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Abstract. Facing global changes, modeling and predicting diyaamics of soil carbon stock in forest
ecosystems is vital but challenging. Yasso07 issiclemed as one of the most promising models foh suc
purpose. We aim at examining the accuracy of ésligtion of the soil carbon dynamics over the wHedench
metropolitan territory at a decennial time scale.

We used data from 101 sites of the RENECOFOR né&twaehich encompasses most of the French temperate
forests. These data include (i) yearly measuredtifyaof aboveground litterfall from 1994 to 200&nd soil
carbon stocks measured twice at an interval oflbayears (early 1990s versus around 2010). Usegsd07,
we simulated the stock changes (tC lya') per site and compared them with the measured tvesarried out
meta-analyses to reveal the variability in littéodhemistry between different tree organs for censifand
broadleaves. We also performed sensitivity analysesxplore Yasso07’'s sensitivity to inputs, inéhgllitter
carbon quality and initial carbon stocks.

At the national level, the simulated annual carlstotk changes (ACC, +0.45 + 0.09 tC'hgear', mean +
standard error) stayed in the same order of madmits the observed ones (+0.34 + 0.06 t& year'). The
correlation between predicted and measured ACC inmdaweak (R2 <0.1). There was significant
overestimation for broadleaved stands and underastin for conifers sites. Sensitivity analysesveda that
the final carbon stock was weakly affected by fitarbon quality, but strongly affected by simwatiength

and initial soil carbon quality.



Taking Yasso07 as model support, we revealed therubottleneck of soil carbon modelling due to
lacking knowledge or data on soil and litter carlmprality and fine root litter quantity, renderinggh

uncertainties for model inputs.
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Nomenclatur e and abbreviations

Name

M eaning

carbon stock (CS)

carbon stock change
annual carbon stock

change (ACC)
carbon pools

coarse woody litter

fine non-woody litter

litter carbon quality
litter quantity

soil carbon quality

Quantity of soil organic carbmtls (n tC ha')

Increment (positive value)earement (negative value) of soil organic
carbon stock from the year t1 to the yeain¢ ha’)

carbon stock change standardized by duratiotQ(ina' year™)

The Yasso07 model contains a seriesyahic compounds differing in
solubility in solvents and mean residence timedoainposition processes:
water soluble compounds (W), acid-hydrolysable commals (A); non-polar
solvent, ethanol or dichloromethane compoundsr{&);soluble and non-
hydrolyzable compounds (N). For soil, there is sineerecalcitrant pool
named “humus” (H). Note: in this paper, “N” onlyrid#es non-soluble and
non-hydrolyzable compounds; nitrogen is spellefliinetter when
mentioned.

Litter yield from either coaed@oveground residues due to either harvests or
storms (including coarse branches, defined as heghof >4 cm in diameter
and miscellaneous) and coarse roots (defined ag thfo>5 mm in diameter)

Litter yield from either natal above-ground litterfall (leaves, small
branches) or fine roots activities

Composition of litter carbbelonging to A, W, E and N carbon pools (in %)
Annual litter input (in tC Hayear")

Composition of soil carbon bmg to A, W, E, N and H carbon pools
(in %)
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1 Introduction

The carbon stock in global soils, including liteerd peatlands is 1500 to 2400 GtC, greatly
exceeding that in vegetation (350 a 550 GtC, mamlforests) and in the atmosphere (829
GtC in 2011, IPCC, 2014). Soils share a commonfaxte with all the other spheres and play
a key role in driving the global carbon cycle. Smrbon stock dynamics are directly related
to the greenhouse gas emissions (notably carbomddi¢CQ)) that are leading to the global
warming effect (IPCC, 2014). An accurate estimatdsoil carbon stock dynamics allows us
to better understand the turnover rate and fateodfcarbon flux at both local and global
geographical scales. Facing global changes, tlis ita essential for the evaluation of the
climate change mitigation potentials of forests dahd support of environmental policy
decisions.

Significant challenges exist for accurate estinmatid soil carbon stock changes. Current soil
monitoring networks are generally not able to detdanges on timescales of less than 10
years (Saby et al. 2008). To obtain soil C stocknge estimates at shorter intervals such as
for the annual reporting to the United Nations Fearork Convention on Climate Change and
the Kyoto Protocol, the use of models is encourgdfe@C, 2011). Numerous models have
been elaborated for evaluating soil carbon dynaifhtazoni and Porporato, 2009). The vast
majority of terrestrial soil carbon models develd the global or at the plot scales, e.g.,
CENTURY (Parton et al 1987), RothC (Coleman and Jenkinson, 1996) and KIREE
(Krinner et al., 2005), assume that decompositsothé first order decay process accounting
for the size of soil carbon pools, despite theterise of criticism to this, arguing that priming
effect and the associated induced carbon pooladtiens should be considered in model
algorithms (Wutzler and Reichstein, 2013). The dyica of carbon pools depend on the
guantity and quality of litter inputs and on tensdaere, soil moisture and other soil
parameters, e.g. texture, structure, chemical esbnpH etc. (Todd-Brown et al., 2012).
Incorporating explicit mechanisms such as microadivities or carbon protection by the soil
matrix into soil carbon models has repeatedly lmaggested in the last years (Schmidt et al.,
2011; Lehmann and Kleber, 2015). However, for foeeesystems, such refined mechanistic
input data remain often limited. Accordingly, thgital time-step for litter input demanded
by most of soil carbon models for forests is yemt, month (but see RothC, Coleman and
Jenkinson, 1996) or day (but see Romul, Chertoad.e2001) (Didion et al., 2016). At this
yearly-timescale, it is common to consider micrbltammunities and processes as a
relatively stable factor (Todd-brown et al, 2018hd the assumption of carbon dynamics

governed by first order decay may therefore bearasle.
4
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This is the choice made by the group who built ¥Yasso model (Liski et al., 2005) and
Yasso07 model (Tuomi et al., 2009; 2011a and 2Qlild)an improved version of Yasso
with more refined carbon pooling and abundant datacalibration. The intention of the
models’ developers is to let their models be slatdbr general forestry applications by
taking into account the low availability of foresbil and litter data (Liski et al., 2005).
Yasso07 explicitly defines several chemical podislemical compounds in litter carbon
(Tuomi et al., 2011b) and possesses well-definealpdical meaningful and measurable
parameters. Due to these qualities, Yasso and Yasaere applied in more than 70 case

studies (URL: http://www.syke.fi/en-

US/Research Development/Research and developmeetctp/Projects/Soil carbon mod

el_Yasso/) in forest ecosystems in the northernisgmere with generally high satisfaction
levels in comparison with measured carbon values arhu et al., 2011 ; Rantakari et al.,
2012; Ortiz et al., 2013 ; Didion et al., 2014; étal., 2015; Wu et al., 2015). Yet, so far most
of these applications have been limited to locakecstudies, especially those on cold forests
with limited tree species diversity (e.g. boreal montane forests). Rarely have previous
studies validated Yasso07 based on data (i) of-terrg observations (here defined as data of
>10 years), (ii) from temperate forests with a maafher diversity of tree species or (iii) on
carbon stock changes (in tC hgear'). This is partially due to the lack of extensiwad
term soil carbon monitoring in forest ecosystemsctvidiffer in climatic and soil conditions
and species, stretch over a large territorial sddévertheless, Yasso07 has been considered
as one of potential models appropriate for evahgatiational and continental inventories of
forest carbon balance in Europe (Herndndez etCdlI7R It is therefore of high interest to
assess the ability of Yasso07 to reflect the carbalance in different European forest
ecosystems at large spatial-temporal scales. Mereaas a carbon pool based model,
Yasso07 shares certain similar principles to ofiterailing soil carbon models in the same
genre (e.g., RothC, CENTURY etc.). Via YassoO7rasxample, we may also learn from this
application case for future carbon modelling fonperate forests

The measured data of carbon stock and litter giyadiinamics from the RENECOFOR

network (URL: _http://www.onf.fr/renecofor/@ @indexatl), National Forest Management

Agency (ONF), France, offered us a valuable oppaigifor model validation. The 101 forest
sites considered from this network are locatedadlr the French metropolitan territory and
cover the most common forest types and tree spdémseach site, annual measurements of
litterfall were available in addition to two invemtes of soil organic carbon stock with an

average interval of 15 years (minimum 12 yearsraagdimum 20 years). These data allowed

5
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us to use site-specific observed soil carbon smulk above-ground litterfall dynamics as
model input estimates, thus reducing the uncergsinof the model input, which were
identified as a major source of uncertainties fadei estimates of soil carbon stock changes
(Ortiz et al. 2013). By minimizing this source afiaertainty, we were able to focus on the
inherent model structure.

