Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section

Arthur Gourain1,2, Hélène Planquette1, Marie Cheize1,3, Nolwenn Lemaitre1,4, Jan-Lukas Menzel Barraqueta5, Rachel Shelley1,6, Pascale Lherminier2 and Géraldine Sarthou1

1-UMR 6539/LEMAR/IUEM, Technopôle Brest Iroise, Place Nicolas Copernic, 29280 Plouzané, France
2- now at Ocean Sciences Department, School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, United Kingdom
3- now at Ifremer, Centre de Brest, Géosciences Marines, Laboratoire des Cycles Géochimiques (LCG), 29280 Plouzané, France
4- now at Department of Earth Sciences, Institute of Geochemistry and Petrology, ETH-Zürich, Zürich, Switzerland
5- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
6- now at Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, 32310, USA
7- Ifremer, LPO, UMR 6523 CNRS/Ifremer/IRD/UBO, Ifremer Centre de Brest, CS 10070, Plouzané, France

Correspondence to: helene.planquette@univ-brest.fr

Abstract

The GEOVIDE cruise (May-June 2014, R/V Pourquoi Pas?) aimed to provide a better understanding on trace metal biogeochemical cycles in the North Atlantic. As particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe), in light of particulate aluminium (PAl), manganese (PMn) and phosphorus (PP) distributions. Overall, 32 full vertical profiles were collected for trace metal analyses, representing more than 500 samples. This resolution provides a solid basis for assessing concentration distributions, elemental ratios, size-fractionation, or adsorptive scavenging processes in key areas of the thermohaline circulation. Total particulate iron (PFe) concentrations ranged from as low as 9 pmol L⁻¹ in surface Labrador Sea waters to 304 nmol L⁻¹ near the Iberian margin, while median PFe concentrations of 1.15 nmol L⁻¹ were measured over the sub-euphotic ocean interior.

Within the Iberian Abyssal Plain, ratio of PFe over particulate aluminium (PAl) is identical to the continental crust ratio (0.21), indicating the important influence of crustal particles in the water column. At most stations over the Western, the relative concentrations of total PFe and aluminium (PAl) showed the near-ubiquitous influence of crustal particles in the water column. Overall, the lithogenic component explained more than 87% of PFe variance along the section. Within the Irminger and Labrador basins, the formation of biogenic particles led to an increase of the PFe/PAl ratio (up to 0.7 mol mol⁻¹) compared to the continental crust ratio (0.21 mol

1
Particles play a key role in the ocean where they drive the residence time of most elements (Jeandel et al., 2015), and strongly influence the global biogeochemistry of macro and micro-nutrients including iron (Milne et al., 2017). In the surface ocean, biological activity produces biogenic suspended matter through planktonic organisms, while atmospheric deposition (Baker et al., 2013; Jickells et al., 2005), riverine discharge (Aguilar-Islas et al., 2013; Berger et al., 2008; Uscher et al., 2004) or ice-melting (Hawkins et al., 2014; Lamnuzel et al., 2011, 2014) bring mostly lithogenic derived particles to surface waters. These particulate inputs highly vary, both spatially and seasonally, around the world’s oceans. At depth, benthic and shelf sediment resuspension (e.g. Aguilar-Islas et al., 2013; Cullen et al., 2009; Elrod et al., 2004; Fitzwater et al., 2000; Hwang et al., 2010; Lam et al., 2015; Lam and Bishop, 2008; McCave and Hall, 2002), and hydrothermal activity (Elderfield and Schultz, 1996; Lam et al., 2012; Tagliabue et al., 2010, 2017; Treffry et al., 1985), provides important amounts of particles to the water column. Moreover, authigenic particles can be produced in situ by aggregation of colloids (Bergquist et al., 2007) or oxidation processes (Bishop and Fleisher, 1987; Collier and Edmond, 1984). Thus, oceanic particles result from a complex combination of these different sources and processes (Lam et al., 2015).

Particles represent the main part of the total iron pool in the upper water column (Radic et al., 2011), and strongly interact with the dissolved pool (e.g. Ellwood et al., 2014). Indeed, dissolved iron can be scavenged onto particles (Gerringa et al., 2015; Rijkenberg et al., 2014), incorporated into biogenic particles (Berger et al., 2008) or produced by remineralisation of particles (Dehairs et al., 2008; Sarthou et al., 2008). Interestingly, the concept of “reversible scavenging” (i.e. release at depth of dissolved iron previously scavenged onto particles) has been advocated recently (Dutay et al., 2015; Jeandel and Oelkers, 2015; Labanout et al., 2014), while other studies reveal distinct dissolution processes (e.g. Oelkers et al., 2012; Cheize et al., submitted to Chemical Geology). Slow dissolution of particulate iron at margins has also been evoked as a continuous fertilizer of primary production and should be considered as a source of dissolved iron (e.g. Jeandel et al., 2011; Jeandel and Oelkers, 2015; Lam and Bishop, 2008). Within or below the mixed layer, the rates of regeneration processes can also impact the bioavailable pool of iron, among other trace metals (e.g. Ellwood et al., 2014; Nuester et al., 2014). However, the rates of these processes are not yet fully constrained. The study of particulate iron is thus essential to better constrain the global biogeochemical cycle of iron in the ocean. This subject received a growing interest over the last 10 years in particular (e.g. Bishop and Biscaye, 1982; Collier and Edmond, 1984; Frew et al., 2006; Lam et al., 2012; Milne et al., 2017; Planquette et al., 2011, 2013; Sherrell et al., 1998) and, to our knowledge, only two have been performed at an ocean-wide scale and published so far: the GA03 GEOTRACES North Atlantic Zonal Transect (Lam et al., 2015; Ohnemus and Lam, 2015) and the GP16 GEOTRACES Pacific Transect (Lam et al., 2017; Lee et al., 2017).

1. Introduction

Particles play a key role in the ocean where they drive the residence time of most elements (Jeandel et al., 2015), and strongly influence the global biogeochemistry of macro and micro-nutrients including iron (Milne et al., 2017). In the surface ocean, biological activity produces biogenic suspended matter through planktonic organisms, while atmospheric deposition (Baker et al., 2013; Jickells et al., 2005), riverine discharge (Aguilar-Islas et al., 2013; Berger et al., 2008; Uscher et al., 2004) or ice-melting (Hawkins et al., 2014; Lamnuzel et al., 2011, 2014) bring mostly lithogenic derived particles to surface waters. These particulate inputs highly vary, both spatially and seasonally, around the world’s oceans. At depth, benthic and shelf sediment resuspension (e.g. Aguilar-Islas et al., 2013; Cullen et al., 2009; Elrod et al., 2004; Fitzwater et al., 2000; Hwang et al., 2010; Lam et al., 2015; Lam and Bishop, 2008; McCave and Hall, 2002), and hydrothermal activity (Elderfield and Schultz, 1996; Lam et al., 2012; Tagliabue et al., 2010, 2017; Treffry et al., 1985), provides important amounts of particles to the water column. Moreover, authigenic particles can be produced in situ by aggregation of colloids (Bergquist et al., 2007) or oxidation processes (Bishop and Fleisher, 1987; Collier and Edmond, 1984). Thus, oceanic particles result from a complex combination of these different sources and processes (Lam et al., 2015).

Particles represent the main part of the total iron pool in the upper water column (Radic et al., 2011), and strongly interact with the dissolved pool (e.g. Ellwood et al., 2014). Indeed, dissolved iron can be scavenged onto particles (Gerringa et al., 2015; Rijkenberg et al., 2014), incorporated into biogenic particles (Berger et al., 2008) or produced by remineralisation of particles (Dehairs et al., 2008; Sarthou et al., 2008). Interestingly, the concept of “reversible scavenging” (i.e. release at depth of dissolved iron previously scavenged onto particles) has been advocated recently (Dutay et al., 2015; Jeandel and Oelkers, 2015; Labanout et al., 2014), while other studies reveal distinct dissolution processes (e.g. Oelkers et al., 2012; Cheize et al., submitted to Chemical Geology). Slow dissolution of particulate iron at margins has also been evoked as a continuous fertilizer of primary production and should be considered as a source of dissolved iron (e.g. Jeandel et al., 2011; Jeandel and Oelkers, 2015; Lam and Bishop, 2008). Within or below the mixed layer, the rates of regeneration processes can also impact the bioavailable pool of iron, among other trace metals (e.g. Ellwood et al., 2014; Nuester et al., 2014). However, the rates of these processes are not yet fully constrained. The study of particulate iron is thus essential to better constrain the global biogeochemical cycle of iron in the ocean. This subject received a growing interest over the last 10 years in particular (e.g. Bishop and Biscaye, 1982; Collier and Edmond, 1984; Frew et al., 2006; Lam et al., 2012; Milne et al., 2017; Planquette et al., 2011, 2013; Sherrell et al., 1998) and, to our knowledge, only two have been performed at an ocean-wide scale and published so far: the GA03 GEOTRACES North Atlantic Zonal Transect (Lam et al., 2015; Ohnemus and Lam, 2015) and the GP16 GEOTRACES Pacific Transect (Lam et al., 2017; Lee et al., 2017).
In this context, this paper presents the particulate iron distribution in the North Atlantic Ocean, along the GEOTRACES GA01 section (GEOVIDE), and discusses the various sources and processes affecting its distribution, using the distribution of other trace elements, more particularly particulate aluminium, phosphorus or manganese, to further our understanding of this important pool of iron.

2. Methods

2.1. Study area

Particulate samples were collected at 32 stations during the GEOVIDE (GEOTRACES GA01 section) campaign between May and June 2014 aboard the R/V Pourquoi Pas? in the North Atlantic. The sampling spanned several biogeochemical provinces (Figure 1): that first comprised the Iberian margin (IM, Stations 2, 1 and 4), the Iberian Abyssal Plain (IAP, Stations 11 to 17), the Western European Basin (WEB, Station 19 to Station 29) and the Icelandic Basin (IcB, Stations 32 to 36). Then, samples were collected above the Reykjanes Ridge (RR, Station 38), in the Irminger Basin (IrB, Stations 40 to 60), close to the Greenland shelf (GS, Stations 53 and 61), the Labrador Basin (LB, Stations 63 to 77) and finally close the Newfoundland shelf (NS, Station 78) (Figure 1).

The North Atlantic is characterized by a complex circulation (briefly described in section 2.1 and in detail by Zunino et al. (2017) and García-Ibáñez et al. (2015) and is one of the most productive regions of the global ocean (Martin et al., 1993; Sanders et al., 2014), with a complex phytoplankton community structure composed of diverse taxa (Tomnard et al., in prep.).

