mean (± SE) annual Rs was 582.0 ± 57.9 g C m⁻² yr⁻¹ across Chinese grasslands. Annual Rs significantly differed among grassland types, and positively correlated with mean annual temperature, mean annual precipitation, soil temperature, soil moisture, soil organic carbon content and aboveground biomass, but negatively correlated with latitude and soil pH (P<0.05). Among these factors, mean annual precipitation was the primary factor controlling the spatial variation of annual Rs in Chinese grassland types. Based on the overall data across Chinese grasslands, the Q₁₀ values ranged from 1.03 to 8.13, with a mean (± SE) of 2.60 ± 0.08. The mean contributions of
growing season Rs and heterotrophic respiration to annual Rs were 78.7% and 72.8%, respectively. Moreover, the mean (± SE) of Q_{10} values across Chinese grasslands was 2.60 ± 0.08, ranging from 1.03 to 8.13, and varied largely within and among grassland types; and among soil temperature measurement depths. Among grassland types, the highest Q_{10} derived by soil temperature at the depth of 5 cm occurred in alpine grasslands. Generally, the seasonal variation of soil respiration in Chinese grasslands generally cannot be well explained by soil temperature using the van’t Hoff equation. Longitude and altitude were the dominant driving factors and accounted for 26.0% of the variation in Q_{10} derived by soil temperature at the depth of 5 cm. Overall, our findings advance our understanding of the spatial variation and environmental control of soil respiration and Q_{10} across Chinese grasslands, and also improve our ability to predict soil carbon efflux under climate change on the regional scale. Overall, our findings suggest that the combined factors of soil temperature and moisture would better predict soil respiration in arid and semi-arid regions, highlight the importance of precipitation in controlling soil respiration in grasslands, and imply that alpine grasslands in China might release more carbon dioxide to the atmosphere under climate warming.

Keywords: Soil respiration, Soil carbon emission; Temperature sensitivity; Grassland ecosystem; Q_{10}

1 Introduction

Soil respiration (Rs) represents carbon dioxide (CO$_2$) efflux from the soil surface, including autotrophic/root respiration, and heterotrophic/microbial respiration associated with soil organic matter and litter decomposition (Boone et al., 1998; Kuzyakov, 2006; Schindlbacher et al., 2009). As one of the largest fluxes in the global carbon cycle, Rs plays an important role in regulating ecosystem carbon cycling, carbon-climate feedback, and climate change (Raich and Schlesinger, 1992; Davidson et al., 2002; Luo and Zhou, 2006; Bond-Lamberty and Thomson, 2010). The temperature sensitivity of Rs (Q_{10}), the factor by which Rs is multiplied when temperature increases by 10 °C, is a key parameter to evaluate the feedback intensity between soil carbon efflux and climate warming (Reichstein et al., 2005; Davidson and Janssens, 2006). Knowledge on patterns and
controls of Rs and Q_{10} variation on a large scale is crucial for better understanding and modeling soil carbon cycle in a warmer world (Peng et al., 2009; Wang et al., 2010).

Temperature and precipitation are commonly believed to be the most important climatic factors controlling Rs on the large scale, as suggested by a number of studies (Raich and Schlesinger, 1992; Raich and Potter, 1995; Chen et al., 2014; Hursh et al., 2017). As the indirect factors, altitude and latitude can also affect Rs by affecting climatic factors (Song et al., 2014). Soil properties, such as soil organic carbon (SOC), soil total nitrogen (STN) and soil pH, can also affect Rs in that they can directly or indirectly affect substrate quality and quantity, which strongly control soil microbial activity and heterotrophic respiration (Ryan and Law, 2005; Chen et al., 2010a, 2014; Song et al., 2014). Additionally, biotic factors including decomposer microbes and roots (together with associated mycorrhizal fungi) plant can directly influence soil respiration via heterotrophic and autotrophic respiration, respectively (Ryan and Law, 2005; Bahn et al., 2010). Previous studies have shown that Rs increased with total, aboveground and belowground net/gross primary production, aboveground biomass (AGB), and belowground biomass (BGB), and leaf area index (Raich and Schlesinger, 1992; Hibbard et al., 2005; Bahn et al., 2008; Chen et al., 2014; Zhao et al. 2017).

Similarly, the temperature sensitivity of Rs is also largely regulated by both biotic and abiotic factors. As the response of Rs to temperature is controlled by temperature effects on autotrophic respiration from roots and heterotrophic respiration from SOC decomposition, the temperature sensitivity of Rs should be regulated by plant-related biotic variables and soil-related environmental variables. Several studies have showed that climatic factors had strong controls on the spatial variation of Q_{10}, and Q_{10} generally decreased with mean annual temperature (MAT) and mean annual precipitation (MAP) (Raich and Schlesinger, 1992; Kirschbaum, 2000; Peng et al., 2009; Song et al., 2014). In terms of geographical variables, latitude and altitude can also indirectly influence Q_{10} via controlling MAT and MAP (Song et al., 2014; Xu et al., 2015). In addition to climatic and geographical variables, the spatial variation of Q_{10} could be affected by seasonality of plant activity. Previous studies suggested that plant growth plays an important role in the seasonal variation of Rs, and thereby the seasonal dynamic changes in plant activity affect seasonal Q_{10} (Yuste et al., 2004; Wang et al., 2010). Furthermore, Q_{10} could be also affected by soil properties and other factors, such as soil...
temperature, soil moisture, plant biomass, soil pH, SOC and STN, which can directly influence root and microbial activity, substrate availability and nutrient supply (Zhou et al., 2009; Song et al. 2014; Zhao et al., 2017). Grasslands in China cover 29–41% of its total land area (Shen et al., 2016) and have significant effects on regional climate and carbon cycle (Ni, 2002). As known to all, in China, grasslands are widely distributed throughout the country, and the different climate gradients and landforms in China support a number of grassland types, including tropical, warm, temperate, and alpine grassland, etc. (Chen et al., 2002; Shen et al., 2016). Specifically, the temperate arid and semi-arid grasslands in Inner Mongolia, and the alpine meadow and steppe in Qinghai-Tibet Plateau comprise the main body of temperate and alpine grasslands, respectively (Shen et al., 2016). In the past two decades, a large number of case studies on Rs have been widely conducted in grasslands across China. However, few have been included in global Rs and Q_{10} syntheses (Raich and Schlesinger, 1992; Wang et al., 2010; Bond-Lamberty and Thomson, 2010; Chen et al., 2014; Hursh et al., 2017), largely because most studies were published in Chinese journals. Given that the diverse grassland types, especially alpine grasslands distributed in China, Rs and Q_{10} may vary among grassland types due to the differences in abiotic and biotic factors, and the patterns of Rs and Q_{10} across Chinese grasslands may differ from global terrestrial ecosystems and grasslands. However, how the spatial variation of Rs and Q_{10} varies with abiotic and biotic factors across Chinese grasslands and their differences among grassland types still remain poorly understood.