Consistent with our objective to contribute to thether development of soil carbon
modeling, we aim at (i) testing and characterizimg ability of Yasso07 to model soil carbon
stock dynamics for temperate forests (ii) identifylimitations and providing suggestions for
a better adaptation of the model for C dynamicbath deciduous and evergreen temperate
forests and (iii) discussing the perspectives basethe current state-of-the-art of soil carbon
modelling. Associated with the above aims, our hyjbotheses are as follows: (i) YassoQ07
predicts accurate and unbiased carbon stock changlee national scale and (ii) the model’s
fit residuals (predicted data minus observed ddtaye null relationships with site

characteristics (e.g. location, climate, foresetygoil type and initial carbon stock).
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2 Materials and methods

2.1 The model Y asso07

The dynamic soil carbon model YassoQ7 is basedhengeneral assumption that the soil
carbon stock is driven by decomposition of diffdriter types, which may differ in quantity
and quality, and by climatic conditions. Litter lban quality is represented by four chemical
compound groups which have different decomposti@es (Tuomi et al., 2009). Soil organic
carbon is divided into these four relatively labdarbon pools and one recalcitrant pool
named “humus” (H) (Fig. S1). The five pools diffarspecific mass loss rates and mass flows
among them. As in many other pool-based modelsHtip®ol is considered the oldest and
most stable carbon pool, although recent studiedbted its physical existence and stability
(see Lehmann and Kleber, 2015). Some mass flowespwnd to C@release (microbial
respiration). The mean residence time of carboth@&se pools varies from several months
(i.e., water soluble compounds, W), a few yeass,(acid-hydrolysable compounds, A; non-
polar solvent, ethanol or dichloromethane compoufjsseveral decades (i.e., non-soluble
and non-hydrolyzable compounds, N), or even seventuries (i.e., H).

Mathematically, the kernel equation of YassoO7 leanvritten as follows:

X(t) = A,K()X(@®) + I(t) (Eq. 1a)
where, symbols in capital letters in bold denotkegivectors or matrices whilst those in small
letters in parentheses denote scalX¥¥s$) andX(t) are vectors describing the masses of the
five carbon pools (A, W, E, N, H) and carbon masanges in soil at timez), respectively;
A, is mass flow matrix describing carbon allocationoag pools;K(c) is decomposition
matrix describing the decomposition rates as atfonof climatic conditionsd); I (t) is litter
input to the soil, with the last element equal t@$® “H” does not exist in litters. (Eg. 1a) can
be expressed in a more detailed form:

0x, /0t —1 Pwsa DPesa DPnosa O ky 0 0 0 O X4 L

Oxy /0t Pasw —1 Peow Pyow O 0 kw 0 0 O Xw Ly

Oxg /0t |=| Pase Pworg —1 DPyog O 0 0 ky 0 O Xe |+ | Ig

axl\;/at Pasn Pw=nN Pe=n =il 0 0 0 0 k;'\" 0 XN IN

Oxy /0t Pasx Pw-s Pe-a DPn-x —1/ N0 0 0 0 ky/ \Xu 0
(Eq. 1b)

where,pr_r IS the relative mass flow parameters between twadspdromF to T; F andT
can be any two pools in A, W, E, N and H) in thé @mensionlesspz_ €[0, 1]).
Temperature and precipitation are supposed noffeéctedhe mass flowg, but influence the

mass loss ratdg (i = A, W, E, N or H) according to:
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ki(c) = a;exp(BiT + B2T?)[1 — exp(yFo)] (Eq. 2)
where,q; is the mass loss rate parameter of the chemiadlipg,, f, andy are parameters
related to temperaturd,(in °C) and precipitationRj, in mm).

To consider the effect of litter size on the decosifon rate of littersk; was multiplied by a
litter size factor lfs), which allows making the distinction between @ifint types of litters,
e.g. foliage, coarse woody, stem etc., which diffesiameterd, in mm):

hs(d) = min{(1 + ¢@,d + @2d*)", 1} (Eq. 3)
where, @4, ¢, andr are parameters related to litter size.

Yasso07 has 44 parameters calibrated using thedMankain Monte Carlo (MCMC) method
with the Metropolis-Hastings algorithm (Tuomi et,&011a). Currently, several calibrated
parameter sets for YassoO7 are available, inclutiegtwo most recent sets published by
Tuomi et al. (2011) and Rantakari et al. (2012)this present study, the Tuomi 2011 set was
chosen to fit the RENECOFOR dataset containingouariforest species, as it had been
calibrated using a wider range of observed foliagd root decomposition data. The Tuomi
2011 set was calibrated using a combination ofetls@urces of dataset: (i) a global dataset
(n >9000) of litterbags for mass loss of non-woodiets from approximately 100 sites in
Europe, Northern and Central America. These sibeered a wide range of climate and soll
conditions, forest types and tree species; (iiqt@setf > 2000) of mass loss of decomposing
woody litter measured in Northern Europe; (iii) ree@ed accumulation rate of soil carbon
pools of forest sites along a 5300 year soil chsegaence in southern Finland, for
determining the residence time of the H carbon pbleé Tuomi 2011 parameter set contains
10000 parameter vectors (each vector containsdhees of all the 44 Yasso0O7 parameters),
which are randomly generated to take into accownthsistic effect.

2.2 RENECOFOR network

The RENECOFOR network is part of the Level Il netivof the International Cooperative
Program on Assessment and Monitoring of Air PatintEffects on Forests (ICP Forest). The
101 sites (Fig. 1) considered in this study cowerrmost common types of forest ecosystems
in France, including even-aged forests in plainaangine plantations and uneven-aged
mountain forests. They also cover the majorityreétspecies in France and central Europe,
including Quercus robur. Quercus petraea, Pseudotsuga Menziesii, Picea abies, Fagus
sylvatica, Pinus pinaster, Pinus sylvestris and Abies alba. At each site, annual forest woody
and non-woody litter quantities have been eithezaty measured or estimated based on the
existing dendrometric data.
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2.2.1 Soil carbon and physical and chemical properties

At each site, soil carbon stocks were measuredetwith an interval of approximately 15
years (1993 — 95 for the first assessment and 2007 for the second one). The temporal
evolution of soil carbon stocks was analyzed byadomet al. (2017). At each site and for each
assessment, soils to a depth of 0.4 m were sanfygedfive points selected in each of the
five subplots and divided into different layers £00.1 m, 0.1 — 0.2 m and 0.2 — 0.4 m),
including both organic and mineral soil layers. Qasite samples were produced for each
layer and subplot, and analyzed for mass, bulkitersoil organic carbon and physical and
chemical properties, including texture (percentagfeslay, silt and sand, in %), pH value,
total nitrogen stock (in t 3, carbon:nitrogen ratio (dimensionless), totalgptmr stock (in t
ha'), stocks of exchangeable aluminum (Al), calciuna)Qotassium (K) and magnesium
(Mg, in kmol ha'). Soil physical and chemical properties data wesed for residual analyses
(see Sect. 2.7) and only those measured in thenkntories were used for this purpose.
Regarding the depth 0.4 — 1.0 cm, samples werengotdrom only one soil profile per site at
two mineral layers (0.4 — 0.8 m and 0.8 — 1.0 m)lkBdensity and carbon concentration
measured at these layers were used to estimateasbdn stock until a depth of 1.0 m. Table
2 provides a synthesis of the data source for eddne 101 sites of the RENECOFOR
network (URL: _http://www.onf.fr/renecofor/sommairefiecofor/reseau/20090119-130815-

828957/@@index.html). More detailed information atbeach site and soil sampling

procedure is available in Supplementary Mater{dldble S1) and Jonard et al. (2017).