2.2. Sampling

Samples were collected using the French GEOTRACES clean rosette, equipped with twenty-two 12L GO-FLO bottles (two bottles were leaking and were never deployed during the cruise). GO-FLO bottles (General Oceans) were initially cleaned in the home laboratory (LEMAR) following the GEOTRACES procedures (Cutter and Bruland, 2012). The rosette was deployed on a 146 mm Kevlar cable with a dedicated, custom-designed clean winch. Immediately after recovery, the GO-FLO bottles were individually covered at each end with plastic bags to minimize contamination. They were then transferred into a clean container (class-100) for sampling, and the filters processed under a laminar flow unit. On each cast, nutrient and/or salinity samples were taken to check potential leakage of the GO-FLO bottles. Prior to filtration, filters were cleaned following the GEOTRACES protocols (http://www.geotraces.org/images/Cookbook.pdf) and kept in acid-cleaned 1 L LDPE bottles (Nalgene) filled with ultrapure water (Milli-Q, resistivity of 18.2 MΩ cm) until use. All filters were 25 mm diameter in order to optimize signal over the filter blank except at the surface depth where 47 mm diameter filters mounted on acid-cleaned polysulfone filter holders (Nalgene™) were used. Prior to filtration, the GO-FLO bottles were shaken three times, as recommended in the GEOTRACES cookbook to avoid settling of particles in the lower part of the bottle. GO-FLO bottles were pressurized to <8 psi with 0.2 µm filtered dinitrogen (N2, Air Liquide). Seawater was then filtered directly through paired filters (Pall Gelman Supor™ 0.45 µm polysulfone, and Millipore mixed ester cellulose MF 5 µm) mounted in Swinnex polypropylene filter holders (Millipore),
following Planquette and Sherrell (2012) inside the clean container. Filtration was operated until the bottle was empty or until the filter clogged; volume filtered ranged from 2 liters for surface samples to 1L within the water column. Filters were cleaned following the protocol described in Planquette and Sherrell (2012) and kept in acid-cleaned 1 L LDPE bottles (Nalgene) filled with ultrapure water (Milli-Q) resistivity of 18.2 MΩ cm⁻¹ until use. All filters were 25 mm diameter in order to optimize signal over the filter blank except at the surface depth where 47 mm diameter filters mounted on acid-cleaned polysulfone filter holders (Nalgene) were used. After filtration, filter holders were disconnected from the GO-FLO bottles and a gentle vacuum was applied using a syringe in order to remove any residual water under a laminar flow hood. Filters were then removed from the filter holders with plastic tweezers that were rinsed with Milli-Q between samples. Most of the remaining seawater was ‘sipped’ by capillary action, when placing the non-sampled side of the filter onto a clean 47 mm supor filter. Then, each filter pair was placed in an acid-cleaned polystyrene Petri dish (Millipore), double bagged, and finally stored at -20°C until analysis at LEMAR. Between casts, filter holders were thoroughly rinsed with Milli-Q, placed in an acid bath (5% HCl) for 24 hours, then rinsed with Milli-Q. At each station, process blanks were collected as follows: 2L of a deep (1000 m) and a shallow (40 m) seawater samples were first filtered through a 0.2 µm pore size capsule filter (Pall Gelman Acropak 200) mounted on the outlet of the GO-FLO bottle before to pass through the particle sampling filter, which was attached directly to the swinnex filter holder.

### 2.3. Analytical methods

Back in the home laboratory, sample handling was performed inside a clean room (Class 100). All solutions were prepared using ultrapure water (Milli-Q) and all plasticware had been acid-cleaned before use. Frozen filters, collected within the mixed layer depth or within nepheloid layers, were first cut in half using a ceramic blade: one filter half was dedicated to total digestion (see below), while the other half was archived at -20°C for SEM analyses or acid leaching of “labile” metals (Berger et al., 2008; to be published separately). Filters were digested following the method described in Planquette and Sherrell (2012). Filter were placed on the inner wall of acid-clean 15 mL PFA vials (Savillex®), and 2 mL of a solution containing 2.9 mol L⁻¹ hydrofluoric acid (HF, suprapur grade, Merck) and 8 mol L⁻¹ nitric acid (HNO₃, Ultrapur grade, Merck) was added to each vial. Vials were then closed and refluxed at 130°C on a hot plate for 4 hours. After cooling, the digest solution was evaporated at 110°C until near dryness. Then, 400 µL of concentrated HNO₃ (Ultrapur grade, Merck) was added, and the solution was re-evaporated at 110°C. Finally, the obtained residue was dissolved with 3 mL of a 0.8 mol L⁻¹ HNO₃ (Ultrapure grade, Merck). This archive solution was transferred to an acid cleaned 15 mL polypolyene centrifuge tube (Corning®) and stored at 4°C until analyses. All analyses were performed on a sector field inductively coupled plasma mass spectrometer (SF-ICP-MS Element2, Thermo-Fisher Scientific). Samples were diluted by a factor of 7 on the day of analysis in acid-washed 13 mm (outer diameter) rounded bottom, polypolyene centrifuge tubes (VWR) with 0.8 mol L⁻¹ HNO₃ (Ultrapur grade, Merck) spiked with 1 µg L⁻¹ of Indium (¹¹⁵In) solution in order to monitor the instrument drift. Samples were introduced with a PFA-ST nebulizer connected to a quartz cyclonic spray chamber (Elemental Scientific Incorporated, Omaha, NE) via a modified SC-Fast introduction system consisting of an SC-2 autosampler, a six-port valve and a vacuum-rinsing pump. The autosampler was contained under a HEPA filtered unit (Elemental Scientific). Two 6-points, matrix-matched multi-element standard curves with
concentrations bracketing the range of the samples were run at the beginning, the middle and the end of each analytical run. Analytical replicates were made every 10 samples, while accuracy was determined by performing digests of the certified reference material BCR-414 (plankton, Community Bureau of Reference, Commission of the European Communities), PACS-3 and MESS-4 (marine sediments, National Research Council Canada), following the same protocol as for samples. Recoveries were typically within 10% of the certified values (and within the error of the data, taken from replicate measurements, Table 1). Once all data were normalized to an internal standard and quantified using an external standard curve, the dilution factor of the total digestion was accounted for. Obtained element concentrations per filter (pmol/filter) were then corrected by the process blanks described above. Finally, pmol/filter values were divided by the volume of water filtered through stacked filters.

Total concentrations (sum of small size fraction (0.45-5 µm) and large (>5 µm) size fraction) of particulate trace elements are reported in Table S1 (supplementary data).

2.4 Ancillary data:

Particulate barium (Ba) concentrations were determined in samples collected using a standard CTD rosette equipped with 12 L Niskin bottles. Typically, 18 samples were collected at each station within the first 1000 m. Details on analytical procedures are given in Lemaitre et al. (in press, 2018a). Briefly, particulate biogenic Barium, or excess Barium (Ba_X), were calculated by subtracting the particulate lithogenic barium (PBa_litho) from the total particulate barium (PBa). The PBa_litho was determined by multiplying the particulate aluminium (PAl) concentration by the upper continental crust (UCC) Ba:Al molar ratio (0.00135 mol mol⁻¹; Taylor and McLennan, 1985). Potential temperature (θ), salinity (S), and transmissometry data were retrieved from the CTD sensors (CTD SBE911 equipped with a SBE43).

2.5 Positive matrix factorisation

Positive Matrix Factorisation (PMF) was run to characterise the main factors influencing the particulate trace elements variances along the GEOVIDE section. In addition to PFe, PAl, PMn, and PP, nine additional elements were included in the PMF: Y, Ba, Pb, Th, Ti, V, Cu, Cd and Zn. The analysis has been conducted on samples where all the 13 elements previously cited were above the detection limits; after selection, 445 of the 549 existing data points were used. Analyses were performed using the PMF software, EPA PMF 5.0, developed by the USA Environmental Protection Agency (EPA). Models have been tested with several factors number (from 3 to 6), after full error estimation of each model, we decide to use the configuration providing the lowest errors estimations and in consequence the most reliable. In consequence, models were set up with four factors and were run 100 times to observe the stability of the obtained results. After displacement, error estimations and bootstraps error estimations, the model was recognised as stable.

3. Results
Here, we briefly describe the hydrography encountered during the GEOVIDE section (Figure 2), as a thorough description is available in García-Itáñez et al. (2015). The warm and salty Mediterranean Water (MW, S=36.50, \(\theta^\circ=11.7^\circ\mathrm{C}\)) was sampled between 600 and 1700 m in the Iberian Abyssal Plain (IAP). MW resulted from the mixing between the Mediterranean Overflow Water plume coming from the Mediterranean Sea and local waters. Surface water above the Iberian Shelf was characterised by low salinity (S=34.95) at station 2 and 4 compared to surrounding water masses. Close to the floor of the Iberian Abyssal Basin, the North East Atlantic Deep Water (NEADW, S=34.89, \(\theta^\circ=2.0^\circ\mathrm{C}\)) spread southward. The North Atlantic Central Water (NACW, S=35.60, \(\theta^\circ>12.3^\circ\mathrm{C}\)) was the warmest water mass of the transect and was observed in the subsurface layer of the Western European Basin and Iberian Abyssal Plain. An old Labrador Sea Water (LSW, S=34.87, \(\theta^\circ=3.0^\circ\mathrm{C}\)) flowed inside the Western European and Icelantic Basins, between 1000 and 2500 m depth. In the Icelandic Basin, below the old LSW, the Iceland-Scotland Overflow Water (ISOW, S=34.98, \(\theta^\circ=2.6^\circ\mathrm{C}\)) spread along the Reykjanes Ridge slope. This cold water, originating from the Arctic, led to the formation of NEADW after mixing with surrounding waters. North Atlantic hydrography was impacted by the northward flowing of the North Atlantic Current (NAC), which carried warm and salty waters from the subtropical area. When NAC crossed the Mid-Atlantic ridge through the Charlie-Gibbs Fracture Zone (CGFZ), it created the Subpolar Mode Water (SPMW). The recirculation of SPMW inside the Icelantic and Irminger Basins led to the formation of regional modal waters: the Iceland Subpolar Mode Water (IcSPMW, S=35.2, \(\theta^\circ=8.0^\circ\mathrm{C}\)) and the Irminger Subpolar Mode Water (IrSPMW, S=35.01, \(\theta^\circ=5.0^\circ\mathrm{C}\)) respectively. IrSPMW was a relatively warm water mass with potential temperature up to 7°C (García-Itáñez et al., 2015). Another branch of the NAC mixed with Labrador Current waters to form the relatively fresh SubArctic Intermediate Water (SAIW, S<34.8, \(4.5^\circ\mathrm{C}<\theta^\circ<6.0^\circ\mathrm{C}\)). The Irminger Basin is a really complex area with a multitude of water masses. In the middle of the basin, an old LSW, formed one year before (Straneo et al., 2003), spread between 500 and 1200 m depth. Close to the bottom, the Denmark Strait Overflow Water (DSOW, S=34.91) flowed across the basin. Greenland coastal waters were characterised by low salinity values, down to S=33. The strong East Greenland Current (EGC) flowed southward along the Greenland shelf in the Irminger Basin. When reaching the southern tip of Greenland, this current entered the Labrador Basin along the west coast of Greenland and followed the outskirts of the basin until the Newfoundland shelf. In the Labrador Basin, the deep convection of SPMW at 2000 m was involved in the formation of the LSW (S=34.9, \(\theta^\circ=3.0^\circ\mathrm{C}\)) (García-Itáñez et al., 2015; Yashayaev and Loder, 2009). Above the Newfoundland Shelf, surface waters were affected by discharge from rivers and ice-melting and characterised by extreme low salinity for open ocean waters, below 32 in the first 15 meters.