In this study, we synthesized all the available data relating to Rs and Q_{10} in grasslands across China. Our main objectives were to: (1) analyze the spatial patterns of Rs and Q_{10} across various grassland ecosystems in China; (2) compare the differences in Rs and Q_{10} among grassland types; (3) identify how abiotic and biotic factors drive Rs and Q_{10} among sites on the regional scale, including geographic variables, climatic factors, soil properties and biotic factors; and (4) compare the Rs and Q_{10} in Chinese grasslands with those from previous syntheses on the global and regional scale.
2 Materials and Methods

2.1. Data collection

Peer-reviewed journal articles and published theses (including available online) before December, 2017 were searched using Web of Science and China National Knowledge Infrastructure (CNKI, available online: http://epub.cnki.net) with the following search term combinations: (soil respiration OR soil CO₂ flux OR soil CO₂ efflux OR soil CO₂ emission OR soil carbon flux OR soil carbon efflux OR soil carbon emission) AND (grassland OR steppe OR meadow OR grass). Additional searches with the same keywords were conducted on ScienceDirect (Elsevier Ltd., Amsterdam, Nederland), Springer Link (Springer International Publishing AG, Berlin, Germany), and Wiley Online Library (John Wiley & Sons Ltd., Hoboken, USA). Furthermore, previous global and regional syntheses on the similar topic were also screened to check Chinese grassland data, such as Peng et al. (2009), Wang and Fang (2009), Bond-Lamberty and Thomson (2010), Wang et al. (2010) and Chen at al. (2010, 2014).

To ensure data consistency and accuracy, the following six criteria were applied to select appropriate studies: (1) experimental studies were conducted in the field; (2) experiments with the treatments of nitrogen (fertilizer) addition, increased or decreased precipitation, warming, elevated CO₂, simulated acid rain, clipping, and grazing were removed; (3) the study must contain soil respiration or Q_{10} with a clear record of grassland type and experimental duration; (4) the investigation time for measuring Rs was not less than twelve months so that the annual Rs can be obtained, and modeled annual Rs based on the relationships between Rs rate and temperature were not included; (5) the investigation time for estimating Q_{10} value was not less than four months; and (6) Q_{10} values were calculated by the van’t Hoff equation (Van’s Hoff, 1898).

\[SR = \alpha \times \exp(\beta \times T) \]
\[Q_{10} = \alpha \times \exp(10\beta \times T) \]

where SR is the measured soil respiration rate, T is the measured soil temperature at the given depth, and coefficient α and β are fitted parameters. The Q_{10} values were calculated as:

Several studies measured Rs and its temperature sensitivity at different years, and then these Rs and Q_{10} values were averaged across years. In this case, only the highest $R_{Q_{10}}^2$
(coefficient of determination for calculating Q_{10} using Eq. (1))R^2 was extracted if more
than one R^2-coefficient of determination (R^2)-values of Q_{10} were available in the same
study. In addition, the Q_{10} values were estimated by Rs measured at different plant growth
stage, and they were further categorized into three types according to the Rs measurement
period, including growing season Q_{10}, non-growing season Q_{10} and annual Q_{10}. If these
three types of Q_{10} were all available, only the annual Q_{10} was selected in our database, the
annual Q_{10}-value was selected in our database if the growing season, non-growing season,
and annual Q_{10}-values were available. Within these constraints, 54 measurements of annul
Rs rate and 171 estimates of Q_{10} value were obtained from 108 published experimental
studies across Chinese grasslands (Table S1). Our database contained 14 variables
associated with Rs, including annual Rs, growing and non-growing season Rs and their
proportions to annual Rs, the proportion of autotrophic and heterotrophic respiration to
annual Rs, Q_{10} values of Rs and their corresponding R^2. Here, the growing season was
from May to October, and the non-growing season was from November to April in the
second year, and the Q_{10} of Rs. The Q_{10} values were divided into five soil depths with
different soil temperature types based on the soil temperature at different depths (ST0, soil
surface temperature; ST5, soil temperature at 5 cm; ST10, soil temperature at 10 cm;
ST15, soil temperature at 15 cm; and ST20, soil temperature at 20 cm) for the same site.
In one study, the Q_{10} was derived by soil temperature at the depth of 6 cm, and then it was
treated as Q_{10}-ST5 because of little difference in soil temperature between 5 cm and 6 cm.