2.2.2 Climate data

Necessary climate data required by YassoO7 inclamesial mean precipitation (mm) and
annual maximum, mean and minimum temperature (Fli@se measured data were obtained
from the nearest national meteorological stations f oMétéo-France
(http://www.meteofrance.com) for each RENECOFOR. sit

2.3 Litter quantity

Litter input (in tC h& yr") comes from several sources (Table 2) as follGg. conversion
factor between biomass (dry matter) and carbonasaamed to be 0.5 (Thomas and Martin,
2012).

Aboveground litter input from living trees includésaves for broadleaves and needles for
conifers, small branches, fruits and miscellane@g., flower, bud etc.). Aboveground

litterfall mass was annually measured between E3@12008. For sites where litter quantity
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data from 1992 — 1993 and 2009 — 2012 were lackuegyused mean litter quantity of all the
other years of the same site. The observed bramehirsthis category is below 2 cm (fine
branches). Branches and stems bigger than 2 cntodoatural mortality should be rare (as
some of them can be salvaged) and thus were riateat.

Woody residues due to harvest or storms were estnan the basis of repeated stand
inventory data and species specific height-girtth biomass. Coarse woody litter inputs from
harvesting residues or storms were estimated frdhinventories performed by ONF since
1991. Missing years of litter input of this categare gap-filled using the average over the
period. On average 3 years are missing per sitéhiené are high differences amongst sites.
The mode is one year, and 6 sites have 10-11 rgig&ars. These residuals are assumed to
be coarse branches (> 4 cm in diameter, confirmiéd @NF) as a function of aboveground
tree characteristics. Litter input from stems weasste 0, since in most cases stemwood was
removed from the site after storm damage. Littputrfrom coarse woody roots is considered
to be equal to total root biomass, which could B&neted using meta-analysis based
allometric equations proposed by Cairns et al. (L99ore detailed information about forest
inventories and storm events occurring at eachisitailable in Supplementary Material |
(Table S1). Litter input from fine roots (here defdl as roots ok 5 mm in diameter),
especially those finest ones with diamet& mm, can significantly contribute to carbon
sequestration in soils (Brunner et al., 2013; Kdgehbner et al., 2002; Berg and
McClaugherty, 2008). Fine root litter was supposedoe proportional to that of foliage,
which was measured on the RENECOFOR sites. Jortaatl €2017) suggested using the
generic equation published by Raich and Nadelhdffé89) and, simultaneously, adopting
the hypothesis that fine root litter production esgnts about one third of the carbon
allocated to roots (Nadelhoffer and Raich, 1992):

Itine roor = 0.333 X (1.92 X (100 X Ifpi04¢) + 130) X 0.01 (Eq. 4)
Where,l¢ine roor @aNdlrg1i0ge are litter input of fine root and foliage, respeely (in tC ha'
year?).

However, the relationship between fine root andhf@ litter inputs can be highly variable as
a function of tree species, stand characteristidscéimate (Raich and Nadelhoffer, 2007) and
such variability may not be represented in the gereguation. Therefore, here we estimated
litter input for Yasso07 simulations using fine réaliage ratios ranging from 0.1 to 4.0.
Based on a sensitivity an analysis on the effedinef root:foliage ratio, we found that ratios

of 0.1 for broadleaves and 1.9 for conifers achdettee best fit between simulated and

10
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observed soil C stock changes (Fig. S2). We dectdefix such ratio at 1.0 for all the
modelling and simulation work, because the use.0f() achieved a comparable model fit
for both broadleaved and coniferous forest startéssiFig. S2); (i) coincidentally
corresponded to the median (1.0) and mean (1.QL)-ratios calculated using Raich and
Nadelhoffer (1989)’s equation (Eq. (4)) over alk tRENECOFOR sites (Fig. S3) and (iii)
facilitate computation and comparisons betweers diifering in dominant tree functional

types.

2.4 Litter carbon quality

There are no measured data of litter carbon qual#fined as composition of litter carbon
belonging to different carbon pools (A, W, E and M) the RENECOFOR network.
Therefore, we carried out a meta-analysis on tha dallected in literature where authors
measured litter carbon quality via chemical frawtiyy procedures or near-infrared
spectroscopy (NIRS) techniques. This data collacti@s restricted to non-tropical areas.
Chemical data on litters of tree coarse organs. @ams, coarse branches) are relatively
scanty, so we used tree stemwood data compiledtterBen (1984), Rowell et al., (2005) and
Rowell (2012). Assembly of these works covers aew@hge of temperate tree species from
North America, Japan and Russia, but no data aaiabhle for Europe. Data on foliage and
root litter carbon quality were manually searchednf either networks, e.g. CIDET
(Trofymow et al., 1998) and LIDET
(http://andrewsforest.oregonstate.edu/researchgitedidet.ntm) or independent studies in

northern hemisphere, including Europe. The datalfi@s¢he meta-analysis is available in
Supplementary Material 1l. Root diameter or branghorder can play a significant role in
modifying the composition of the chemical compouriBahay et al., 1988; Tingey et al.,
2003; Guo et al., 2004). All the measurements ohetlin the meta-analysis on roots refer to
fine roots (diameter < 5.0 mm), although in sevstaties, e.g. Aber et al. (1990), Aulen et
al. (2011) and Stump and Binkley (1993), root si@s not clearly indicated. Yet, we still
included the data from these above studies, adablairoot data are less abundant than
foliage. The collected coarse roots data in liteetwere too few for a meaningful meta-
analysis and thus values for stemwood were uséeads

We then used the litter carbon quality databasessign the quality of litter input of each site
of our study. Partitioning of litter inputs in bioemical classes respects the following order of
priority: (i) values for the target species, wheaitble in the database (ii) mean values of the

species from the same genus, if data for the tameties are absent, and (iii) mean values of

11
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the species from the same tree functional type if@@nversus broadleaves), if data are
available at neither species nor genus level target species (see Table 1).

2.5 Initialization of soil carbon quality

To calculate steady-state carbon stock, we usedhalytical approach on the basis of (Eq. 1a).
At steady-state carbon stodk=(ts), carbon gain is equal to carbon loss. Setkig) = 0,

(Eq. 1a) becomes:

A K(c)X(ts) +1(t) =0 (Eq. 5)
Solving (Eqg. 5), we obtained steady-state carbocksat timets: X(t;):
X(ts) = —(ApK(c))7H(ts) (Eg. 6)

Wherel(t,) is a constant vector.

This steady-state carbon stock to the depth ofl (Cgeady-state, IN tC ha') was only used to
calculate the soil carbon quality distribution, dnelefined as the composition of soil carbon
pools (A, W, E, N and H). Such calculation was perfed for each site and for each
randomly chosen Yasso07 parameter vector (see &&yt.Regarding the initial soil carbon
quantity, we used the measured one during the fistiod of assessment of the
RENECOFOR network. Measurement uncertainties of sarbon quantity were not
considered as a source of stochastic effect whessoO¥ was fed, as we were more interested
in the output uncertainties related to the modelsee(i.e., the choice of model parameter set)

and that of root:foliage ratios, on which huge kfexlge gaps in ecology still exist.