During GEOVIDE, diatoms and type 6 haptophytes dominated the bloom close to the IM, while type 6 haptophytes and dinoflagellates were dominant in the WEB province (Tomass et al., in prep.). The LB bloom was dominated by type 6 haptophytes and the IM was dominated by diatoms. GS and NS coastal stations were almost exclusively composed of large diatoms. Finally, the LB was dominated by diatoms and type 6 and 8 haptophytes. The NS, LB, GS and IRB provinces (stations 44 to 77) were sampled just after the bloom peak. The LB was characterized by an intense particulate organic carbon (POC) export and high remineralization activity.
In contrast, low remineralization fluxes and high POC exports were determined within the IB and WEB provinces, where the bloom was still active (Lemaitre et al., 2018a, b).

### 3.2 Section overview

Total particulate iron (PFe), aluminium (PAl), manganese (PMn) and phosphorus (PP) concentrations spanned a large range of concentrations from below detection to 304, 1544, 21.2, 3.5 and 402 nmol L\(^{-1}\) respectively. PFe, PAl, and PMn were predominantly found (>90%) in particles larger than 5 µm, except in surface waters, where 20.6 ± 8.6% of PFe, 38.8 ± 8.6% of PP, 10.9 ± 15.4% of PAl and 32.8 ± 16.6% of PMn were hosted by smaller particles (0.45-5 µm). The ranges of concentrations are comparable to other studies recently published (Table 2). Data are shown in Figure 3.

### 3.3 Open Ocean stations, Iberian Abyssal Plain (stations 11 to 17), Western European Basin (stations 19 to 29), Icelandic Basin (stations 32 to 36), Reykjanes Ridge (station 38), Irminger Basin (stations 40 to 60; except Stations 53 and 56) and Labrador Basin (stations 63 to 77)

Particulate iron concentration vertical profiles presented identical patterns at open ocean stations sampled in each oceanic basin encountered along the GEOVIDE section. Median PFe were low at 0.25 nmol L\(^{-1}\) (n=222), within the first 100 m and steadily increased with depth. However, at two stations, elevated concentrations were determined in the upper 100m, up to 4.4 nmol L\(^{-1}\) at station 77 at 40 m and 7 nmol L\(^{-1}\) at station 63 between 70 and 100 m depth. PFe concentrations were increased gradually with depth, with a median PFe of 1.74 nmol L\(^{-1}\) below 1000m (n=222), to reach a maximum close to the bottom. Close to the seafloor of some stations (26, 29, 32, 34, 49, 60, and 71), high concentrations of PFe were observed, up to 88 nmol L\(^{-1}\) (station 71 at 3736 m). These high PFe values were associated with low beam transmissometry value inferior or equal to 97% (Figure 9b and supplementary table S2).

Particulate aluminium (PAl) and manganese (PMn) profiles were similar to PFe profiles, with low median values concentrations were observed measured in the first 100 m (1.88 nmol L\(^{-1}\) (n=222) and 55 nmol L\(^{-1}\) (n=222), respectively) and increased towards the seafloor. Close to the seafloor, high concentrations were determined at the same stations cited above for PFe, with a similar high value were observed at certain stations (same than PFe), with maximum of 264 nmol L\(^{-1}\) and 3.5 nmol L\(^{-1}\) for PAl and PMn, respectively at station 71 (supplementary Table S1). Highest particulate phosphorus (PP) concentrations were maximum observed in the first 50m, with a median value of 66 nmol L\(^{-1}\) (n=222). Deeper in the water column, below 200m, PP concentrations decreased to values under 10 nmol L\(^{-1}\) below 200 meters depth. Inter-basins differences were observed within the surface samples, with Irminger basin had the highest median PP concentration being higher in the Irminger Basin (127 nmol L\(^{-1}\) (n=222) of the section while that than in the Iberian Abyssal Plain had the lower median 78 nmol L\(^{-1}\) (n=222)).

Finally, above the Reykjanes Ridge, PP, PMn, PAl and PFe concentrations were in the same range than the surrounding open ocean stations. However, close to the seafloor, high concentrations were measured, with PFe, PAl, and PMn reaching 16.2 nmol L\(^{-1}\), 28.8 nmol L\(^{-1}\) and 0.51 nmol L\(^{-1}\) at 1354 m respectively (Figure 3 and supplementary material Table S1, Table 1, supplementary material and Figure 3).
3.4 Margins and Shelves: Iberian Margin (stations 1 to 4), Greenland coast (stations 53, 56 and 61) and Newfoundland Shelf (station 78)

The Iberian margin was characterised by low beam transmissometry values at station 2 (88% at 140 m, Figure 9b) suggesting significant particle concentrations. Particulate iron concentrations varied between 0.02 nmol L\(^{-1}\) and 304 nmol L\(^{-1}\) (Station 2, depth 2 to 200 m). Within the first 50 m, PFe concentrations decreased from the Iberian Shelf (Station 2, 2.53 nmol L\(^{-1}\)) toward the shelf break where PFe dropped down from 2.53 nmol L\(^{-1}\) (Station 1) to 0.8 nmol L\(^{-1}\) (Station 1). PFe concentrations increased with depth at all three stations and reached a maximum at the bottom of station 2 (138.5 m) with more than 300 nmol L\(^{-1}\) of PFe. Lithogenic tracers, such as PAl or PMn, presented similar profiles to PFe with concentrations ranging between 0.11 and 1544 nmol L\(^{-1}\), and from below detection limit to 2.51 nmol L\(^{-1}\) respectively (station, depth) (Figure 3, Table 1, supplementary material Table S1, Figure XXXX). Total particulate phosphorus (PP) concentrations were relatively low in surface ranging from undetectable values to 38 nmol L\(^{-1}\) (station 1, depth 1), to 138 nmol L\(^{-1}\) at 1354 m, respectively. Concentrations of PFe were highest in surface at Station 1 (20 m depth), then decreased with depth and were less than 0.7 nmol L\(^{-1}\) below 1000 m depth. Particulate Fe concentrations in the vicinity of the Greenland shelf. PFe concentrations had a high median concentration value of 10.8 nmol L\(^{-1}\) while PAl and PMn also had high median concentrations of 32.3 nmol L\(^{-1}\) and 0.44 nmol L\(^{-1}\), respectively. Concentrations of PP were high at the surface with a value of 197 nmol L\(^{-1}\) at 25 m of station 61. Then, PP concentrations decreased strongly, less than 30 nmol L\(^{-1}\), below 100 meters depth. Furthermore, beam transmissometry values in surface waters at these three stations, were the lowest of the entire section, with values below 85 %.

Close to the Newfoundland margin, surface waters displayed a small load of particulate trace metals as PFe, PAl, and PMn were below 0.8 nmol L\(^{-1}\), 2 nmol L\(^{-1}\), and 0.15 nmol L\(^{-1}\), respectively. Then close to the bottom of station 78, at 371 m, beam transmissometry values dropped to 94% and were associated with extremely high concentrations of PFe=168 nmol L\(^{-1}\), PAl=559 nmol L\(^{-1}\), and PMn=2 nmol L\(^{-1}\). Total PP concentrations in the first 50 m ranged from 35 to 97 nmol L\(^{-1}\). Below the surface, PP remained relatively high with values up to 16 nmol L\(^{-1}\) throughout the water column. (Table 1, supplementary material and Figure XXXX3 and supplementary material Table S1).

3.5 Reykjanes Ridge (station 38)

Above the Reykjanes Ridge, the upper portion of the Mid-Atlantic Ridge, particulate trace elements concentrations were in the same range as the surrounding open ocean stations. However, close to the seafloor, high concentrations were measured on the ridge, with PFe, PAl, and PMn reaching 16.2 nmol L\(^{-1}\), 28.8 nmol L\(^{-1}\), and 0.51 nmol L\(^{-1}\) at 1331 m, respectively. Low concentrations of PP were measured in surface waters, with a median value of 24.8 nmol L\(^{-1}\) in the top 100 m and a maximum of only 72.6 nmol L\(^{-1}\) at 20 m. 3.3 Iberian Margin (stations 1 to 4)

The Iberian margin was characterised by low beam transmissometry values at station 2 (88% at 140 m) suggesting significant particle concentrations. Particulate iron concentrations varied between 0.07 nmol L\(^{-1}\) (20 m) to 304 nmol L\(^{-1}\) (138 m) in this area. Above the Iberian Shelf, high PFe concentrations were measured in
surface (Station 2, 2.53 nmol L⁻¹); then, on the shelf break, surface concentrations dropped down to 0.8 nmol L⁻¹ (Station 1 at 20 m depth). PMn concentrations increased with depth at all three stations and reached a maximum at the bottom of station 2 (138.5 m) with more than 300 nmol L⁻¹ of PMn. Lithogenic tracers, such as PAl or PMs, presented similar profiles to PMn with concentrations ranging between 0.11 and 1.54 nmol L⁻¹, and from below detection to 2.51 nmol L⁻¹, respectively. The highest concentrations were also measured at the bottom of station 2 (138.5 m). Total particulate phosphorus (PP) concentrations were relatively low in this area ranging from undetectable value to 38 nmol L⁻¹. Maximum PP was measured in surface at Station 1 (20 m depth), then concentrations decreased with depth and were less than 0.7 nmol L⁻¹ below 1000 m depth.

3.4. Iberian Abyssal Plain (stations 11 to 17) and Western European Basin (stations 19 to 29)

In the Iberian Abyssal Plain (IAP) and the Western European Basin (WEB), particulate iron concentration vertical profiles were similar (Figure 4); median PFe concentrations were 0.18 nmol L⁻¹ in the first 100 m and steadily increased with depth. Close to the seafloor, concentrations of PFe were up to 1.1 nmol L⁻¹ at every station and reached values superior to 8 nmol L⁻¹ at stations 26 and 29, with low beam transmissometry (<98%). Particulate aluminium profiles matched the PMn profiles, with low median concentrations within the first 100 m of 1.77 nmol L⁻¹ and 26 pmol L⁻¹, respectively. Then, concentrations increased with depth to reach a maximum close to the oceanic floor. At stations 26 and 29, total PAl concentrations reached high values, up to 42 nmol L⁻¹. In the Western European Basin, PMn concentrations ranged from below detection to 0.36 nmol L⁻¹, except close to the bottom of stations 26 and 29, where high concentrations of 0.91 and 1.31 nmol L⁻¹ were measured, respectively. Particulate phosphorus profiles were similar between stations of this basin, differing a lot from the other element profiles. In the WEB, surface median PP concentration was two times higher than in the Iberian margin (60 nmol L⁻¹ against 28 nmol L⁻¹ in the first 50 m with a maximum of 162 nmol L⁻¹ (station 21)). Concentrations dropped drastically with depth and remained under 10 pmol L⁻¹ below 100 m.