In most of publications, the Rs, Q_{10} and its R^2 of the model were presented, and they
were incorporated into our database directly. The Rs, Q_{10} and R^2 values were
recalculated according to the available information if these values were not directly
provided in some publications. The growing season, non-growing season and annual Rs
were obtained by interpolating measured Rs rate between respective sampling dates for
each seasonal measurement period of the year, and then computing the sum to obtain the
corresponding values (Frank and Dugas, 2001; Sims and Bradford, 2001) as follows:

$$CSR = \Sigma (\Delta t_k \times F_{m,k}) \quad (3)$$

where CSR is cumulative soil respiration during the season, $\Delta t_k (= t_k - t_{k-1})$ is the time
interval between each field measurement within the season, and $F_{m,k}$ is the average Rs rate
over the interval $t_k - t_{k-1}$.

In addition, for each study site, we also recorded other supporting information from the
original publications, including grassland type, geographic variables (longitude, latitude and altitude), climatic factors (MAT and MAP), soil properties (soil temperature, soil moisture, soil pH, SOC and STN), and biotic factors (microbial biomass carbon (MBC), AGB and BGB). Missing climatic information were obtained using NASA Surface meteorology and Solar Energy - Location, and the other missing information were obtained from the related references according to the study site and described experiment design. Several studies provided the soil organic matter content, which was converted to SOC by multiplying a conversion factor of 0.50 (Pribyl 2010). In case of gravimetrical soil moisture being provided, it was converted to volumetric soil moisture according to soil bulk density - a constant of 0.58. Given that BGB were measured in different soil depths, only BGB measured in 0–40 and 0–50 cm soil depths were selected because roots were mainly distributed in 0–50 cm and there were minor difference between 0–40 and 0–50 cm. The distributions of selected experimental sites were showed in Fig. 1.

2.2. Data analysis

In this study, grasslands were divided into five groups, including temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm-tropical grassland. If grassland type was not provided directly, it was determined according to the dominant plant species reported in selected publications and the Classification of Grassland Ecosystem in China (Chen et al., 2002). Detailed statistical parameters for the five grassland types were presented in Table S2.

One-way analysis of variance (ANOVA) was used to examine whether annual Rs and Q_{10} values differed among grassland types or soil temperature measurement depths, measuring periods or measuring methods. In case of homogeneity of variances, the least significant differences (LSD) test was applied; otherwise, the Dunnett T3 test was applied. Paired-samples t-test was performed to compare the differences between growing season and non-growing season Rs, between autotrophic respiration and heterotrophic respiration, and the Q_{10} values among different measurement depths. The reason for using paired-samples t-test was that these two corresponding variables were interconnected as they were from the same study sites. In addition, we used two statistics to explore the differences for Q_{10} among measurement depths. The paired-samples t-test was used to compare Q_{10} among different measurement depths from same sites, whereas the ANOVA
was used to compare Q_{10} among different measurement depths from all sites. Compared with ANOVA, the advantages of paired-samples t-test was that it avoided the effects of unequal spatial distribution of samples from different depths on Q_{10} and only compared the effects of measurement depth. The univariate regression analysis was used to identify the relationships between annual Rs, Q_{10}, and a given biotic or abiotic factor mentioned above, except for MBC because of its limited sample size. The multiple stepwise linear regression analyses were also performed to identify the comprehensive effects of environmental variables (including latitude, altitude, MAT, and MAP, soil temperature and moisture as they had relatively enough sample sizes as they were in one-to-one correspondence) on annual Rs, and Q_{10} derived by ST5 and ST10. Correlations among these factors were calculated with the Pearson correlation coefficients. All statistical analyses were performed using the software IBM SPSS Statistics 20.0 (IBM Corporation, New York, USA).

3 Results

3.1 Soil respiration and its controlling factors

3.1.1. Patterns of annual soil respiration across Chinese grasslands

The annual Rs ranged from 122.9 to 2407.1 g C m$^{-2}$ yr$^{-1}$, with the total mean (± SE) of 582.0 ± 57.9 g C m$^{-2}$ yr$^{-1}$. There were significant differences in annual Rs between grassland types ($p < 0.001$), with the highest annual Rs in the warm-tropical grassland and the lowest annual Rs in the temperate desert steppe (Table 1). The proportions of growing season or non-growing season Rs varied slightly among different grassland types ($P-P > 0.05$), but the proportion of Rs in growing season was significantly higher than that in non-growing season ($p < 0.001$). Overall, growing season and non-growing season Rs consisted of 78.7% and 21.3% of the annual Rs, respectively, across all grasslands in China (Table 1). In addition, growing season Rs was significantly positively correlated with the annual Rs based on linear regression model ($r^2 = 0.923$, $p < 0.001$, Fig. S1). At the annual scale, the mean contribution of heterotrophic respiration to Rs was 72.8% across Chinese grasslands, which was significantly larger than that of autotrophic respiration with the mean of 27.2% ($p < 0.01$, Fig. S2).
3.1.2. Spatial controls of abiotic and biotic factors over soil respiration

In the univariate linear regressions, annual Rs significantly increased with MAT, MAP, soil temperature, soil moisture, SOC, and AGB across all grasslands in China, but decreased with latitude, altitude, and soil pH ($p < 0.05$, Fig. 2). In contrast, annual Rs did not correlate well with STN and BGB ($p > 0.05$). The single factor of latitude, MAT, MAP, soil temperature, soil moisture, SOC, soil pH, and AGB accounted for 25.7%, 22.4%, 31.3%, 30.2%, 20.9%, 32.0%, 29.6%, 20.6%, and 36.1% of the spatial variation of annual Rs, respectively (Fig. 2). In addition, only the variable of MAP was selected in the analysis of stepwise linear regression, indicating that MAP was the primary factor controlling the spatial variation of annual Rs in Chinese grasslands.