2.6 Sensitivity analyses of litter and soil carbon pool composition

To fully explore the effects of initial litter ansoil carbon quality on model outputs, we

conducted two modules of sensitivity analyses.

2.6.1 Modulel - Effect of litter carbon quality on steady-state carbon stock

We investigated the effect of all the theoreticasgbilities of litter carbon quality on steady-
state carbon quality. For this, we permuted théaarpercentage in each pool with the
following constraint: the minimal and maximum pertEges are 5 and 85%, respectively (In
permutations, the unitary increment or decremeng¢axth pool is + 5 %). Calculations are
based on the matrix method stated in Sect. 2.5tlduomi-2011 parameter set. Possible

correlations between A, W, E and N were not consdlén simulations.

12
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2.6.2Modulell - Effect of initial soil carbon quality and simulation length on final soil carbon stock

With a fixed initial soil carbon stock, we invesiigd the response of simulated final soll
carbon quantity and quality to the setting of adioil carbon quality and that of simulation
length. For this, we permuted the initial percertad soil carbon pools with the following
constraint: the minimal and maximum percentagesbé&eand 80%, respectively. We used
four levels of simulation length (1, 10, 100, 1 Gt 10 000 years) for each combination of
soil carbon quality distribution. We created a wait site where the climatic condition and
litter input were constant and equal to the avenaaes of the RENECOFOR sites. Initial
carbon stock was fixed to 100 tChaBased on averaged soil and litter carbon data of
RENECOFOR sites, the simulations were carried outbbth broadleaved and coniferous
forest stand cases. Here, only the results of eaadd stand case were presented, as results

between conifers and broadleaves did not changé negpecially in long term.

2.7 Running Yasso07 and statistical analyses

We used the same FORTRAN code of the Yasso07 velsihl used in Didion et al. (2014)
for all the model simulations. For each analysistfbRENECOFOR site specific and
sensitivity analyses), we conducted 10 simulatitm&ach simulation, one parameter vector
was randomly chosen from the 10 000 parameter kgecto

For each site, we calculated annual carbon stoekgds (ACC, in tC hayear'), i.e., the
difference of carbon stock between the two natiamatntories standardized by the temporal
interval ¢ - t;) as follows:

{ACCobs = (CSObs,tZ - CSobs,tl)/(tZ - tl)
ACCsim = (CSsim,tZ - CSobs,tl)/(tZ - tl)

Where,CSgim t2, CSops,e2 aNACS, 51 are the simulated carbon stock at the ygaobserved

(Eq. 7)

carbon stock at the yesrandt;, which are around the year of 1994 and 2010 depgrah
each site, respectively. In simulations, while obséd soil carbon stock df was used as
input, soil carbon quality at steady state achielgdhe analytical matrix transformation
approach (see Sect. 2.5) was used.

Two reasons support our general preference of congpaACCgn with ACCys Over
comparingCSs;m ¢ With CS,ps 2. First, the parameter sets of Yasso07 were cédibréor a
maximum soil depth of 1.0 m, while carbon stocksree RENECOFOR sites were only
estimated down to 0.4 m. It is thus reasonabl@étwate that the observed carbon stock data
are not comparable with Yasso07 estimates. Howéwensing on carbon changes instead of

carbon stocks may largely erase this bias, becpusé@ous studies have evidenced that
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carbon dynamics are much less active at deepag@ld than at superficial layers (Balesdent
et al.,, 2018). Second, ACC indicates if a site @nimpg or losing soil carbon and this
information is sometimes more important than thi’sicarbon stock value. Using a
standardized metric (by year) such as ACC can fasifitate result comparison for future
studies. The only exception came to the sensitaitglysis on the effect of initial soil carbon
quality (Sect. 2.6.2), in which we showés;,, ., instead ofACCgr,, as the initial soil carbon
stock was fixed at 100 tC haDespite the primary focus on ACC, we additionaynpared
the simulated steady-state carbon St@CRéady-state, iN tC ha'), which was obtained from the
initialization procedure (see Sect. 2.5), with @3, down to 1 m soil depth in order to
check if Yasso07’s predicted stocks to 1 m dep#chiehe level of observed stocks (see Fig.
S4). Then, we calculated the steady-state carbatitgdor all the 101 sites, using site-
dependent climatic data, litter input quality (lottesaves versus conifers) and quantity.

In order to test the performance of YassoO7 innesting soil carbon changes at the
RENECOFOR sites, we analyzed the residuals of caditanges, here defined as the
difference between the simulated and observed salisng analysis of variance (ANOVA).
The following environmental and biological factosere tested: site geographical location
(latitude, longitude, and altitude), climatic comolns (temperature and precipitation), soil
types, tree functional type and tree species. Bedach ANOVA, we tested the normality of
data using a Shapiro — Wilk test. For the sengjtimnalyses, we performed loess regressions
(Fox and Weisberg, 2011) to characterize the varnatf soil carbon stock as a function of
initial soil carbon stock settings and simulatiendth (1 — 10000 years). Statistical analyses
were performed using R 2.13.0 (R Core Team, 2013).
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3 Resaults

3.1 Litter carbon quality of northern temper ate tree species

Our meta-analysis (Fig. 2) showed that the lit@bon quality, i.e., carbon composition, of
northern temperate tree species significantly cefifebetween tree organs. For woody litters
(only using stem data) the percentage of A carlmmi attained up to 80% of the total carbon
pool; the sum of A and N carbon pools correspondedt least > 75% and, in most cases,
>90%, with consequently only small percentages oild E (Fig. 2a). Nevertheless, this
dominance of A and N over W and E was much lesaqunoced in foliage and root litters
(Figs. 2b and 2c). Generally, the different tregams can be ranked according to the sum of
the proportions of A and N as follows: wood (>90%a)oots (70 — 80%) > foliage (60 — 70%,
Fig. 2d).

The effect of tree functional type on litter carbqumality strongly interacted with that of tree
organs. For wood, broadleaves and conifers hadrlgleshifted point clouds for the
relationship between A and N carbon pools: greateportion of A, but lower proportion of
N in broadleaves compared to those in coniferdoliage and root litter, the effect of tree
functional type on proportions of A and W was I@senounced than in wood. The main
difference between broadleaves and conifers oatuimeN rather than in A (Fig. 2d).
Broadleaved litter had lower proportion of N thammiderous litter regardless of tree organ
(Fig. 2d). The proportions of A and N relative km$e of E and W were quite stable between
broadleaves and conifers regardless of tree ongags2d).

3.2 Simulated ver sus observed carbon data

The choice of fine root:foliage ratio significantipfluenced Yasso07's performance in
predicting soil C changes (Fig. S2). Based on tlier@a of minimum root mean square error
(RMSE), the ideal ratio for conifers appeared betw&.8 and 2.2, while the ideal ratio for
broadleaves was the smallest ratio tested (0.1).

Using only mean litter input, the theoretical carb&tock CSyeady-state) Simulated from the
initialization method and the observétS,,s;n to 1 m depth shared the same order of
magnitude and were even comparable (Fig. S4). Hewethe carbon stock were
overestimated for most coniferous stands, and estlerated for broadleaved stands (Fig.
S4).