3.5. Icelandic Basin (stations 32 to 36)

Concentrations of PMn were in a similar range and displayed analogous profiles to the ones collected in the Western European Basin (Figure 1), from below detection to 10.6 nmol L⁻¹, with low values at the surface (<1 nmol L⁻¹) and a progressive increase with depth. Close to the basin seafloor, low beam transmissometry (97.4%) measurements were associated with high PMn concentrations of 10.6 nmol L⁻¹ at 3271 m of station 32. Particulate aluminium vertical profiles were similar to those in the WEB but with extremely low surface concentrations below 0.6 nmol L⁻¹. PAl then increased steadily with depth reaching values up to 2 nmol L⁻¹ below 500 m. As previously observed for PMn, PAl concentrations were higher close to the seafloor, from 29 nmol L⁻¹ at station 34 to 101 nmol L⁻¹ at station 32. PMn also presented similar distributions than PMn and PAl. Medium surface concentrations were low within the first 100 m, 31 pmol L⁻¹ and 35 pmol L⁻¹, respectively, and increased in the deep ocean to reach a maximum of 7.98 nmol L⁻¹ close to the seafloor. The Icelandic Basin had a typical vertical profile for Pp, with high concentrations at the surface, reaching 129 nmol L⁻¹ at station 32 and really low concentrations below 150 m, inferior to 20 nmol L⁻¹.
3.6. Reykjanes Ridge (Station 38)

Surface concentrations of particulate Fe, Al, and Mn above the Reykjanes Ridge (RR) were similar to the Icelandic Basin (Figure 3). However, close to the seafloor, high concentrations were measured, with PFe, PAl, and PMn reaching 16.2 nmol L$^{-1}$, 28.8 nmol L$^{-1}$, and 0.51 nmol L$^{-1}$ at 1351 m, respectively. Low concentrations of Fe were measured in surface waters, with a median value of 21.8 nmol L$^{-1}$ in the top 100 m and a maximum of only 72.6 nmol L$^{-1}$ at 20 m.

3.7. Irminger Basin (Stations 40 to 60; except Stations 53 and 56)

Particulate Iron, Aluminium and Manganese distributions were similar to stations sampled in the WEB, IcB and IAP provinces (Figure 3). Surface concentrations of these elements were lower than 1.1 nmol L$^{-1}$, 3.4 nmol L$^{-1}$, and 0.4 nmol L$^{-1}$, respectively. Then, below 50 m depth, concentrations of PFe, PAl, and PMn increased and reached high values close to the seafloor, especially at stations 42 and 44, reaching up to 10 nmol L$^{-1}$, 90 nmol L$^{-1}$ and 1.5 nmol L$^{-1}$, respectively. Close to the Greenland margin, at the bottom of stations 49 and 60, concentrations of particulate trace metals were also elevated with PFe greater than 10 nmol L$^{-1}$. Particulate phosphorus concentrations were relatively high in surface waters of the Irminger Basin, with a median value of 127 nmol L$^{-1}$ within the first 50 m. Particulate phosphorus decreased with depth and remained constant below 500 m with concentration below 10 nmol L$^{-1}$.

3.8. Greenland coast (stations 54, 56 and 64)

Particulate Fe concentrations in the vicinity of the Greenland shelf had a high median concentration of 10.8 nmol L$^{-1}$, while PAl and PMn also had high median concentration of 32.3 nmol L$^{-1}$ and 0.41 nmol L$^{-1}$, respectively. Concentrations of PP were maximum at the surface with a value of 197 nmol L$^{-1}$ at 25 m of station 61. Then, PP concentrations decreased strongly with depth, with values below 30 nmol L$^{-1}$ below 100 meters depth. Furthermore, beam transmissometry values in surface waters at these two stations were the lowest of the entire section with values below 83.5%.

3.9. Labrador Basin (stations 62 to 77)

In the Labrador Basin, median concentrations of PFe within the first 100 m were low, with a median value of 0.9 nmol L$^{-1}$ (n=39). However, at two stations, elevated concentrations were determined, up to 4.4 nmol L$^{-1}$ at station 77 at 40 m and 7 nmol L$^{-1}$ at station 63 between 70 and 100 m depth. Below the surface waters, PFe remained constant with depth until in proximity of the seafloor (Fig. 3). Between stations 64 and 71, the median concentration between 100 m and 200 m above the seafloor was 2.0 nmol L$^{-1}$ (n=39). Particulate Fe concentration at station 63, close to the Greenland margin, remained constant below 100 m depth, with a high median value of 5.7 nmol L$^{-1}$. On the other side of the Labrador Basin, station 77, close to the Newfoundland margin, constant PFe values of 3 nmol L$^{-1}$ between the surface and 200 m above bottom depth were observed.
As previously described, PFe concentration increased close to the seafloor to 88 nmol L\(^{-1}\) at station 71 at 3736 m. Particulate Al and Mn displayed similar characteristics to PFe, with low median concentrations at the surface of 3.37 nmol L\(^{-1}\) and 90 pmol L\(^{-1}\), respectively. Close to the seafloor of Station 71, at 3736 m depth, PAl and PMn reached high concentrations of 264 and 3.5 nmol L\(^{-1}\). Particulate Phosphorus distribution was no different than in the eastern basins, with 71 nmol L\(^{-1}\) median PP within the first 50 m. Then below 50 m, the concentration dropped off quickly to a median PP of 3 nmol L\(^{-1}\).

4. Discussion

Our goal in this work was to investigate mechanisms that drive the distribution of PFe in the North Atlantic, in particular the different routes of supply and removal. Possible candidate sources of PFe include lateral mixing-advection offshore from the different margins, atmospheric inputs, recently melted sea ice continental run-off, melting ice shelves and icebergs, resuspended sediments, or hydrothermal inputs and biological uptake. Removal processes include remineralization and dissolution processes.

In the following sections, we examine each of these sources and processes, explore the evidence for their relative importance, and use compositional data to estimate the particle types and host phases for iron and associated elements.

4.1. Analysis of the principal factors controlling variance: near-ubiquitous influence of crustal particles in the water column

The positive matrix factorisation (PMF) was run to characterize the main factors influencing the particulate trace elements variance along the GEOVIDE section. In addition to PFe, PAl, PMn, and PP, nine additional elements were included in the PMF: Y, Ba, Pb, Th, Ti, V, Co, Cu and Zn. The analysis has been conducted on samples where all the 13 elements previously cited are above the detection limits. After selection, 445 of the 549 existing data points were used. Analyses were performed using the PMF software, EPA PMF 5.0, developed by the USA Environmental Protection Agency (EPA). Models have been tested with several factor numbers (from 3 to 6), after full error estimation of each model, we decide to use the configuration providing the lowest errors estimations and in consequence the most reliable results.

In consequence, models were set up with four factors and were run 100 times to observe the stability of the obtained results. After displacement error estimations and bootstraps error estimations, the model was...
...recognised as stable. Results are shown in Figure 5, indicate the overall variances explained by each of the 5 factors. The first factor is characterised by lithogenic elements, representing 86.8% of the variance of PFe, 75.8% of PAI and 90.5% of PTi. The second factor is correlated with both Mn and Pb and explains no less than 76.5% and 77.0% of their respective variances. Ohnemus and Lam (2015) observed this co-relation between manganese and lead particles and explained it by the co-transport on Mn-oxides (Boyle et al., 2005). The formation of barite is causing the third factor constraining 87.7% of the Ba variance in the studied regions. Biogenic barite accumulation within the mesopelagic layer is related to bacterial activity and organic remineralisation (Lemaire et al., 2018). A biogenic component is the fourth factor and explained most of particulate phosphorus variance, 83.7%. The micronutrient trace metals, copper, cobalt and zinc, had more than a quarter of their variances influenced by this factor. These results indicate that along the GA01 section, PFe distributions were predominantly controlled by lithogenic material and to a smaller extent by remineralisation processes (as seen by a Factor 3 contribution of 4.1%). This does not rule out some biogenic influence on PFe distribution, especially in surface, but this contribution is veiled by the high lithogenic contribution. The PMF analysis has been realised on the entire dataset, in consequence, the factors described are highly influenced by the major variations of particulate element concentrations (usually at the interface, i.e. margin, seafloor, surface layer...). These input and processes are discussed below. To further investigate the influence of crustal material on the distribution of PFe, it is instructive to examine the distribution of the molar ratio of PFe/PAI along the section as a way to assess the lithogenic inputs (Lannuzel et al., 2014; Ohnemus and Lam, 2015; Planquette et al., 2009) (Figure 6) along the section. The PFe/PAI ratio can be used to estimate the proportion of lithogenic particles within the bulk particulate material. A comparison with the Upper Continental Crust (UCC) ratio of Taylor and McLennan (1995), 0.21, was used to calculate the lithogenic components of particles (PFe\textsubscript{litho}) following Eq. (1):

\[
\%\text{PFe\textsubscript{litho}} = 100 \times \left( \frac{\text{PAI}_{\text{sample}}}{\text{PFe}} \right) \times \left( \frac{\text{PFe}}{\text{PAI}_{\text{UCC}}} \right) \quad (1)
\]

Then the non-lithogenic PFe is simply obtained using Eq. (2):

\[
%\text{PFe\textsubscript{non\_litho}} = 100 - %\text{PFe\textsubscript{litho}} \quad (2)
\]

Both the lithogenic and non-lithogenic fraction of PFe are estimated using in-like the UCC ratio. Spatial and temporal variation of the lithogenic components ratio may falsely influence the estimated fraction value...
proxies are interesting tools to evaluate the importance of lithogenic and authigenic formation of Fe oxyhydroxides, non-lithogenic (either biogenic or authigenic), biogenic contributions over the section but have to be used with consideration.

Overall, the estimated lithogenic contribution to PFe varies from 25% (station 60, 950 m) to 100% at stations located within the Western European Basin. 100% of estimated lithogenic PFe doesn’t necessary mean that biogenic particles are absent; they may just be masked by the important load of lithogenic particles. Important inter-basins variations are observed along the section (Figure 6). The IAP and WEB basins are linked with high median value of the proxy %Fe_litho of 90%. This could be linked to a lateral advection of iron rich lithogenic particles sourced from the Iberian margin and to a less extent atmospheric particles with the North Atlantic Central Water flowing northward (Shelley et al., 2017; Garcia-Ibanez et al., 2015). This point is discussed with more detail in section 4.3.1. Overall, the lithogenic contribution to PFe varies from 24% (station 60, 950 m) to 100% at stations located within the Western European Basin. This could be linked to a lateral advection of iron rich lithogenic particles sourced from the Iberian margin and to a less extent atmospheric particles with the North Atlantic Central Water flowing northward (Shelley et al., 2017; Garcia-Ibanez et al., 2015). This point is discussed with more detail in section 4.3.1.