3.2 Temperature sensitivity of soil respiration and its controlling factors

3.2.1 Distributions of Q_{10} values and its coefficient of determination

Most of the Q_{10} values (83.0%) were distributed between 1.5 and 3.8. However, the distributions of Q_{10} values derived by the five temperature types, soil depths were different (Fig. 3a-e). The largest relative frequency for Q_{10-ST5} and $Q_{10-ST10}$ values was within the range of 1.5 to 3.0 (68.5%) and 1.5 to 3.5 (83.1%), respectively, while that of Q_{10-ST0} was mainly within 1.0–2.0 (88.2%, Fig. 3). In addition, the distribution of $Q_{10-ST15}$ and $Q_{10-ST20}$ were relatively uniform (Fig. 3d and e).

Similarly, the distributions of RQ^2R^2 for Q_{10} derived by the five soil depths, temperature types also differed from each other (Fig. 3f-g). The RQ^2R^2 values for Q_{10-ST5} and $Q_{10-ST10}$ were mainly distributed in 0.6–0.9 and 0.5–0.7, respectively, while those for $Q_{10-ST15}$ and $Q_{10-ST20}$ were mainly distributed in 0.3–0.6. The RQ^2R^2 value for Q_{10-ST0} was distributed uniformly (Fig. 3f). Overall, only 35.6% of RQ^2R^2 values for Q_{10} were within the range of 0.7–1.0.

3.2.2 Patterns of Q_{10} values across Chinese grasslands

Across all grasslands, the overall Q_{10} values ranged largely from 1.03 to 8.13, with the mean (± SE) of 2.60 ± 0.08. Specifically, the mean (± SE) of Q_{10} values derived by ST0, ST5, ST10, ST15, and ST20 was 4.651 ± 0.08, 2.80 ± 0.14, 2.56 ± 0.12, 2.64 ± 0.33,
and 2.81 ± 0.31, respectively (Fig.3 a-e). Paired t-test demonstrated that Q_{10} significantly differed between two adjacent depths in the top 15 cm soil ($P_{-t} < 0.05$), whereas no difference occurred below 15 cm depth ($p > 0.05$; Fig. 4). Generally, the overall Q_{10} and paired Q_{10} increased with soil temperature measurement depth (Fig. 4; Fig. S3). In terms of grassland types, there were significant differences for Q_{10} derived by ST5 and ST10 among grassland types, respectively ($p < 0.05$, Fig. 4b and c). For Q_{10} derived by ST5, it was highest in alpine grassland, while for Q_{10} derived by ST10, the highest value was in warm-tropical grassland. In addition, Q_{10} values derived by ST0, ST15 and ST20 were not enough to meet the demand of statistical analysis, so their differences among grassland types were not examined.

3.2.3 Spatial controls of environmental factors over Q_{10}

The relationships of $Q_{10\text{-ST5}}$ and $Q_{10\text{-ST10}}$ with abiotic and biotic factors were presented in Fig. 5. Among these abiotic and biotic factors, $Q_{10\text{-ST5}}$ significantly positively correlated well with latitude, altitude, SOC, AGB and BGB, whereas negatively correlated with soil temperature ($P_{-t} < 0.05$, Fig. 5). In contrast, $Q_{10\text{-ST10}}$ significantly correlated with MAP, soil temperature and SOC ($P_{-t} < 0.05$, Fig. 5). In addition, only three factors including altitude, MAP and MAT were selected in the analysis of stepwise linear regression, indicating that they interactively affected $Q_{10\text{-ST5}}$ and accounted for 26.0% combined MAP and MAT, and combined soil temperature and soil moisture affected $Q_{10\text{-ST5}}$ and jointly accounted for 22.1% and 13.9% of the spatial variation of $Q_{10\text{-ST5}}$ across Chinese grasslands (Table S4S3).

4 Discussion

4.1 Spatial patterns and controlling factors of annual soil respiration

4.1.1 Annual soil respiration among grassland types

Significant differences among the five grasslands suggested grassland type had significant influence on annual Rs ($p < 0.001$, Table 1), which in arid and semi-arid ecosystems, such as grassland and desert, MAP might play a key role in controlling carbon cycling. Our results also suggested that MAP had significant controls on mean annual Rs among
various grassland types in China ($p < 0.01$, Fig S4). The significant difference in mean annual Rs might be mainly attributed to the differences in AGB, BGB and microbial activity induced by precipitation across various grassland types. Previous incubation experiments showed microbial respiration positively correlated with microbial biomass. Previous studies suggested that grasslands with higher MBC had larger heterotrophic respiration (Colman and Schimel, 2013; Ding et al., 2016), indicating grasslands with higher MBC would have larger heterotrophic respiration. Meanwhile, a regional study demonstrated that microbial biomass was closely increased with MAP in grasslands (Chen et al., 2016b), which was also found in this study (Table S3). Altogether, these suggested that the regions with high MAP would have larger heterotrophic respiration. Additionally, a previous study demonstrated that both AGB and BGB increased with MAP across Chinese grasslands (not including warm-tropical grasslands) (Ma et al., 2014). Therefore, in this case, autotrophic respiration would be higher in the grasslands with high plant biomass. Collectively, the grasslands with high MAP would have relatively higher Rs rate. Our results also showed this trend that mean annual Rs in each of the four grassland types increased significantly with MAP ($p < 0.01$, Fig S4).

4.1.2 Controls of environmental factors on annual Rs

Across Chinese grasslands, annual Rs were strongly related to latitude, MAT and MAP, soil temperature and soil moisture, which were consistent with previous results obtained from global terrestrial ecosystems (Raich and Schlesinger, 1992; Raich and Potter 1995; Chen at al., 2014; Hursh et al. 2017), global grasslands (Wang and Fang, 2009), and Chinese forests (Song et al., 2014; Xu et al., 2015). As a key factor controlling climate conditions on the regional and global scale, latitude could significantly influence Rs by affecting climatic variables (Song et al., 2014). Our study showed that MAT and MAP decreased closely with latitude ($p < 0.001$, Table S3), indicating that latitude is an indirect factor affecting annual Rs on the large scale. Compared with MAT and soil temperature, MAP and soil moisture explained more spatial variations of annual Rs, suggesting that these two factors are more important in predicting Rs in arid and semi-arid ecosystems under climate change.