When simulated annual carbon stock changes (AC@g pletted against observed ones, the

point clouds were distributed around the 1:1 diaidine despite fairly high dispersion (Fig.
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3). The correlation between predicted and measA@@ remained weak (R? < 0.1). The
mean ACC of all sites are +0.34 + 0.06 tC'hgeai* (+0.20 + 0.06 tC HA yeaf* for
broadleaved stands and +0.48 + 0.10 t year" for coniferous stands) and +0.45+ 0.09 tC
ha' yeaf* (+0.96 + 0.10 tC hayeaf* for broadleaved stands and -0.05 + 0.10 tC yeai*

for coniferous stands), respectively. 48% of caoiis stands and 39% of coniferous stands
showed significant differences between observedsamdilated ACC (Fig. 3a). In only c.a.
25% of the sites, ACC were significantly differdrdm O for both simulated and observed
results (i.e. the case 3 in Fig. 3b). There isgaiicant effect of the tree functional type on
the observed and simulated values. The model tetalederestimate ACC in broadleaved
stands but to underestimate ACC in coniferous stafithe quantity of sites in which
estimates and observed carbon stock changes $lgasarme tendency (i.e. data points in the
zone |, IV, lll and VI, Fig. ) was approximately evthirds of the total sites. c.a. one third of
sites are in the remaining zones (ll, and V) wheepredicted tendency was contrary to the
observed tendency.

The simulated carbon stock changes exhibited ativegiinear relationship with the initial
soil carbon stock (Fig. 4b), whereas this tendemayg not observed for the observed carbon
stock changes (Fig. 4a). Storm damage and soil ¢godéd not provide clear tendencies in
explaining the residuals. Only for coniferous swndesiduals showed significantly
differences among the three major types of soif(sites >5): cambisol > luvisol > podzol
(Fig. S5). Tree ages in coniferous stands tenceterballer than those in broadleaved stands.
When considering both tree functional types an@ tages, neither the latter nor their
interaction had a significant effect on residudMith all sites together, residuals become
higher with increasing latitude, indicating thamsiated ACC was more overestimated in
northern zones (ANCOVA, F = 14.$<0.001). This pattern was particularly strong for
broadleaved stands, with the exception of severas in Pyrenees Mountains (Fig. S6a). Yet,
this tendency was not clear for coniferous stari€ig. (S6e). ldentical residual sign is
generally present in clusters in all of the maiaces (Fig. S6b, S6c, S6d, S6f, S6g and S6h).
Broadleaved and coniferous stands differed in thesponses to environmental factors: for
coniferous stands, both temperature and precipitdiad little effect on residuals (Fig. S7a),
whilst for broadleaves, precipitation was negagivarrelated with residuals (ANCOVA, F =
7.17,P<0.001, Fig. S7b).

Regarding soil physical and chemical propertiesl toitrogen stock soil were significantly
correlated with residuals for both broadleaved andiferous stands (Fig. 5). Then, soill

texture (proportions of clay and sand) and exchabigemagnesium, calcium and potassium
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were significantly correlated with residuals onty broadleaved stands (Fig. 5; Table S2).
The remaining tested variables, such as proportbrsilt, pH, total phosphorus and
carbon:nitrogen ratio, had no relationship with tresiduals, except for exchangeable
aluminum, which showed a weak correlation with AC€siduals P<0.05*) only for

coniferous stands (Table S2).

3.3 Effect of litter carbon quality on model prediction (Sensitivity analyses 2.6.1)

Variation of litter carbon quality (without distition of original organ) altered the carbon
quality at steady-state (Fig. S8). The proportidrsal A, W and E carbon pools remained
below 15% regardless the biochemistry of litterutsp The percentages of N and H pools
were more susceptible to the variation of litterbca quality than the more labile ones (e.g.,
A, W and E; Fig. S8). The strong sensitivity of tterbon steady state distribution to litter
carbon quality wasle facto greatly discounted in reality, because the vammin chemical
composition of tree species was very limited (Y. This can also be represented by the
quite stable and narrow variations of the propartd soil pools at steady-state for all the 101
RENECOFOR sites (Fig. 6), with the sum of A, W d&gools around 15%, N pool around
55% and H pool around 30-35 %.

3.4 Impact of initial condition of soil carbon stock on model prediction (Sensitivity analyses 2.6.2)

Fig. S9 visualized all the theoretically possibieaf carbon stocks by varying initial carbon
stocks and simulation length (from 1 to 10 000 ggarhe initial soil carbon quality had a
pronounced impact on the final soil organic carbtwtks at annual and decennial scales. For
example, when the initial proportion of A pool irased from 0 to 80%, the final proportion
of A could increase by +30 to +40 tC hé&Fig. S9a) and the final total carbon stock could
decrease by c.a. -20 to -30 tCYfeig. S9u) at annual and decennial scales. Wheulations
were performed over millennium timescale, the ahioil carbon quality did not impact the
final soil carbon quality anymore. In other wordlse same final soil carbon quality was

obtained regardless what the initial soil qualitysNFig. S9).
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4 Discussion

4.1 Agreement between simulated and observed annual soil carbon stock changes

Testing widely popularized soil carbon models udarge dataset is highly meaningful work
that enables not only assessing the model’s aloligr various climatic and ecosystem types,
but also providing lessons and implications foufat modelling work. Here, based on the
observed carbon stock data to 1 m soil depth fllerRENECOFOR network, , we found the
simulated and observed carbon StodBSsfady-sate VErsusCSyps, 11) to0 1 m showed the same
order of magnitude, validating Yasso07’s good cdpwlto predict carbon stock in average at
the scale of the French territory. Such good peréosrce at the national scale is consistent
with Yasso’s aim for generality and supported bgvous studies (see Ortiz et al. 2013;
Lehtonen et al. 2016; Hernandez et al. 2017).

Then, based on the observed annual soil carbok stanges (ACC) with average 15-year
interval between the two inventories, we found #maulated ACC using YassoO7 were
significantly biased for more than one third of fhiench RENECOFOR sites. Particularly,
Yasso07 generally overestimated the ACC at thedbeased stands located in the north of
France (Fig. S6a-d) and the overestimation can Xaeesbated with lower precipitation.
Yasso07 tended to underestimate the ACC in ourfeanis stands. Nevertheless, we would
expect slightly better performance of Yasso07 inifesous stands than in broadleaved ones,
since the model's estimates have shown good camegmce to measurements (of stocks
and/or changes) in coniferous forests, especiaklyNordic boreal ones (e.g., Karhu et al.,
2011; Ortiz et al., 2013). Except for tree functiblype and geographical location (e.qg.
latitude, which is correlated with climatic variab), qualitative ecological variables that are
assumed as key factors influencing carbon sequiestiarocesses, e.g. soil type (except for
coniferous stands), storm damage and stand agee,ratpwed limited tendencies in
explaining residuals. Note that those factors werefully crossed in the 101 sites, rendering
testing each signer factor difficult.

The simulated ACC by Yasso07 showed strongly negatorrelation with the observed
initial soil carbon stockQSpst) , with an overestimation of ACC at sites of loweBps
and an underestimation at sites of higher&:s (Figs. 4 and S7). Such phenomenon can be
logically explained by the model’'s mechanism. Witbreasing initial carbon stock, due to
the fairly stable steady-state carbon quality (Fey.there is an increase in the quantity of
those easily decomposable compounds, i.e. A, W Bnth soil, which triggers a more

substantial mass loss at a decennial scale. Howéverobserved data on carbon stock
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changes did not support this trend, suggesting¥haso07’s configuration tends to penalize
too much the loss of labile carbon at decennialesc@ompared to broadleaved stands, the
slightly steeper slope for coniferous stands in. Bilg might be attributed to their higher
steady-state proportion of the extremely labile lpd@, W and E) in soil at a given soill
carbon stock (Fig. 6a) due to the higher proportbA, W and E pools in the litter quality of
broadleaves (Fig.2).

