Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Discussion papers
https://doi.org/10.5194/bg-2018-300
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-2018-300
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Jul 2018

Research article | 12 Jul 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Biogeosciences (BG).

Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal

Venugopal Thushara1, Puthenveettil Narayana Menon Vinayachandran1, Adrian J. Matthews2, Benjamin G. M. Webber3, and Bastien Y. Queste3 Venugopal Thushara et al.
  • 1Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
  • 2Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of East Anglia, Norwich, UK
  • 3Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK

Abstract. The Bay of Bengal (BoB) generally exhibits surface oligotrophy, due to nutrient limitation induced by strong salinity stratification. Nevertheless, there are hot spots of biological activity in the BoB where the monsoonal forcings are strong enough to break the stratification; one such region being the southern BoB, east of Sri Lanka. A recent field program conducted during the summer monsoon of 2016, as a part of the Bay of Bengal Boundary Layer Experiment (BoBBLE), provides a unique high-resolution dataset of the vertical distribution of chlorophyll in the southern BoB using ocean gliders along with shipboard CTD measurements. Observations were carried out for a duration of 12–20 days during a suppressed phase of the Boreal Summer Intraseasonal Oscillation (BSISO), along a longitudinal transect at 8°N, extending from 85.3–89°E, covering the dynamically active regions of the Sri Lanka Dome (SLD) and the South- west Monsoon Current (SMC). Mixing and upwelling induced by the monsoonal wind forcing enhanced chlorophyll concentrations (0.3–0.7mgm−3) in the surface layers. Observations reveal the presence of prominent deep chlorophyll maxima (DCM; 0.3–1.2mgm−3) at intermediate depths (20–50m), generally below the mixed layer and above the thermocline, signifying the contribution of subsurface productivity on the biological carbon cycling in the BoB. The shape of chlorophyll profiles varied in different dynamical regimes indicating that the mechanisms determining the vertical distribution of chlorophyll are intricate; upwelling favoured sharp and intense DCM, whereas mixing resulted in diffuse and weaker DCM. Within the SLD, open ocean Ekman pumping and the doming of thermocline favoured a substantial increase in chlorophyll concentration. Farther east, the thermocline was deeper and moderate surface blooms were triggered by intermittent mixing events. Stabilising surface freshening events and barrier layer formation were often observed to inhibit the surface blooms. The pathway of SMC intrusion was marked by a distinct band of chlorophyll, indicating the advective effect of biologically rich Arabian Sea waters. The region of monsoon current exhibits the strongest DCM as well as the highest column-integrated chlorophyll. Observations suggest that the persistence of DCM in the southern BoB is promoted by surface oligotrophy, which reduces the self-shading effect of phytoplankton and shallow mixed layers, which prevent the vertical redistribution of subsurface phytoplankton. Results from a coupled physical-ecosystem model substantiate the dominant role of mixed layer processes associated with the monsoon in controlling the nutrient distribution and biological productivity in the southern BoB. The present study provides new insights into the vertical distribution of chlorophyll in the BoB, which is not captured in satellite mea- surements, emphasizing the need for extensive in situ sampling and ecosystem model-based efforts for a better understanding of the monsoonal bio-physical interactions and the potential climatic feedbacks.

Venugopal Thushara et al.
Venugopal Thushara et al.
Viewed  
Total article views: 301 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
230 66 5 301 6 5
  • HTML: 230
  • PDF: 66
  • XML: 5
  • Total: 301
  • BibTeX: 6
  • EndNote: 5
Views and downloads (calculated since 12 Jul 2018)
Cumulative views and downloads (calculated since 12 Jul 2018)
Viewed (geographical distribution)  
Total article views: 301 (including HTML, PDF, and XML) Thereof 299 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 20 Nov 2018
Publications Copernicus
Download
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic...
Citation
Share