In addition, spatial variations of annual Rs were also controlled by soil properties, such as
SOC and soil pH. The relationships between annual Rs and SOC as well as pH were also observed in global, regional and local terrestrial ecosystems (Chen et al., 2010b, 2014; Song et al., 2014; Xu et al., 2016). Since Rs involves the process of converting organic carbon into inorganic carbon, the soil CO$_2$ emission from microbial decomposition of soil organic carbon is ultimately determined by the supply of C substrate (Wan et al., 2007). Additionally, soil pH can directly regulate the activities of microbes and C-acquiring enzymes (Turner, 2010). In neutral and alkaline soils, microbial biomass tended to decrease with soil pH (Ding et al., 2016). Therefore, this led to a negative correlation between Rs and soil pH in Chinese grasslands because most of grasslands in China are distributed in neutral and alkaline soils. Further, Chen et al. (2010b) demonstrated that annual Rs significantly increased with soil total nitrogen on the global scale. Meanwhile, some case studies revealed the similar relationship between growing season Rs and soil total nitrogen among different grassland types and vegetation communities (Chen et al., 2010a; Wang et al., 2015; Xu et al., 2016) on the local scale, while annual Rs did not correlate well with STN in this study. Given that SOC and STN are closely associated with one another (Table S3), the insignificant correlation of Rs with STN might be due to the fact that soil total nitrogen might not well represent nitrogen availability for plants and microbes. Altogether, these results suggested that the effect of soil total nitrogen on Rs depended on plant growth period, vegetation type, and spatial scale. Therefore, how STN influence Rs across Chinese grasslands on the regional scale should be further studied.

Furthermore, as the source of autotrophic respiration, BGB can directly influence Rs, which has been observed in ecosystems on the global and local scale (Chen at al., 2010a, 2014). However, no significant correlation between BGB and Rs was observed in the present study, which might be attributed to the limited sample size ($n = 296$) and the uncertainty in measuring BGB (due to inconsistent or insufficient sampling depth). In grassland ecosystems, BGB generally increased with AGB (Ma et al., 2014), and this relationship was also observed in this study ($p < 0.10$, Fig. S5). Therefore, given the significant correlation between AGB and Rs in Chinese grasslands (Fig. 2), BGB may also have the potential to control annual Rs across Chinese grasslands, although this should be further investigated based on accurate quantification of BGB and Rs across a large number of sites.
4.2 Spatial patterns and controlling factors of Q_{10} values

4.2.1 $R^2_{Q_{10}}$ for Q_{10} in Chinese grasslands

In this study, only 37.3% of $R^2_{Q_{10}}$ for Q_{10} was larger than 0.7, indicating that most of the seasonal variation of Rs rate cannot be well explained by soil temperature using the van’t Hoff equation (Eq. 2). Compared with the results obtained from Chinese forests (Xu et al., 2015), the van’t Hoff equation (Eq. 2) was not very suitable to describe the relationships between Rs rate and soil temperature in most of Chinese grasslands. This might be associated with the difference in soil moisture between these two ecosystems because besides temperature, soil moisture may strongly influence the apparent Q_{10} (Subke and Bahn, 2010). Previous studies have suggested that in humid and semi-humid regions the effect of soil moisture on Rs is weak, whereas in arid and semi-arid regions, Rs is significantly influenced by soil moisture (Jia et al., 2006; Li et al., 2011; Wang et al., 2014a, 2014b). Moreover, some studies showed that soil moisture and temperature had an interactive effect on the seasonal variations of Rs rate (Davidson et al., 1998; Jia et al., 2006; Wang et al., 2014b; Liu et al., 2016), indicating that the two-variable equations could better explain the variation in Rs than the single variable of temperature. Our results also showed that, in general, $R^2_{Q_{10}}$ for Q_{10} closely increased with MAP and soil moisture ($P < 0.05$, Fig. S6), indicating that the $R^2_{Q_{10}}$ for Q_{10} tended to be larger in the regions with abundant precipitation. Collectively, for ecosystems (e.g., grassland and desert) in arid and semi-arid regions, Rs could be better estimated by the combined factors of soil temperature and moisture. By comparison, 46.6% of $R^2_{Q_{10}}$ for Q_{10}^{ST5} was distributed in 0.7–1.0, which was higher than those derived by soil temperature at other depths, suggesting that the seasonal variation of Rs can be better explained by soil temperature at the depth of 5 cm across Chinese grasslands.

4.2.2 Q_{10} among soil depths and grassland types

In Chinese grasslands, the estimated Q_{10} generally increased with soil temperature measurement depth, which was consistent with previous synthesis study about Chinese ecosystems (Peng et al., 2009). The differences for Q_{10} among measurement depths might be due to the seasonal amplitudes of temperature at different soil depths (Pavelka et al., 2007; Graf et al., 2008).
In terms of grassland types, the highest Q_{10-ST5} was in the alpine grassland and the lowest in the temperate desert steppe and typical steppe (Fig. 4). This difference could be associated with soil properties and climatic conditions. For example, it is well known that the alpine grasslands are usually distributed in high altitude regions (above 3000 m), where the climate is relatively colder and SOC is relatively higher than the other grassland types (Table S2). However, the temperate desert steppes and typical steppes are mainly distributed in north China, with relatively high MAT and low MAP that may lead to low Q_{10}. Moreover, as shown in Fig. 4, the highest $Q_{10-ST10}$ occurred in warm-tropical grassland, which might be associated with the abundant substrate supply in this grassland type because high substrate availability can enhance apparent Q_{10} of soil respiration (Davidson et al., 2006; Zhu and Cheng, 2011).