Several soil physical and chemical properties sldbowkear correlations (especially for
broadleaved stands) with ACC residuals (Fig. 5s0Alin the principle component analyses
(Fig. S7), the arrows standing for soil variables generally closer to the pivoting axis of
“initial carbon stock — ACC residuals” than thosmrsling for climatic and geographic
variables. The correlations (Table S2 and Fig. ®ay indicate that texture and nitrogen
content contribute to lower ACC for broadleavechdsacompared to model predictions and
that aluminum and perhaps also pH (Fig.S7) coulthbelved in the mechanisms that allow
increasing microbial activities and carbon mineation in soils of coniferous stands
compared to model predictions. All these resultggsst a potential interest of incorporating
soil properties into new versions of Yasso modelifig in which soil parameters are lacking
or only implicitly incorporated. Indeed, there anemerous evidences that soil physical and
chemical properties can greatly govern soil carthgmamics and stock capacity (Beare et al.,
2014;Dignac et al., 203 Rasmussen et al., 2018),

The limitations of the model at the site-scale ok surprising as the model was developed
for primarily large-scale application integratingopesses that dominate at the site scale.
Despite Yasso07’s significant prediction bias aueber of sites, it is unreasonable to simply
attribute the bias to the modeér se, as multiple uncertainties affecting the qualifyttoe
model’s input data can be identified (see Seci&s—44.4). These uncertainties can occur not
only with Yasso07, but also with other prevailingadels one may choose, highlighting large

knowledge gaps in ecology and soil carbon modelling

4.2 Setting soil carbon quality: arecurrent challengein soil carbon modelling

A great uncertainty is associated with the modeiairzation of soil carbon quality, as it was
not measured, but obtained by matrix inversion i assumption that the litter input has
been the same for decades. Compared to totalabibi stock, measuring soil carbon quality
is much labour intensive and time-consuming. Moegpwdata of soil carbon quality from

different sources are partly or totally incompadiblue to the use of different chemical pools
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or protocols of fractionation (Blair et al., 1999)herefore, measured data of soil carbon
guality are generally lacking at worldwide scalacls lack of information is a recurrent issue
for soil carbon dynamics modeling (see Elliot et(4P96), who has discussed the issue of
“Measuring the modelable”). Many prevailing soilrlsan models require setting carbon
qguality besides carbon guantity, e.g., Romul (Ghert al., 2001), RothC (Coleman and
Jenkinson, 1996), CENTURY versions Parton et 8871 Metherell et al., 1993, CBM-CFS3
(Kurz et al., 2009). Inappropriate setting of carbguality in models may greatly change
carbon stock predicts (Wutzler and Reichstein, 2@afvalhais et al., 2008; 2010).

In the present study, soil carbon quality data weravailable at the French RENECOFOR
sites. As a result, we used the simulated carbalityat steady-state to feed YassoO7. This is
a strong, but widely adopted assumption in soibearmodelling work (Foereid et al., 2012).
Alternative to the steady-state assumption, a eslarquilibrium assumption has been
proposed (see Wutzler and Reichstein, 2007). Therlassumes that soil carbon pools
(especially at sites that underwent disturbancesaant centuries) are not in steady-state, but
in a transient state. At such a site, while thatredly labile pools (e.g., A, W, E and N pools
in Yasso07) are able to recover until a dynamidldxiwm, the slow cycling pool (e.g., H)
can be still accumulating carbon (Wutzler and Rstieim, 2007). In this study, we did not use
the relaxed equilibrium assumption for simulatiahg to the lack of information for setting
the modified the decomposition-accumulation dynanoiicH pool required by the assumption.
However, for future work, it would be definitely wibwhile to have both assumptions
compared using prevailing carbon models (e.g., d@sRothC, Century etc.), as studies
comparing initialization assumptions still remaicasty compared to those on model
comparisons.

In order to gain a global overview on Yasso07’ss#erity to initial soil carbon quality, here
we conducted a sensitivity analysis that compukedfinal soil carbon stocks using all the
possible combinations of the composition of chemigaols. This sensitivity analysis
confirmed the high influence of initial soil carbgnality on soil carbon stock estimates (Fig.
S9), notably at short temporal scales (i.e., yeanly decennial). This result is in line with the
previous carbon stock modelling studies (Partoal.et1993; Kelly et al., 1997; Smith et al.,
2009; Foereid et al., 2012), confirming that iaigeneral problem for all of the chemical pool
based carbon models. Besides this consensus, maitigéy analysis further showed that such
effect of initial composition carbon stocks willagiually vanish with increasing length of
simulation and especially when the length is upséweral centuries or millenniums. Our

analysis provides new insights on the sensitivitymmdel estimated carbon stocks to the
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method and assumptions used in model initializat®urch analysis can be transplanted to the
other carbon models to test their theoretical perémce and robustness of each model at
different temporal scales and also, to compare fsode

Finally, solely testing different initialization sssmptions or performing sensitivity analysis
does not allow radically solving the predictionuiesrelated to uncertainties of soil carbon
guality. Based on ground truth data, Balesdent.ef2818) showed that carbon age shows
strong patterns as a function of soil depth andystem type. It appears highly necessary for
future modelling work to consider such specifiaqgeneric patterns, as shown in Balesdent et
al. (2018), into the procedure of model initialivat For this, it is to be noted that Yasso07’s
particular model configuration, i.e. the use of swable chemical pools, may open the
possibility of using measured datd soil carbon quality for model initialization itesad of
simulated steady-state ones. Future measuremensoibrcarbon radiocarbon age of the
RENECOFOR sites may offer an ideal opportunitydampare the impact of the two sources
of soil carbon quality on YassoQ7’s predictions.

4.3 A precise estimation of root litter quantity helpsimprove Y asso07 prediction

An important source of uncertainty in the estimatéditter quantity at the RENECOFOR
sites was the fine root litter input. Many studies/e revealed that fine roots act as a major
source contributing to total litter quantity duetheir fast turnover rates (Brunner et al., 2013;
Kdgel-Knabner et al., 2002; Berg and McClaughe2y08). In some forest ecosystems, the
proportion of fine root litter is even comparaldetihat of foliage (Freschet et al., 2013; Xia et
al. 2015). However, estimating fine root litter unp is, again, a time-consuming and
challenging task. Due to this reason, so far ranalye national wide forest inventory projects
ever incorporated direct measurement of the dymaofi¢ine root litter input (i.e. the case of
RENECOFOR network). Fine root turn-overs of forepecies are variable depending on
climate, tree species and management scenariolikogbner et al., 2002; Litton et al.,
2003; Mokany et al., 2006), rending the choice oidel input values highly subjective and
difficult. By testing variable fine root:foliage tras of litter input, we observed a significant
shift in the predicted carbon stock changes by 0@&s(Fig. S1). This finding not only
highlights the importance of precisely quantifioatiof fine root litter input, but also suggests
that broadleaves and conifers may have separataification of fine root litter input with
regard to that of foliage, although here we chdwedame ratio for both broadleaved and
coniferous stands. We also noted that using omne pat tree functional type (conifers versus

broadleaves) could only change the overall presfichaseline, but cannot reduce the data

21



© 00 N o v b~ W N R

N N P R R R R R R Ry R R
R O W W N o U A W N B O

22

23
24
25
26
27
28
29
30
31
32
33

dispersion. Consequently, it is of great interestgtimate root litter input quantity at species
level on the basis of direct measurement and tbaple specific data with Yasso07.

Another potentially important litter inputs may cenirom the understory shrubby and
herbaceous species, which were not taken into at@ouhis study due to data unavailability.
Herb and shrub layer are typically not estimatetbnest inventories but they can contribute
significantly to the annual litter production inrésts (eg. de Wit et al. 2006, Gilliam 2007,
Lehtonen et al. 2016). Muukkonen and Mékipaa (2@38mated that the carbon inputs from
herb and shrub vegetation in Finnish forests werthé range of 0.50 to 0.66 tC hgear.
Such value is apparently high, as it attains 1228% of the mean total tree litter inputs of all
the RENECOFOR sites (Table 1). This is in line wtk preliminary data from Etzold et al.
(2014), who suggested that understory vegetatioriboted c.a. 12% (0.1 to 36.8%) to the
total observed annual C turnover at six sites ef ltbng-term Forest Ecosystem Research
Programme LWF (ICP-Level Il plots).