The most striking feature is the almost exclusive lithogenic nature of PFe from stations 1 to 26 throughout the water column, except between 1000 and 3000 m at stations 21 to 26 (Figure 6 and 7). This feature could be linked to the fact that atmospheric inputs generally dominate the supply of PFe deposited from Saharan dust and transported via the Gulf Stream and North Atlantic Current to the WEB (Shelley et al., 2017; Garcia-Ibanez et al., 2015), even if low atmospheric fluxes were reported during our cruise.

This feature at 1000 and 2500 m between stations 21 and 26 is likely be associated to the presence of the Sub-Arctic Front, located between 49.5 and 51°N latitude and 23.5 and 22°W longitude (Zunino et al., 2017). Indeed, this front which separates cold and fresh water of subpolar origin from warm and salty water of subtropical origin was clearly identifiable at station 26 by the steep gradient of the isotherms and isohalines (Figure 2).

4.2 Fingerprinting watermasses
The GEOVIDE section crossed several distinct water masses along the North Atlantic, each of them being distinguishable by their salinity and potential temperature signatures (García-Ibáñez et al., 2015; Figure 2). Based on this study, we applied a Kruskal-Wallis test on molar \( \text{PFe/PAl} \) ratios of nine water masses (Figure 2) in order to test the presence of significant differences. Water masses for which we had less than 5 data points for \( \text{PFe/PAl} \) were excluded from this test. As the differences in the median values among the treatment groups were greater than would be expected by chance, the difference in \( \text{PFe/PAl} \) between water masses is statistically significant (\( P = <0.001 \)). As previously seen, the lithogenic imprint is dominant in the WEB, with MW and NEADW showing \( \text{PFe/PAl} \) values close to the UCC value of 0.21 mol mol\(^{-1}\). Interestingly, the \( \text{PFe/PAl} \) signature of 0.36 mol mol\(^{-1}\) within the old LSW is probably due to the effect of biologic inputs associated with the strong bloom encountered in the Irminger Sea than in the WEB (see section 4.3.5). While it appears that lithogenic particles are dominating the water column in the WEB and that some water masses have a clear \( \text{PFe/PAl} \) fingerprint, it is important to discuss the origin of these signatures, which is the purpose of the following sections.

4.3. Tracking the different inputs of particulate iron

4.3.1. Inputs at margins: Iberian, Greenland and Newfoundland

Inputs from continental shelves and margins have been demonstrated to support high productivity in shallow coastal areas. Inputs of iron from continental margin sediments supporting the high productivity found in shallow coastal regions have been demonstrated in the past (e.g. Cullen et al. (2009), Elrod et al. (2004), Jeandel et al. (2011), Ussher et al. (2007)) and sometimes, were shown to be advected at great distances from the coast (e.g. Lam et al., 2008). Moreover, freshwater inputs that are usually present in these regions can also play a key role in the global biogeochemical cycling of trace metals (Blain and Tagliabue, 2016; Guieu et al., 1991; Martin and Meybeck, 1979). Rivers, runoff and continental glacial melt and/or sea-ice melt can also supply dissolved and particulate iron to coastal waters, thus sustaining important phytoplankton production (Fung, 2000). In the following section, we will investigate these possible candidate sources in proximity of the different margins encountered. Along the GEOVIDE section, sediments at margins were of various compositions (Dutkiewicz et al., 2015). Sediments originating from the Iberian margin were mainly constituted of silts and clays (Cacador et al., 1996; Duarte et al., 2014). East Greenland margin sediments were a mixture of sands and grey/green muds, while, sediments from the West Greenland margin were mainly composed of grey/green muds (Loring and Asmund, 1996). At the western end of the section, sediments from the Newfoundland margin were composed of gravelly and sandy muds (Modie et al., 1984). The different sediment compositions of the three margins sampled during GEOVIDE have different mineralogy/composition, which are reflected in their different \( \text{PFe/PAl} \) ratios (Figure 2). While the Iberian Margin had a \( \text{PFe/PAl} \) close to UCC ratio, mainly due to seasonal dust inputs from North Africa (Shelley et al., 2017), the highest biogenic contribution ratio could be seen at the East Greenland (stations 53 and 56) and West Greenland (station 61) Margins, with median \( \text{PFe/PAl} \)
reaching 0.45 mol mol\(^{-1}\). The Newfoundland margin displayed an intermediate behaviour, with Fe/Al ratios of 0.35 mol mol\(^{-1}\).

In addition to PAl, PMn can be used as a tracer of inputs from shelf resuspension (Lam and Bishop, 2008). Indeed, Mn is really sensitive to oxidation mediated by bacteria (Tebo et al., 1984; Tebo and Emerson, 1985) and forms manganese oxides (MnO\(_2\)). These authigenic particles lead to an enrichment of Mn in particle compositions. In order to track the influence of shelf resuspension, a percentage of sedimentary inputs “%bulk sediment inputs” can be calculated using PMn/PAl ratio from GEOVIDE samples and the PMn/PAl UCC value (0.0034; Taylor and McLennan, 1995) according to the following equation:

\[
\text{%bulk sediment PMn} = 100 \times \left( \frac{\text{PAl}}{\text{PMn}} \right)_{\text{sample}} \times \left( \frac{\text{PMn}}{\text{PAl}} \right)_{\text{UCC}} \text{ ratio} \tag{3}
\]

This proxy is a good indicator of direct and recent sediment resuspension. We assume that particles newly resuspended in water column will have the same PMn/PAl ratio than the UCC ratio leading to a “%bulk sediment Mn” of 100%. This value will decrease by authigenic formation of Mn oxides. This proxy assumes homogeneity of the sediment PMn/PAl ratio through the section which is maybe not completely the case at every station. In consequence, this proxy is only a tool to identify new benthic resuspension at specific locations and inter-comparison between several locations is not possible. When a sample presents a “%bulk sediment Mn” greater than 100%, we assign a value of 100% to simplify the following discussion. As the Mn cycle can also be affected by biologic uptake (e.g. Peers and Price, 2004; Sunda and Huntsman, 1983), this proxy is only used at depths where biologic activity is negligible (i.e. below 150m depth).

The Iberian margin

Coastal waters of the Iberian Shelf are impacted by the runoff for the Tagus River, which is characterised by high suspended matter discharges, ranging between 0.4 to 1 \(\times\) 10\(^6\) tons yr\(^{-1}\), and with a high anthropogenic signature (Jouanneau et al., 1998). During the GEOVIDE section, the freshwater input was observable at stations 1, 2 and 4 in the first 20 m; salinity was below 35.2 psu while surrounding waters masses had salinity up to 35.7 psu. Within the freshwater plume, particulate concentrations were important at station 2, with PFe massof 1.83 nmol L\(^{-1}\). Further away from the coast, the particulate concentrations remained low at 20m depth, with PFe, PAl, and PMn concentrations of 0.77 nmol L\(^{-1}\), 3.5 nmol L\(^{-1}\), and 0.04 nmol L\(^{-1}\), respectively at station 1. The low expansion of the Tagus plume is likely due to the rapid settling of suspended matter. Indeed, our coastal station 2 was already located at around 50 km of the Iberian coast and according to Jouanneau et al. (1998), the surface particle load can be observable at a maximum 30km of the Tagus estuary. Besides, ADCP data acquired during GEOVIDE (Zunino et al., 2017) and several studies have reported an intense current spreading northward coming from Strait of Gibraltar and Mediterranean Sea, leading to a strong resuspension of benthic sediments above the Iberian Shelf e.g. Biscaye and Eittreim (1977), Eittreim et al. (1976), McCave and Hall (2002), Spinrad et al. (1983). The importance of the sediment resuspension was observable by low beam transmissometry value (8.67%) at the bottom of station 2. This important sediment resuspension led to an extensive input of lithogenic particles within the water column associated with high
concentrations of PFe (304 nmol L⁻¹), PAI (1500 nmol L⁻¹), and PMn (2.5 nmol L⁻¹) (Figure 3, Table S1).

Moreover, one hundred percent of PFe is estimated to have a lithogenic origin (Figure 14) while 100% of the PMn was estimated to be the result of a recent sediment resuspension according to the %FeDiss, and “%bulk sediment Mn” proxies (supplementary material, Table S4), confirming the resuspended particle input.

At distance from the shelf, within the Iberian Abyssal Plain, an important lateral advection of PFe from the margin was observable (Figure 14). These lateral inputs occurred at two depth ranges: between 400 and 1000 m as seen at stations 4 and 1, with PFe concentrations reaching 4 nmol L⁻¹, and between 2500 m and the bottom (3575 m) of station 1, with PFe concentrations reaching 3.5 nmol L⁻¹. While 100% of PFe had a lithogenic origin, the sedimentary source input estimation decreased, between 40% and 850% of the PMn (Figure 14). Transport of lithogenic particles was observable until station 11 (12.2°W) at 2500 m where PFe concentration was 7.74 nmol L⁻¹ and 60% of PMn had a sedimentary origin (Figure 9). Noteworthy, no particular increase in PFe, PMn or PAI was seen between 500 and 2000 m depth, where the MOW spreads, which is consistent with that was observed DFe concentrations (Tomard et al., this issue) in contrast with the dissolved aluminium values (Menzel Barqueta et al., subm., this issue) which were high in the MOW and with the study of Ohnemus and Lam (2015) that reported a maximum PFe concentration at 695 m depth associated with the particle-rich Mediterranean Overflow Water (Eittreim et al., 1976) in the IAP. However, their station was located further south of our station 1. The shallower inputs observed at stations 1 and 4 could therefore be attributed to sediment resuspension from the Iberian margin and nepheloid layer at depth for station 1.

Therefore, the Iberian margin appears to be an important source of lithogenic-derived iron-rich particles in the Atlantic Ocean; shelf resuspension impact was perceptible until 280 km away from the margin (Station 11) in the Iberian Abyssal Plain.

South Greenland

Several studies already demonstrated the importance of icebergs and sea ice as source of dissolved and particulate iron (e.g. van der Merwe et al., 2011a, 2011b; Planquette et al., 2011; Raiswell et al., 2008). The Greenland shelf is highly affected by external freshwater inputs as ice-melting or riverine runoff (Fragoso et al., 2016), that are important sources of iron to the Greenland Shelf (Bhatia et al., 2013; Hawking et al., 2014; Statham et al., 2008).