4.2.3 Controls of environmental factors on Q_{10}

Generally, the Q_{10} derived by either ST5 or ST10 did not correlate well with climatic factors, which was inconsistent with previous results on the global and regional scales (Chen and Tian, 2005; Peng at al., 2009; Wang et al., 2010; Song et al., 2014; Xu et al., 2015). However, we found that Q_{10} derived by soil temperature at the depth of 5 and 10 cm decreased closely with increasing soil temperature, partly supporting the idea that Q_{10} tends to be higher in colder regions. This suggested that the single factor of temperature or precipitation could not critically control the variations of Q_{10} in Chinese grasslands, which are mainly distributed in arid and semiarid regions. In addition, the negative correlation between latitude and Q_{10-ST5} in Chinese grasslands was not in line with Chinese forests, in which positive correlation was observed (Song et al., 2014; Xu et al., 2015). The difference might be that alpine grasslands in China were mainly distributed in regions with low latitude but high altitude. Previous studies and the present result indicated that Q_{10} tended to be higher at high altitude regions (Song et al., 2014; Xu et al., 2015).

Additionally, the positive relationships of Q_{10-ST5} with SOC, AGB and BGB indicated that soil properties and plant biomass can also profoundly influence the spatial variation of Q_{10}. Previous studies suggested higher plant biomass and SOC can lead to more substrate supply for soil respiration and then result in higher Q_{10} values, because apparent Q_{10} increased with increasing substrate availability (Gershenson et al., 2009; Zhao et al., 2017).
The extremely low R^2 value for the relationship of Q_{10} with climatic variables/abiotic factors suggested that the single factor of temperature, precipitation or soil moisture poorly control the spatial variation of Q_{10} in Chinese grasslands cannot be well explained by a single factor. Therefore, the variation of Q_{10} in Chinese grasslands should be controlled by multiple factors due to the complex and diverse environments among grasslands on/at the large scale. Stepwise linear regression analysis also demonstrated that latitude, MAP and MAT had the comprehensive Multiple linear regression analyses also showed that combined MAT and MAP, and combined soil temperature and moisture could better explain the variations of Q_{10} derived by ST5 (Table S4), indicating their integrative effects on the spatial variation of Q_{10}-STS. Additionally, both univariate and multiple regression analyses demonstrated that generally there were no significant relationships between Q_{10}-STS and abiotic and biotic factors (not shown), indicating that the Q_{10}-STS did might not have clear spatial pattern or its variation might be controlled by other factors. Therefore, the variation of Q_{10}-STS might be controlled by other factors, and should be further studied.

In addition to the environment variables discussed above, seasonality of plant activity could also affect the spatial variation of Q_{10} at large scale. Plant activity can directly affect Rs via controlling root respiration, and can indirectly affect SOC decomposition by microbes via regulating rhizosphere priming effect (see Wang et al., 2010). In this study, the dataset covered various climatic regions, and accordingly seasonal amplitudes of plant activity among grassland types were also different. A previous global synthesis using NDVI (normalized difference vegetation index) as an indicator of plant activity demonstrated that seasonal amplitude of plant activity dominated the variation of seasonal Q_{10} among different sites (Wang et al., 2010). Therefore, the seasonal amplitude of plant activity might be an important factor explaining the spatial variation of Q_{10} across Chinese grasslands, and should be further studied.

4.3 Comparisons of Rs and Q_{10} between Chinese grasslands and the global ecosystems

4.3.1 Comparisons of annual Rs

The annual Rs varied largely within and among the grassland types across China (Table 1),
with the mean value of 582.0 g C m\(^{-2}\) yr\(^{-1}\), which was much lower than those in global terrestrial ecosystems and in Chinese forests (Table 2). Similarly, the mean annual Rs rate in Chinese grasslands was also much lower than that in Chinese forests. For these global results, the main biomes in their dataset were forests, which had relatively high precipitation and net primary productivity (Hurst et al., 2017), leading to relatively higher Rs than grasslands (Table S2). Therefore, this would lead to the differences between Chinese grasslands, and Chinese forests and global terrestrial ecosystems (Table 2).

Compared with global grasslands, our result was much lower or higher than the results obtained from Chen et al. (2010b, 2014) and Wang and Fang (2009), but approximately consistent with Hurst et al. (2017). These differences might be associated with data sources and distributions of case study sites. In general, the mean annual Rs rate across Chinese grasslands was between the lowest and highest Rs across global grasslands.

Across Chinese grassland types, the proportions of Rs during growing season ranged from 76.2–86.8\%, which were 2.2–5.6 times higher than those during non-growing season. Microbial activity and plant growth is constrained by temperature and precipitation during non-growing season, leading to lower decomposition of soil organic carbon and root respiration. In addition, As a whole, heterotrophic respiration contributed 72.8\% of the annual Rs, 2.7 times of autotrophic respiration, which was close to that of global terrestrial ecosystems and grasslands (Wang and Fang, 2009; Chen et al., 2014) and Chinese forests (Song et al., 2014). Previous studies suggested that the proportions of heterotrophic respiration to total Rs varied with ecosystem types and depended on the magnitude of total Rs (Subke et al., 2006). However, the limited samples (\(n = 7\)) limited our comparisons among these grassland types. Generally, our findings and previous studies suggested that both Rs during growing season and heterotrophic respiration were an important part of the annual Rs in Chinese grasslands, respectively, and should be given enough attention.