Also, Yasso07’s parameter set was calibrated usivegof the richest litterbag datasets in the
world in terms of number of observation. The sttéhe-art of soil carbon modeling is based
on the litter input and decomposition processesthas driving forces in soil carbon
accumulation where measured mass loss of littensisd to fit model parameters. Our
knowledge on the importance of other sources dbgioal carbon input, e.g. soil fauna and
rhizodepostion, as well as how to take them intmant in modelling processes still remains
poor. Accordingly, whether and to which extent thias of YassoO7 is related to these

alternative sources of biological carbon inputng&nown.

4.4 Limited but potentially strong effect of litter carbon quality on Yasso07 prediction

Litter carbon quality, especially the content d¢tieli carbon in the N carbon pool, controls the
bulk litter decomposition rate and this has beeh-kvwn (De Deyn et al., 2008). Indeed,
the meta-analysis (Fig. 2) confirmed the significdisparity of carbon allocation between
litters of broadleaves and conifers in all the stigated organs. However, little has been
known about how this disparity of litter carbon bjiyabetween broadleaved and coniferous
stands will be projected into the long-term prddictof soil carbon stock. Our sensitivity
analysis Module | (Sect. 2.6.1) with Yasso07 showedenerally limited impact of such
disparity on the soil carbon quality of steady-estétigs. 6 and S8). Litter carbon quality
seems to be a less important factor determiningrtbéel predictions via affecting soil stock
initialization. This is especially true for the && more labile carbon pools (i.e. A, W and E)

and their mean residence time has quite low digpaetween themselves (Fig. S1). This
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seems to more or less weaken the meaningfulnesslitting litter and soil labile carbon
compounds into the three carbon pools (A, W anih K)asso07.

4.5 Suggestions for model improvement in the future

First of all, we found the model structure and alpon good, clear and simple to operate and
this goes along well with the positive remarks toW&asso and YassoO7 in literature
(Rantakari et al., 2012; Didion et al., 2014; Luaét 2015; Wu et al., 2015). Fig. S1 only
showed the mass flows that are statistically sigaift for the case of using the Tuomi 2011
parameter set. YassoO7 keeps all the theoreticas rilaw possibilities in thé\, matrix in
(Eq. 1b). However, a mass flow parameter with istigal significance does not signify that
it is biologically meaningful. For this we can gadhe flow N-> A of the model (Fig. S1),
for which the modeler had assigned an astonishihgih percentageny_, = 83%. This
guantity is disputable in the angle of soil biocl&ny, because as lignin, i.e. the major
component constituting the N carbon pool, likelyeslonot turn into the A pool, but would
condense with other nearby phenol, peptides ohsaictes (Burns et al., 2013).

As a model aiming at predicting soil carbon dynamni¢asso07 is still highly simple in the
description of soil variables that are known to aofpdecomposition processes in soil, For
example, the effect of soil mineralogy or aggremathave not been considered in Yasso07
yet. Indeed, the model was often applied on saildyfrich in organic matter (e.g., Karhu et
al., 2011), where the consideration of soil mingradperties was not particularly relevant,
and where the authors’ assumption that litter gtyaigt a good proxy for soil properties was
reasonable. In addition, when Yasso, i.e., Yassopibtotype, came up in 2005 (Liski et al.,
2005), information on mineral soil properties ire tharious forest soil horizons was not
commonly available, but nowadays it is easier t@iokit, although there is still a lack of such
detailed data for consistent application acrosgelaegions or at the national scale (Didion et
al., 2016).
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5 Conclusions

We tested the performance of the soil carbon m¥deso07 using the decennial scale French
national wide forest data thank to the RENECOFORvok, as well as a meta-analysis
database for litter carbon quality and sensitigitylyses to characterize the effect of inputs of
initial litter and soil carbon quality on the modebpredicts. We showed that while the
model’s predicts of the carbon stock to 1 m sogdtdeand annual soil organic carbon changes
(ACC) stay within the same order of magnitude wita observed ones, accordance between
the observed and simulated ACC at the site scataireed weak. There was a bias of model
prediction for the carbon change tendency at moaa one third of the French sites. The
performance of Yasso07, as well as the other soblan models, should be examined before
their application for management guidelines andcgehaking for forest ecosystems at any
study scales.

Such bias can be attributed to multiple reasonceming model input, such as (i) large
uncertainty in the measured soil carbon stock drahges; (ii) lack of information on initial
soil carbon quality at the site level and (iii) kaof information on below ground litter
production. For the latter two aspects, their ingpace was explicitly confirmed by our
sensitivity analyses. These reasons are valid Herwhole state-of-the-art of soil carbon
modelling, regardless of the model that one useseSof the model’'s parameters governing
the transfer among solil pools are statisticallywaer but not directly measured, and thus may
poorly represent the real biochemical processedeabmposition. Residual analysis also
suggests a potentially important role of soil pbgsand chemical properties in explaining the
model’s prediction.

These findings allow us to provide a series of sstigns to modelers, users and policy
makers:

« To Yasso07 modelers, we suggest keeping the cumedel structure, algorithm and
parameter natures, but incorporating more refinethes biochemical processes,
including (i) revising certain mass flows to achadwoth statistically and biologically
meaningful process (especially the>NA flow) (ii) refining decomposition process
(i.e., the residence times between the A, W andicarbon pools) and possibly, (iii)
explicitly incorporating easy-measured soil parareto better represent biophysical
and biochemical interactions in soil carbon cycling

e To Yasso07 users, we suggest working in conjunatiitih modelers in order to better

reduce the uncertainties in both model initialiaatiof soil carbon stock. We also
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suggest using measurement based forest litter ogumlity and quantity, especially the
belowground fine root litter data.

« To policy makers, we suggest keeping prudent tovwhagnosis from based on a
single carbon model, especially when long termdrenpredicted. Predictions from
multiple models served as a cross-validation procedre preconized for both global
and local scales areas.

Our decennial observation sites spreading at aelagptial scale that covers different
ecosystems can facilitate and provide good oppitigsrfor future calibration, improvement,
and re-assessment of the model. Finally, takingsd@s as an example, this work highlighted
the bottleneck of soil carbon modelling due to lagkknowledge or data on soil and litter
carbon quality and fine root litter quantity, renidg high uncertainties for model inputs, and
also demonstrated. Simultaneously, this study detmated methodologies of testing the
other soil carbon models via sensitivity analysekich enable us to better understand the
limits of the model and of data input for future pravements in soil organic carbon