Both East and West Greenland shelves (stations 53 and 60) had high concentration of particles (beam transmissimetry of 83%) and particulate trace elements, reaching 22.1 nmol L⁻¹ and 18.7 nmol L⁻¹ of PFe, respectively (station 53 at 100m and station 61 at 136 m). During the cruise, the relative freshwater observed (≤33 psu) within the first 25 meters of stations 53 and 61 were associated with high PFe (19 nmol L⁻¹), PAI (61 nmol L⁻¹), PMn (0.6 nmol L⁻¹) and a low beam transmissimetry (≤ 85%) (Figure 10 and Table S1). Particles associated were enriched in iron compared to aluminium, as PFe/PAI ratio was 0.3 within the meteoric water plume. High biological production, in agreement with PP concentrations reaching 197 nmol L⁻¹ induced by the supply of bioavailable dissolved iron from meteoric water (Raiswell et al., 2008; Statham et al., 2008; Tomnard et al., submitted, this issue), lead to a transfer of DFe to the particulate phase. This is in line with the fact that around 30% of the PFe had a non-lithogenic and likely biogenic-origin. In addition, only 25-40% of the PMn originated from resuspended sediments. Interestingly, these two proxies remained constant from the seafloor to
the surface (Station 49, Figure 410), with around 25% of the PMn of sedimentary origin, which could be due to an important mixing happening on the shelf. The lithogenic PFe could result from the release of PFe from Greenland bedrock captured during the ice sheet formation on land.

The spatial extent of the off-shelf lateral transport of particles was not important on the east Greenland coast. Indeed, no visible increase of particulate trace metal concentrations was visible at the first station off-shelf, except at 1000 m depth, where a strong increase (up to 99%) of sedimentary PMn was seen. This is probably due to the East Greenland Coastal Current (EGCC) that was located at station 53 constrained these inputs while stations 56 and 60 were under the influence of another strong current, the East Greenland-Irminger current (EGIC) (Zumino et al., 2017).

To the west of the Greenland margin, lateral transport of particles was slightly more important. Noticeable concentrations of particulate lithogenic elements were observable until station 64 located 125 km away from shoreline. These particles had decreasing PFe lithogenic contribution (52%) with a similar (25%) sedimentary PMn content than closer to the margin. The increasing nature of non-lithogenic PFe is linked to the bloom in surface (associated with a PFe/PAl ratio of 0.30 mol mol⁻¹ and a PP of 197 nmol L⁻¹ at station 61 and a Chl-a concentrations of 6.21 mg m⁻³), with the biogenic PFe settling down along the transport of particles.

Therefore, particles newly resuspended from Greenland sediments are an important source, representing around a third of the pMn pool, combined with surface inputs such as riverine runoff and/or ice-melting that are delivering particles on the shelf and biological production. Unlike the Iberian shelf, Greenland margin was not an important provider of particulate metals inside the Irminger and Labrador Basin, due to the circulation that constrained the extent of the margin plume.

The Newfoundland Shelf

Previous studies already described the influence of fresh water on the Newfoundland shelf from the Hudson Strait and/or Canadian Arctic Archipelago (Fragoso et al., 2016; Yashayaev, 2007). Yashayaev (2007) also monitored strong resuspension of sediments associated with the spreading of Labrador Current along the West Labrador margin.

Close to the Newfoundland coastline, at station 78, high fresh water discharge (≤ 32 psu) was observed in surface (Benetti et al., 2017). Interestingly, these freshwater signatures were not associated with elevated particulate trace metal concentrations. Distance of meteoric water sources implied a long travel time for the water to spread through the Labrador Basin to our sampling stations. Along the journey, particles present originally may have been removed from water column by gravitational settling.

The proportion of lithogenic PFe was relatively high and constant in the entire water column, with a median value of 62.7%. At station 78, 83% of the PMn had a sedimentary origin close to the seafloor (371 m). The spreading of the recent sediment resuspension was observable until 140 m depth where the contribution of sedimentary Mn was still 51% (Figure 410, Table S2). This could correspond to an intense nepheloid layer as previously reported by Biscaye and Eittreim (1977) (see also section 3.3.2). The high PFe concentration (184 nmol L⁻¹, station 78, 371 m) associated with a high percentage of sedimentary PMn (95%) observed at the
bottom of this station, was therefore the result of an important resuspension of shelf sediments. This was confirmed with low transmissometry values of 95%.

Despite the important phytoplanktonic community present (maximum Chl-a=4.91 mg m\(^{-3}\), Tonnar et al., in prep), is linked to low PFe remained low after 0.79 nmol L\(^{-1}\) at 10 m, but, with high PFe/PAI ratio, up to 0.4, and the PP concentration of 97 nmol L\(^{-1}\), confirming the biologic influence. Either the biogenic particles settled quickly, and/or they were quickly remineralized. Concerning this latter process, intense remineralization at station 77 (7 mmol C m\(^{-2}\) d\(^{-1}\) compared to 4 mmol C m\(^{-2}\) d\(^{-1}\) in the Western European Basin) at station 72 has been reported by Lemaitre et al. (2018a and 2018b), which could explain the low PFe values throughout the water column.

That said, resuspended particles are were still laterally transported off-shelf until station 71 (Figure 6) where PFe concentrations were higher than the background value, up to 2 nmol L\(^{-1}\) at depths greater than 100 m.

Along the GEOVIDE section, continental shelves provided an important load of particles within the surrounding water column. The three margins sampled during GEOVIDE behaved differently; the Iberian margin discharged high quantities of lithogenic particles far away from the coast while the Greenland and Newfoundland margins did not reveal important PFe concentrations. Spreading of particles is tightly linked to hydrodynamic conditions, which in the case of the Greenland margin, prevented long distance seeding of PFe. Moreover, each margin showed a specific PFe/PAI ratio (Figure 8a) indicating different composition of the resuspended particles.

Resuspended particles represent the composition of sediment at the margin if oxido-reductive transformation of iron and aluminium are considered negligible under these circumstances. Differences between margins were due to the presence of non-crustal particles, either biogenic or authigenic. Biological production in surface waters and authigenic formation of iron hydroxide produces particles with a higher PFe/PAI content and their export through the water column to the sediment increased the PFe/PAI ratio at depth. Regions where biological production is intense such as in the vicinity of Newfoundland presented higher PFe/PAI ratios of resuspended benthic particles. Those results are in agreement with the study of Lam et al. (2017), which showed the different behaviour between margins are a function of several parameters such as boundary currents, internal waves and margin sediment composition.

### 4.3.2 Benthic resuspended sediments

Benthic nepheloid layers (BNLs) can play a significative role in trace element distributions at depth as previously described (Dutay et al., 2015; Lam et al., 2015; Ohnemus et al., 2015; Revels et al., 2015). BNLs are important layers where local resuspension of sedimentary particles (Bishop and Biscaye, 1982; Eittreim et al., 1976; Rutgers Van Der Loeff et al., 2002) occur due to strong hydrographic stresses (i.e. boundary currents, benthic storms and deep eddies) interacting with the ocean floor (Biscaye and Eittreim, 1977; Eittreim et al., 1976; Gardner et al., 2017, 2018). In the North Atlantic, boundary currents were suspected to be the origin of those stresses (Biscaye and Eittreim, 1977; Eittreim et al., 1976) but more recent studies demonstrate the essential role of benthic storms and deep eddies (Gardner et al., 2018). Along the GA01 section, BNLs were observable in each province with different strengths (Figures 3 and 12).
In BNLs located within the WEB, PFe concentrations reached up to 10 nmol L$^{-1}$ (stations 26 and 29, Table S1). These concentrations were smaller than PFe concentrations encountered in BNL from the Icelandic, Irminger and Labrador Basins, where benthic resuspension led to PFe concentrations higher than 40 nmol L$^{-1}$, even reaching 89 nmol L$^{-1}$ at the bottom of station 71 (3736 m). Moreover, in the Irminger and Labrador Basins, PFe/PAl molar ratios within BNLs were higher than the ones measured within the WEB at station 26 and 29. In the Irminger Basin, PFe/PAl reached 0.4 mol mol$^{-1}$, which could reveal a mixture of lithogenic and biogenic matter previously exported. This feature was also observed in the Labrador Basin, with PFe/PAl ratio ranging between 0.34 and 0.44 mol mol$^{-1}$. In contrast, BNLs sampled in the WEB have clearly a lithogenic imprint, with PFe/PAl molar ratios close to the crustal one. Resuspended sediments with a non-crustal contribution seem to hold a higher PFe content than sediments with a lithogenic characteristic. Nevertheless, interestingly all BNLs present during GEOVIDE were spreading identically, with impacts observable up to 200 meters above the oceanic seafloor (Figure 1f), as reflected in beam transmissometry values, and PFe concentrations, that returned to a background level at 200 m above the seafloor. The presence of these BNLs has also been reported by Le Roy et al. (submitted, this issue). Important differences of PFe intensities could also be due to different hydrographic components and topographic characteristics. As previously explained, two main triggers of BNLs are benthic storms and deep eddies; by definition these processes are highly variable geographically and temporally, but no physical data could allow us to investigate further this hypothesis.

Along the GEOVIDE section, BNLs are providing high concentrations of particulate trace element in the deep open ocean, contributing highly to the total trace elements budget as iron. Important differences of PFe intensities could also be due to different hydrographic components and topographic characteristics. As previously explained, two main triggers of BNLs are benthic storms and deep eddies; by definition these processes are highly variable geographically and temporally, but no physical data could allow us to investigate further this hypothesis.

4.3.3. Reykjanes inputs

Recently, hydrothermal inputs of iron in the open ocean have been re-evaluated by (Fitzsimmons et al., 2012; Resing et al., 2015; Tagliabue et al., 2014). These studies demonstrated the importance of hydrothermal activities on the global iron biogeochemical cycle through particulate and dissolved iron fluxes. During the cruise, samples of station 38 have been collected above the Reykjanes Ridge, the upper section of the Mid-Atlantic Ridge in the North Atlantic, which has inferred hydrothermal sites from several studies conducted in the area (Baker and German, 2004). Above the ridge, high PFe concentrations were measured, reaching 16 nmol L$^{-1}$ just above the seafloor, while increased DFe concentrations were reported to the East of the ridge (Tonnard et al., this issue). The exact sources of iron-rich particles cannot be well constrained, as they could come from active hydrothermal vents or resuspension of particulate matter from new crustal matter produced at the ridge. According to the oceanic circulation (Zunino et al., 2017; Garcia-Ibanez et al., 2017), hydrothermal particles could have been seen in the ISOW within the Icelandic Basin. Nevertheless, at the vicinity of the ridge, scanning electron microscope (SEM) analyses of our samples did reveal a number of biological debris and clays but not the presence of iron (oxy-)hydroxide particles, which are known to be highly produced close to hydrothermal vents (Elderfield and Schultz, 1996). Their absence could thus indicate an absence of vents. However, other
proxies, such as helium-3, are necessary to claim with more accuracy the presence or absence of an hydrothermal source close to station 38.