4.3.2 Comparisons of \(Q_{10}\)

The overall mean \(Q_{10}\) of 2.60 derived by soil temperature at all measurement depths was similar to 2.40 and 2.54 in global terrestrial ecosystems with 2.40 and 2.54 (Raich and Schlesinger, 1992; Lenton and Huntingford, 2003). The \(Q_{10}\) derived by ST5 varied from
1.39 to 8.13, with the mean of 2.80, which was higher than that of global and Chinese terrestrial ecosystems, Chinese forests, especially higher than that of global and particularly global grasslands (Table 2). The difference may be partly due to the distribution of grasslands in China and the grassland types. Chinese grasslands are mainly distributed in the high latitude (temperate grassland) and high altitude (Qinghai-Tibet Plateau alpine grassland) regions, and Q_{10} takes relatively higher values in cold regions than in warm regions (Chen and Tian, 2005; Wang et al., 2010). In addition, in this study, averaged Q_{10-ST5} was highest in alpine grassland with the mean of 3.30, implying that grasslands in alpine regions may release more carbon dioxide under climate warming. However, there were no alpine grasslands in the global database. Collectively, this may lead to higher Q_{10} value in Chinese grasslands. In terms of Q_{10} derived by ST10, the mean value for Chinese grasslands was close to Chinese terrestrial ecosystems, but much lower than the global ecosystems (Table 2).

4.4 Uncertainties

In order to ensure data consistency and minimize the error, only field experiments in accordance with the six aforementioned criteria were selected. However, the inter-annual variation in Rs and Q_{10} might be very large for grassland at one site, which was associated with the inter-annual variations in annual precipitation and mean temperature between two adjacent years (Peng et al., 2014; Wang et al., 2016). Therefore, the inter-annual variation of Rs would impact the accuracy of the results. Additionally, three methods including static closed chamber, dynamic closed chamber, and alkali absorption were widely applied to measure Rs in the selected experiments, and previous studies have suggested that measurement methods affected the results of Rs rate and Q_{10} value (Bekku et al., 1997; Yim et al., 2002; Peng et al., 2009). However, in this study, there were generally no significant differences for Q_{10-ST5} and $Q_{10-ST10}$ among the three measurement methods (Fig. S7). Given that only one sample of annual Rs was measured by alkali absorption, therefore the effects of measurement methods on Rs could be neglected. Therefore, including the data measured by the alkali absorption method in our synthesis does not meaningfully change the results of Rs and Q_{10}.

Furthermore, Q_{10} values measured during three periods, including growing season,
non-growing season and the whole year, were selected as long as the investigation time was longer than four months. The seasonal dynamics of plant growth and microbial activity may influence autotrophic and heterotrophic respiration, thus the Q_{10} of R_s. Our results showed that measurement period did not significantly affect $Q_{10-ST10}$, but significantly affected Q_{10-ST5} (Fig. S7). In terms of Q_{10-ST5}, the significant differences between annual Q_{10} and non-growing season Q_{10} across all sites was mainly caused by alpine grasslands, in which annual Q_{10} was much higher than non-growing season Q_{10} (Fig. S7). Likely, the seasonal amplitude of plant activity at annual scale is much greater than that at non-growing season scale in alpine regions. Therefore, the different investigation time and measurement period for estimating Q_{10} would inevitably affect the accuracy of results.

In this study, the selected experiments were mainly conducted in temperate and alpine grasslands, so the limited data obtained from desert, tropical and subtropical grasslands might lead to some uncertainties in these ecosystems. Moreover, grassland management practices such as land use/cover change, intensity and pattern of livestock grazing, and fencing can have significant effect on soil carbon emission (Chen at al., 2013; Zhang et al., 2015b; Chen et al., 2015; Chen et al., 2016a). In the past three decades, several ecological projects relating to grassland have been implemented in China, and have observably increased the grassland area and altered the land cover (Zhang et al., 2015a). To some extent, these changes can also impact our findings.

5 Conclusion

Chinese grasslands cover vast area, have high spatial heterogeneity, and include various grassland types. By synthesizing all the available data relating to R_s and Q_{10}, we analyzed their spatial patterns and driving factors in grasslands across China. Our results showed that annual R_s and Q_{10}its temperature sensitivity varied largely-greatly within and among grassland types. Across Chinese grasslands with the mean annual R_s and Q_{10} of were 582.0 g C m$^{-2}$ yr$^{-1}$ and 2.60, respectively. MAT, MAP, soil temperature, soil moisture, and SOC and AGB all significantly positively affected annual R_s, whereas both latitude and soil pH negatively affected annual R_s. Among these environmental factors, MAP played an important role in controlling R_s variations across Chinese grasslands. The R_s during growing season and heterotrophic respiration were the major component of annual R_s.
contributing 78.7% and 72.8% of the annual Rs, respectively. The altitude, Moreover, the combined factors of MAP and MAT were the dominant factors and accounted for 22.1%-26.0% of the variation of Q_{10} across Chinese grasslands. The Q_{10} in Chinese grasslands was much higher than that in global ecosystems, mainly attributed to the higher Q_{10} value in alpine grasslands. These findings together should advance our understanding of the spatial variation and environmental control of soil respiration Rs and Q_{10} across Chinese grasslands, and also improve our ability to predict soil carbon efflux under climate change on the regional scale. However, the few experiments measuring soil and microbial variables, Rs and Q_{10} at annual scale, especially measuring autotrophic and heterotrophic respiration separately, limit our in-depth knowledge on the key drivers of Rs and Q_{10} in grasslands across China. Therefore, more field measurements are strongly needed to verify the relationships found here and reveal how environmental variables fundamentally control Rs and its temperature sensitivity in relatively arid grassland ecosystem.

Acknowledgement

This research was financially supported by the National Key Research and Development Program of China (2017YFC0503903 and 2016YFC0502006), the National Natural Science Foundation of China (31621091 and 31622013), and the Key Science and Technology Plan Projects of Tibet Autonomous Region (Z2016C01G01/08-004 and Z2016C01G01/03). We thank all the scientists whose data and work were included in this synthesis. We are also grateful to the editor (Dr. Zhongjun Jia) and two anonymous reviewers for their insightful comments which improved the manuscript.