Alternatively, resuspended sediments transported with ISOW flowing across the Reykjanes Ridge could explain the high PFe concentrations below 1000 m depth at station 38. This feature was associated with lower median PFe concentrations and PFe/PAl ratios (Figure 7) at station 40 (2.2 nmol L⁻¹ and 0.58 mol mol⁻¹ respectively) than at station 38 (6.8 nmol L⁻¹, 0.48 mol mol⁻¹ respectively). Moreover, PFe had a 19% sedimentary origin constant from the bottom to 1163 m depth, a contribution that is very low for the shallower water depths. Consequently, the increase in PFe within the ISOW west more likely came from sediment resuspension as the ISOW east flows through the Charlie Gibbs Fracture Zones.

4.3.4. Atmospheric inputs

Atmospheric deposition is an important input of trace elements in surface of the open ocean (e.g. Jickells et al., 2005). Atmospheric inputs, both wet and dry, were reported to be low during the GEOVIDE cruise (Menzel-barraqueta et al., 2018, this issue; Shelley et al., 2017; 2018). In fact, oceanic particles measurements in surface waters along the section did not reveal high PFe or PAl concentrations, therefore, the surface composition of particles did not seem to be highly affected by atmospheric deposition at the time of the cruise. However, PFe/PAl ratio was close to the UCC one, probably due to the overall influence of atmospheric deposition in this area. One pattern is also interesting to note: the surface waters of the Iberian Abyssal Plain and Western European Basin, between stations 11 and 23 presented a characteristic feature with really low PFe/PAl elemental ratios, of 0.11, smaller than the UCC ratio of 0.21 (Figure 6). Such low ratios have been reported in the same region by Barrett et al. (2012). One possible explanation is given by Buck et al. (2010) who described Fe-depleted aerosols in this area of the North Atlantic with PFe/PAl ratio below UCC ratio. However, Shelley et al. (2017) found a higher PFe/PAl ratio around 0.25 in this area (their sample geoa5-6). This result, highlights some of the difficulties that link atmospheric inputs to water column data (Baker et al., 2016), and implies a probable fractionation after aerosol deposition. In addition, there is high spatial and temporal variability of atmospheric deposition (Mahowald et al., 2005) and a certain degree of uncertainty about the dissolution processes of atmospherically-transported particles (Bonnet and Guieu, 2004).

4.3.5. Influence of phytoplankton assemblages, remineralisation and scavenging in the upper water column

Biological activity in surface waters impacts the particle composition in the upper water column. In bulk particle samples, direct measurement of the biogenic metal fraction is not possible due to the heterogeneity of particles, and in particular, the presence of lithogenic particles (Collier and Edmond, 1984). It is however possible to estimate the PFe/PAl ratios, based on Eq. (1) and (23), and assuming that most of the PFe is of biogenic origin. At 100% of the PFe was estimated to be of lithogenic origin, stations 1 to 26 are excluded from the discussion below. Overall, the median PFe/PAl molar ratios varied from 1.0 (Irminger Basin) to 38.7 mmol mol⁻¹ (Greenland margin) in the upper 50 m. These ratios are consistent with the few available bulk
PFer/PP ratios available in the literature (Twining and Baines, 2013 and references therein), ranging from 1 to 31 mmol mol⁻¹ and the phytoplankton assemblages encountered during GEOVIDE (Tonnard et al., in prep.). This corresponds to a % PFebio of 2 to 65% in the upper 50m. Interestingly, the biogenic contribution is higher in the basin than in the basin.

Overall, the median PFebio/PP molar ratios varied from 1.0 (Irminger Basin) to 38.7 mmol mol⁻¹ (Greenland margin) in the upper 50m. These ratios are consistent with the few available bulk PFe/PP ratios available in the literature (Twining and Baines, 2013 and references therein), ranging from 1 to 31 mmol mol⁻¹ and the phytoplankton assemblages encountered during GEOVIDE (Tonnard et al., in prep.). Indeed, the highest PFebio/PFeexcess/PP molar ratio determined at stations 53 and 56 close to the South Greenland margin coincide with a bloom mostly composed of large diatoms, whereas the smallest ratios were associated with a bloom mainly composed of cyanobacteria and haptophytes (Tonnard et al., in prep.). The effect of biological uptake is also clearly visible when looking at PFe/PAl vertical variation, which increases from the surface to approximately 100m depth (Figure 13), except in the Iberian Margin, which is under the strong influence of lithogenic inputs.

At deeper depths, pelagic remineralization processes influence the composition of particles (Barbeau et al., 1996, 2001; Boyd et al., 2010; Strzepek et al., 2005). Taking into account remineralization depths that are derived from Baxs proxy which is described and discussed in great detail in Lemaitre et al. (this issue), it is possible to look at the vertical variation of PFebio/PP along the section (Figure 13). Close to the IM and within the IAP, no PFe/PAl decrease that could point to a preferential remineralization of PFe over PAl could be observed within the remineralization depth (200 to 400 m depth, Figure 13), whereas preferential remineralization of PP over PFe occurs, as reflected by increasing PFe/PP ratios (Figure 14). This is probably due to the fact that remineralization rates were low (Lemaitre et al., 2018a), and that PFe was mostly of lithogenic origin, more difficult and slow to remineralize (Boyd et al., 2010). Below 600 m depth, scavenging processes could explain the increasing PFe/PP ratios, from 0.30 to 0.80 mol mol⁻¹ at station 13, which is consistent with decreasing dFe concentrations within this depth range reported in Tonnard et al. (this issue).

Within the WEB, between 200 and 500 m depth, remineralization of PFe over PAl occurs, although reported to be small (Lemaitre et al., 2018a) as reflected by decreasing PFe/PAl ratios (Figure 13), while PFe/PP ratios remained constant pointing out to similar remineralization rates of PFe and PP. Below 600 m depth, stronger scavenging of PFe onto particles formation of Fe oxyhydroxides (et tu peux calculer et reporter les % à ces intervalles de profondeur, ça aiderait) than in IM and IAP is likely to explain the increasing ratios of PFe/PAl from 0.18 to 0.30 mol mol⁻¹ and PFe/PP from 0.047 to 0.367 (Station 21), and from 0.16 to 1.05 (Station 26) mol mol⁻¹. Similar patterns occur in IcB (station 32), as dFe concentrations increased (Tonnard et al., this issue), therefore ruling out the possibility of PFe enrichment from scavenging.

Above the RR, and in the IRB, at station 38, PFe/P is remineralized preferentially over PAl and PFeexcess, with decreasing increasing PFe/PAl ratios from 0.46 to 0.19 mol mol⁻¹ and decreasing PFe/PP ratio from 0.24 to 0.04 mol mol⁻¹. This interesting feature is pre-associated with moderate and high POC remineralization.
fluxes (Lemaitre et al., 2018a) at stations 38 and 44 respectively (Figure 13), and the fact that a stronger fraction of PFe was associated with biogenic lithogenic material (PFebio = %, PFe litho = %), easier to recycle.

In the IrB, PP is preferentially remineralized over PFe and PAl as reflected by increasing PFe:PP ratios and constant PFe:PAl ratios within the remineralisation depth. This is associated with high DOC remineralisation fluxes (Lemaitre et al., 2018a) and a high proportion of lithogenic PFe.

Finally, within the LB, PFe:PAl and PFe:PP remained constant within the deep remineralisation depth, extending from 200 to 1000 m depth due to the deep convection of the LSW (Lemaitre et al., 2018a). In this basin, either PP and PFe are remineralized at a constant rate, but the fact that dFe is depleted (Tonnard et al., this issue) in this depth range points out to the influence of scavenging. Below 1000 m, PFe:PP ratios increase from 0.29 to 0.85 mol mol⁻¹ while PFe:PAl ratios still remain constant. This could be explained by the fact that most PP has been recycled due to the strongest remineralisation fluxes reported in this area (Lemaitre et al., 2018a).

5. Conclusions

This investigation of the PFe compositions of suspended particulate matter in the North Atlantic indicates the pervasive influence of crustal particles, augmented by sedimentary inputs at margins, and at depths, within benthic nepheloid layers.

Indeed, along the GEOVIDE section, continental shelves provided an important load of particles within the surrounding water column, with PFe mostly residing in non-biogenic particulate form. The Iberian margin discharged high quantities of lithogenic particles originating from riverine inputs far away from the coast while the Greenland margin did not reveal a long distance seeding of PFe, due to hydrodynamic conditions. Both Greenland and Newfoundland margins PFe resuspended particles were under a strong biogenic influence that were exported at depth. This resulted in different remineralisation fluxes among the different provinces.

Scavenging processes could also be visible at depths greater than 1000 m, these effects being the most pronounced within the WEB Labrador Basin.

Finally, resuspended sediments above the Reykjanes Ridge increased the PFe composition of the Iceland Scottish Overflow Water. A similar feature occurs for the Labrador Sea Water, as it flows from the Irminger Basin to the Western European Basin.

Acknowledgments

We are greatly indebted to the captain and crew of the N/O Pourquoi Pas for their help during the GEOVIDE mission and clean rosette deployment. We would like to give special thanks to Fabien Pérault and Emmanuel de Saint Léger for their technical expertise, to Catherine Schmechtig for the GEOVIDE database management and Greg Cutter for his guidance in setting up the new French clean sampling system. We also would like to thanks Reiner Schlitzer for the Ocean Data View software (ODV).
This work was supported by the French National Research Agency (ANR-13-BS06-0014, ANR-12-PDOC-0025-01), the French National Centre for Scientific Research (CNRS-LEFE-CYBER), the LabexMER (ANR-10-LABX-19), and Ifremer. It was supported for the logistic by DT-INSU and GENAVIR.