References

Chinese with English abstract)

Table 1 The annual soil respiration (Rs) and the proportions of growing season, non-growing season Rs to annual Rs in different grassland ecosystems across China.

There was no sample for annual Rs in temperate desert steppe, so the data was not presented in this table. The different lowercase letters in each column indicate the significant difference at $P_p = 0.05$, and different uppercase letters indicate the significant difference between growing and non-growing season at $P_p = 0.001$. N: number of samples.

<table>
<thead>
<tr>
<th>Grassland types</th>
<th>N</th>
<th>Annual Rs (g C m$^{-2}$ yr$^{-1}$)</th>
<th>Rs proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean ± SE</td>
<td>Min.</td>
</tr>
<tr>
<td>Temperate typical steppe</td>
<td>16</td>
<td>371.3±94.8 a</td>
<td>122.9</td>
</tr>
<tr>
<td>Temperate meadow steppe</td>
<td>6</td>
<td>442.1±83.4 a</td>
<td>218.8</td>
</tr>
<tr>
<td>Alpine grassland</td>
<td>20</td>
<td>581.5±62.3 a</td>
<td>246.3</td>
</tr>
<tr>
<td>Warm-tropical grassland</td>
<td>12</td>
<td>933.6±161.8 b</td>
<td>428.8</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>582.0±57.9</td>
<td>122.9</td>
</tr>
</tbody>
</table>
Table 2 The comparisons of annual soil respiration \((R_s)\) and \(Q_{10}\) between Chinese grasslands and other syntheses. The numbers in parentheses represent the number of samples.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Annual (R_s) (g C m(^{-2}) yr(^{-1}))</th>
<th>(Q_{10})-ST5</th>
<th>(Q_{10})-ST10</th>
<th>Reference source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global terrestrial ecosystems</td>
<td>910.0 (657)</td>
<td></td>
<td></td>
<td>Chen at al., 2010</td>
</tr>
<tr>
<td></td>
<td>870.0 (1195)</td>
<td></td>
<td></td>
<td>Chen at al., 2014</td>
</tr>
<tr>
<td></td>
<td>791.2 (1741)</td>
<td>2.40 (77)</td>
<td>3.10 (46)</td>
<td>Hursh et al., 2017</td>
</tr>
<tr>
<td>Global grasslands</td>
<td>448.9 (46)</td>
<td>2.13 (41)</td>
<td></td>
<td>Wang and Fang, 2009</td>
</tr>
<tr>
<td></td>
<td>745.0 (179)</td>
<td></td>
<td></td>
<td>Chen at al., 2010</td>
</tr>
<tr>
<td></td>
<td>840.0 (113)</td>
<td></td>
<td></td>
<td>Chen at al., 2014</td>
</tr>
<tr>
<td></td>
<td>599.1 (163)</td>
<td></td>
<td></td>
<td>Hursh et al., 2017</td>
</tr>
<tr>
<td>Chinese terrestrial ecosystems</td>
<td>2.03 (64)</td>
<td>2.61 (33)</td>
<td></td>
<td>Peng et al., 2009</td>
</tr>
<tr>
<td>Chinese forests</td>
<td>919.7 (139)</td>
<td>2.46 (107)</td>
<td></td>
<td>Song et al., 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.51 (145)</td>
<td></td>
<td>Xu et al., 2015</td>
</tr>
<tr>
<td>Chinese grasslands</td>
<td>582.0 (54)</td>
<td>2.80 (73)</td>
<td>2.56 (59)</td>
<td>This study</td>
</tr>
</tbody>
</table>

The numbers in parentheses represent the number of samples.
Figure 1. The site location of soil respiration studies selected in this study across Chinese grasslands.
Figure 2. Relationships of annual soil respiration (Rs) with abiotic and biotic factors. The dash lines represent the 95% confidence interval. When p value was greater than 0.05, the regression lines were not drawn.
Figure 3. Histogram plots for Q_{10} values (a-e) and its-the coefficient of determination (R^2) for Q_{10} (R_{10}^2, f-j) across Chinese grasslands. (a) and (f): soil surface temperature; (b) and (g): soil temperature at the depth of 5 cm; (c) and (h): soil temperature at the depth of 10 cm; (d) and (i): soil temperature at the depth of 15 cm; (e) and (j): soil temperature at the depth of 20 cm. n represents the number of samples.
Figure 4. Comparisons of Q_{10} values among soil temperature measurement depths (a) and among grassland types (b, c). (a) Q_{10} values derived by soil temperature at the depth of 0, 5, 10, 15, and 20 cm, respectively. (b) Q_{10} values derived by soil temperature at the depth of 5 cm. (c) Q_{10} values derived by soil temperature at the depth of 10 cm. TTS, TMS, TDS, ALG, and WTG represent temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm-tropical grassland, respectively. Error bars in (a) represent standard errors. In the box plot (b and c), the “+” represents mean values, horizontal lines inside box represent medians, box ends represent the 25th and the 75th quartiles, vertical lines represent 2.5th and 97.5th percentiles, hollow circles represent outliers, and n represents the number of samples. Error bars represent standard errors. Different lowercase letters indicate significant differences among soil depths or grassland types at $P_{adj} = 0.05$.
Figure 5. Relationships of temperature sensitivity of soil respiration (Q_{10}) derived by soil temperature at the depth of 5 cm with abiotic and biotic factors. The black and gray points represent Q_{10} derived by soil temperature at the depth of 5 and 10 cm, respectively, and the black and gray lines represent their corresponding relationships with environmental factors. When p value was greater than 0.05, the regression lines were not drawn.