References


Thil, F.: Iron sources and dissolved particulate interactions in the seawater of the Western Equatorial Pacific,

Lam, P. J. and Bishop, J. K. B.: The continental margin is a key source of iron to the HNLC North Pacific

Lam, P. J., Ohnemus, D. C. and Marcus, M. A.: The speciation of marine particulate iron adjacent to active and

Lam, P. J., Ohnemus, D. C. and Auro, M. E.: Size-fractionated major particle composition and concentrations

Lam, P. J., Lee, J. M., Heller, M. I., Mehic, S., Xiang, Y. and Bates, N. R.: Size-fractionated distributions of
suspended particle concentration and major phase composition from the U.S. GEOTRACES Eastern Pacific

Lannuzel, D., Bowie, A. R., van der Merwe, P. C., Townsend, A. T. and Schoemann, V.: Distribution of
dissolved and particulate metals in Antarctic sea ice, Mar. Chem., 124(1–4), 134–146,

Lannuzel, D., Van der Merwe, P. C., Townsend, A. T. and Bowie, A. R.: Size fractionation of iron, manganese
and aluminium in Antarctic fast ice reveals a lithogenic origin and low iron solubility, Mar. Chem., 161, 47–56,

Eastern Pacific Zonal Transect (GP16), Mar. Chem., 201(September 2017), 108–123,

Lemaître, N., Planquette, H., Planchon, F., Sarthou, G., Jacquet, S., Garcia-Ibanez, M. I., Gourain, A., Cheize,

Lemaître, N., Planchon, F., Planquette, H., Dehairs, F., Fonseca-Batista, D., Roukaerts, A., Deman, F., Tang, Y.,
Marie, C., and Sarthou G.: High variability of export fluxes along the North Atlantic GEOTRACES section
GA01: Particulate organic carbon export deduced from the 234Th method, Biogeosciences Discuss.,


Figure 1: Map of stations where suspended particle samples were collected with GO-FLO bottles during the GEOVIDE cruise (GA01). Biogeochemical provinces are indicated by red squares, IM: Iberian Margin, IAP: Iberian Abyssal Plain, WEB: Western European Basin, IcB: Iceland Basin, RR: Reykjanes Ridge, IrB: Irminger Basin, GS: Greenland Shelf, LB: Labrador Basin, NS: Newfoundland Shelf. This figure was generated by Ocean Data View (Schlitzer, R., Ocean Data View, odv.awi.de, 2017).
Figure 2: Salinity section during the GEOVIDE cruise. Water masses are indicated in black. MW: Mediterranean Water; NACW: North Atlantic Central Water; NEADW: North East Atlantic Deep Water; LSW: Labrador Sea Water; ISOW: Iceland-Scotland Overflow Water; SAIW: Sub-Arctic Intermediate Water; ICSPMW: Iceland Sub-Polar Mode Water; IrSPMW: Irminger Sub-Polar Mode Water. Stations locations are indicated by the numbers. Biogeochemical provinces are indicated in blue font above station numbers. Contour of salinity = 35.8 psu have been applied to identify the Mediterranean Water. This figure was generated by Ocean Data View (Schlitzer, R., Ocean Data View, odv.awi.de, 2017).
Figure 3: Left) Distribution of total particulate iron (a, PFe), aluminium (b, PAl), manganese (c, PMn) and phosphorus (d, PP) concentrations (in nmol L\(^{-1}\)) along the GEOVIDE section. Right) Contribution of small size fraction (0.45-5 µm) expressed as percentage (%) of the total concentration of PFe (e), PAl (f), PMn (g) and PP (h). Station IDs and biogeochemical region are indicated on top of section a. This figure was generated by Ocean Data View (Schlitzer, R., Ocean Data View, odv.awi.de, 2017).
Figure 4: Boxplot figure of the particulate iron vertical profile (in nmol L$^{-1}$) in the a) Iberian abyssal plain (IAP), b) Western European basin (WEB), c) Icelandic basin (IcB), d) Irminger basin (IrB) and e) Labrador basins (LB). The left boundary of the box represents the 25th percentile while the right boundary represents the 75th percentile, the line within the box marks the median value. Whiskers represent the 90th and 10th percentiles and dots are the outlying data. Seven depth boxes have been used (0-100m, 100-200m, 200-500m, 500-1000m, 1000-2000m, 2000-3000m and 3000m-b).
Figure 5: Factor fingerprint of the positive matrix factorisation. The four factors are represented in a stacked bar chart of the percentage of variance explained per element.
Figure 6: a) Section of the PFe to PAl molar ratio (mol mol⁻¹); (b) contribution of lithogenic PFe (%) based on Eq. (1).
Station IDs and biogeochemical provinces are indicated above each section. This figure was generated by Ocean Data View (Schlitzer, R., Ocean Data View, odv.awi.de, 2017).
Figure 7: PFe over PAI concentrations (nmol L\(^{-1}\)) for all stations located in the Iberian Abyssal Plain and Western European Basin. Note that the total concentrations of the two elements covaried strongly.

\[ \text{PFe} = 0.19 \times \text{PAI} + 0.22 \]
\[ R^2 = 0.994 \]
\[ P < 0.01 \text{ (Pearson test)} \]
Figure S7: Whisker diagram of PFe/PAI molar ratio (mol mol\(^{-1}\)) in the different water masses sampled along the GA01 line. Median values for the water masses were as follows: LSW\(_{lb}\) = 0.37; LSW\(_{Ir}\) = 0.44; LSW\(_{WEB}\) = 0.36; DSOW\(_{east}\) = 0.48; DSOW\(_{west}\) = 0.58; DSOW\(_{lab}\) = 0.42; DSOW\(_{Ir}\) = 0.47; NEADW = 0.23; MW = 0.22 mol mol\(^{-1}\).
Figure 9: Scatter of the PFe/PAI ratio at the Iberian (red dots), East Greenland (black dots), West Greenland (green dots) and Newfoundland margins (blue dots). Dashed line indicate the UCC ratio (Taylor and McLennan, 1995).
Figure 10: Section of derived contribution of sedimentary inputs manganese bulk sediment proxy (a) and transmissometry (b) along the GA01 section. Station IDs and biogeochemical region are indicated above the section (a). This figure was generated by Ocean Data View (Schlitzer, R., Ocean Data View, odv.awi.de, 2017).
Figure 1: Vertical profiles of PFe (nmol L\(^{-1}\), a), lithogenic proportion of particulate iron (% b) and sedimentary proportion of particulate manganese (% c) at the Iberian, East-West Greenland and Newfoundland margins.
Figure 12: PFe total (a); PFe/PAl ratio (b) and beam transmissometry (%) as a function of depth above the seafloor (m) at selected stations where a decrease in transmissometry was recorded.

Figure 13: Vertical profiles of Baxs (grey line, data from Lemaitre et al., 2018a) superimposed with PFe/PAl molar ratios (black dots) at stations sampled in the Iberian Margin (IM), Iberian Abyssal Plain (IAP), Western European Basin (WEB), Iceland Basin (IcB), above the Reykjanes Ridge (RR), Irminger Basin (IR), and Labrador Basin (LB). Note that Baxs concentrations over the background level of 180 pmol L\(^{-1}\) are indicative of remineralisation processes (Lemaitre et al., 2018a).
Figure 14: Vertical profiles of Ba$_{xs}$ (grey line, data from Lemaitre et al., 2018a) superimposed with PFe$_{pp}$/P$_{m}$ molar ratios (black dots) at stations sampled in the Iberian Margin (IM), Iberian Abyssal Plain (IAP), Western European Basin (WEB), Iceland Basin (IcB), above the Reykjanes Ridge (RR), Irminger Basin (IB), and Labrador Basin (LB).

Note that Ba$_{xs}$ concentrations over the background level of 180 pmol L$^{-1}$ are indicative of remineralisation processes (Lemaitre et al., 2018a).
### Table 1: Blank and limit of detection (nmol L\(^{-1}\)) of the two filters and Certified reference material (CRM) recoveries during GEVIDE suspended particle digestion.

<table>
<thead>
<tr>
<th>Recovery CRM (%)</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR-414 (n=10)</td>
<td>94 ± 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MESS-4 (n=5)</td>
<td>97 ± 14</td>
<td>80 ± 30</td>
<td>110 ± 18</td>
</tr>
<tr>
<td>PACS-3 (n=8)</td>
<td>101 ± 9</td>
<td>99 ± 14</td>
<td>91 ± 34</td>
</tr>
</tbody>
</table>

### Table 2: Concentration (in nmol L\(^{-1}\)) of trace elements (PFe, Pal, PMn and PP) in suspended particles collected in diverse regions of the world’s ocean. Bdl: below detection limit, ND: non-determined.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Fraction</th>
<th>Location</th>
<th>Depth range</th>
<th>PFe</th>
<th>Pal</th>
<th>PMn</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>&gt;0.45µm</td>
<td>N. Atlantic (&gt;40°N)</td>
<td>All</td>
<td>bdl-304</td>
<td>bdl-1544</td>
<td>bdl-3.5</td>
<td>bdl-402</td>
<td></td>
</tr>
<tr>
<td>Barrett et al.</td>
<td>2012</td>
<td>0.4µm</td>
<td>N. Atlantic (25-07°N)</td>
<td>Upper 1000m</td>
<td>0.29-1.71</td>
<td>0.2-10.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demmershauser et al.</td>
<td>2013</td>
<td>&gt;0.2 µm</td>
<td>Eastern Tropical N.A.</td>
<td>0-200</td>
<td>0.59-17.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demmershauser et al.</td>
<td>2013</td>
<td>&gt;0.2 µm</td>
<td>Meridional Atlantic</td>
<td>0-200</td>
<td>0.35-18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lam et al.</td>
<td>2012</td>
<td>1.51 µm</td>
<td>Eastern Tropical N.A.</td>
<td>0-600</td>
<td>ND-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamnazi et al.</td>
<td>2014</td>
<td>&gt;0.2 µm</td>
<td>East Antarctic</td>
<td>Fast ice</td>
<td>4.5-10385</td>
<td>11.1-372</td>
<td>1-307</td>
<td></td>
</tr>
<tr>
<td>Lee et al.</td>
<td>2017</td>
<td>&gt;0.8 µm</td>
<td>Eastern Tropical S.Pacific</td>
<td>All</td>
<td>bdl-159</td>
<td>bdl-352</td>
<td>bdl-8.7</td>
<td>bdl-983</td>
</tr>
<tr>
<td>Mansay et al.</td>
<td>2017</td>
<td>&gt;0.4 µm</td>
<td>Ross Sea</td>
<td>All</td>
<td>0.18-57.3</td>
<td>ND-185</td>
<td>ND-1.4</td>
<td>5.4-404</td>
</tr>
<tr>
<td>Mihe et al.</td>
<td>2017</td>
<td>&gt;0.45µm</td>
<td>Sub-tropical N.A.</td>
<td>All</td>
<td>ND-140</td>
<td>ND-800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohnemus et al.</td>
<td>2015</td>
<td>0.8-11 µm</td>
<td>N. Atlantic</td>
<td>All</td>
<td>0.918</td>
<td>0.3600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planquette et al.</td>
<td>2009</td>
<td>&gt;5.3 µm</td>
<td>Southern Ocean</td>
<td>30-340</td>
<td>0.15-13.2</td>
<td>0.11-25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlosser et al.</td>
<td>2017</td>
<td>&gt;1 µm</td>
<td>South Georgia Shelf</td>
<td>All</td>
<td>0.87-267</td>
<td>0.6-195</td>
<td>0.01-3.85</td>
<td></td>
</tr>
<tr>
<td>Sherrell et al.</td>
<td>1998</td>
<td>1.53µm</td>
<td>Northwest Pacific</td>
<td>0-3557</td>
<td>0.0-54.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinle et al.</td>
<td>2004</td>
<td>&gt;0.5 µm</td>
<td>Labrador Sea</td>
<td>0-250</td>
<td>0.1-2.2</td>
<td>0.1-1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinle et al.</td>
<td>2004</td>
<td>0.4-10µm</td>
<td>Labrador Sea</td>
<td>0-250</td>
<td>2.5</td>
<td>3.6</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Weinle et al.</td>
<td>2004</td>
<td>&gt;0.4 µm</td>
<td>Gulf of Maine</td>
<td>0-300</td>
<td>34.8</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formatted: Centered