modelling.
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Tables

Functional . No. of obs. Mean (%) SD (%)
i Species Organ Case = = - . . .
type A W E N A W E N A W E N
Broadleaves Fagus syivatica L. wood 4 4 4 4 4 745 2.8 12 215 14 1 05 14
leaf 2 2 1 1 2 39.6 22.1 12.5 25.8 353 NA NA 1.7
root 3 1 9 9 1 31.5 88 18.6 41.1 NA 12 12 NA
Quercus petraea (Matt.) Liebl. wood 4 19 19 19 19 67.5 6.1 3.5 229 49 23 1.7 26
leaf 4 12 12 12 12 40.8 16.3 14.2 28.7 3.5 47 93 7.1
root 5 15 9 915 349 7.6 16.2 413 80 1.1 1.1 104
Quercus robur L. wood 4 19 19 19 19 67.5 6.1 3.5 229 49 23 1.7 26
leaf 2 112 12 1 37.7 21.6 17.3 23.4 NA 73 73 NA
root 3 1 9 9 1 28.6 11.1 23.4 369 NA 1.5 15 NA
Conifers Abies alba Mill. wood 4 14 14 14 14 66.7 2.7 24 282 19 13 08 13
leaf 2 1 6 6 1 32.4 264 10.7 30.5 NA 14 14 NA
root 3 11313 1 25.3 19.1 21.5 34.1 NA 6.2 62 NA
Larix deciduas Mill. wood Rl 6 6 6 6 653 59 19 269 32 24 09 15
leaf 2 2 4 4 2 33.3 30.2 10.1 264 25 16 1.6 7.7
root 3 11313 1 325 16.2 18.2 33.1 NA 52 52 NA
Picea abies (L.) H. Karst wood 1 1 1 1 1 69.5 19 1.0 276 NA NA NA NA
leaf 2 1 6 6 1 37.0 29.5 12.0 21.5 NA 22 22 NA
root 3 31313 3 36.6 14.8 16.6 32.0 7.8 4.8 438 2
Pseudotsuga menziesii (Mirb.) Franco wood 1 1 1 1 1 653 4.0 4.0 26.7 NA NA NA NA
leaf 1 6 6 6 6 36.4 25.1 10.9 27.6 6.8 13.1 12 63
root 1 2 2 2 2 41.7 169 8.4 33.0 24 55 03 33
Pinus nigravar. corsicana (J.W. Loudon) Hyl.  wood 4 22 22 22 22 66.6 3.3 4.0 26.1 29 15 24 13
leaf 2 12727 1 47.1 152 13.8 239 NA 63 63 NA
root 4 10 10 10 10 36.0 9.2 119 429 49 44 31 73
Pinus pinaster Aiton wood RS 22 22 22 22 66.6 3.3 4.0 26.1 29 15 24 13
leaf 2 12727 1 43.2 182 16.5 22.1 NA 7.5 7.5 NA
root E 10 10 10 10 36.0 9.2 11.9 429 49 44 31 73
Pinus sylvestris L. wood 1 1 1 1 1 71.7 09 1.0 264 NA NA NA NA
leaf 1 3 3 3 3 40.7 17.0 16.0 26.3 38 75 65 24
root 2 4 10 10 4 51.2 44 6.0 384 37 14 14 45

Table 1 Litter carbon quality of the

species présenthe French RENCOFOR network

estimated based on literature. In the column “Cassch number corresponds to one case of
data availability in literature: 1- at least ong¢asd#t of complete chemical composition (i.e. for
AWEN) exists at species level; 2 - at least oneskit of incomplete chemical composition
(only for A, N and the sum of W and E) exists aea@ps level; in this case, the mean
proportion of W and E at genus level is used; d-data are available at species level, but at
least one complete dataset of chemical composgiists at genus level; 4 - no data are
available at species level, but at least one datafsehemical composition exists at genus
level; in this case, the mean proportion of W arat Eee functional type level is used; 5 — no

data are available at neither species nor genusl, len this case, the mean AWEN

composition at tree functional type level is useésthm Case 1 to 5 is in descending order of

priority.
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Data

Observed litter input quantity

(mean = 8D, in ¢ ha'! ‘\'r'l)‘

Year

Zz2 =z g 8 2 g s £ £ 5 E £ £ Z g g9 32
(51 sites) (50 siles:-p ) )
Climats M M M M M M M M A M M M M M M M M
Organic matter mputs via forssts
Fruits 2nd miscellanzous 036=028 0.64=041 M M M M A M M
Leayes 112035 128031 M M M M A M M
Fme branches 029=014 045014 M M M M A M M
Coarse woody branches® 032014 072029 M M M M A M M M M M M M M
Stems® 0 ] 0 0 0 0 0 0 0 0 0 0 0 0 0
Coarse woody roos® 0.83 036 1.03 =038 E E E E E E E M M M M M M
Fme ropts E E E E E E E
Soil carban sock M M
8 Table 2A summary of the data used for Yasso07 simulationthe present study. In the
9 “Year” columns: M - measured data; E - estimateth @xcording to the measured ones; 0 —
10 noted, but the contribution to litter is negligibkor soil carbon stock measurement, dashed
11 line zones denote the inventory duration. For aadr, each symbol (M and E) only account
12 for the general case and hence it is possiblentetsurement was occasionally omitted at
13  some sites. * - litter input caused by harvesttormss were included (once they occurre8ip
14 - standard deviation; litter inputs are dry matt®@®mmeters used for defining each litter type:
15 <2 cm for fine branches, >4 cm for coarse woody tinas, > 5 mm for coarse woody roots
16 and<5 mm for fine roots.
17
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Figure 1 Geographical distribution of the siteRENECOFOR network used for testing the
performance of Yasso07 (see also Jonard et al7)2Bdrested areas are represented in green.
Each circle represents one site; the color reptegbe dominant tree species of the plot. In
each pair of parentheses, the species abbreviatioh number of sites by species are
indicated.
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Figure 2 A meta-analysis of the carbon composifmmnorthern temperate tree specigs:
axis represents the percentage of acid-hydrolysaistgpounds (e.g. cellulose, noted by A, in
%) andy-axis represent the percentage of non-soluble anehgdrolyzable compround (e.g.
lignin, noted by N, in %). The oblique dashed re@s$ notify the sum of A and N, the values
of which are shown here. The remaining percentiagel00 - A - N, refers to the portion of
compounds like non-polar extractives, ethanol didiomethane (E), or in water (W). (a)
Analysis conducted for wood (106 data points fardoiieaves; 79 for conifers), (b) for foliage
litter (b, 106 data points for broadleaves; 83donifers) and (c) for root litter (58 data points
for broadleaves; 49 for conifers); (d) is a statatsynthesis (symbols — means and error bars
— 1.96 * standard error) of wood (W), foliage (F)daroots (R) in a common coordinates
system. Attention to the use of different axis gigtbns in each plot. Segupplementary
Material Il for the data sources. Note the different y-axaes:
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Figure 3 Comparison between simulated and obsexnedal carbon stock changes (ACC, in
tC ha' yeaf'). Round and triangle symbols represent sites daimihby broadleaves and
conifers, respectively. The chosen fine root:fadiagtio for broadleaves and conifers is 1.0.
To facilitate discussions, we set Roman numbekd)(denoting the six zones in which data
points are distributed. In (a), error bars represtandard errors; hollow and filled points
represent non-significant and significant differemdetween simulated and observed ACC
according to t-test (at 95% confidence level). B €ase of significance: 1 — no significant
difference from O for neither observed nor simuda#€CC; 2 - a significant difference from 0
for either observed or simulated ACC and 3: - anificant difference from 0 for both
observed and simulated ACC.
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Figure 4 Observedy{axis, a) and simulated annual change changesi§, b) plotted against
the observed carbon stock until 0.4 raakis) during the first soil carbon stock inventory
Regressionsy = -0.00X% + 0.360 (R? = 0.00) for observed values in thessdominated by
broadleavesy = 0.0004 + 0.440 (R2 = -0.02) for the sites dominated byifews;y = -0.02%

+ 2.881 (R2 = 0.62) for simulated values of thestilominated by broadleaves: -0.01& +
1.449 (R2 = 0.60) for simulated values of the sitesninated conifers.
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Figure 5 Residuals plotted against selected sgwiphl and chemical properties. Top plots with greeangles stand for the sites dominated by
conifers and bottom plots with orange dots stamdHe sites dominated by broadleaves. Regressioal$ the five subplots for the broadleaved
sites (b, d, f, h and i) and in one subplot fordtends dominated by conifers (a) are significRBr(5*). See Table S2 for results of linear
regressions of all the 11 soil variables. Red dadine indicates the zero line.
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Figure 6 Proportions of carbon pools (AWENH) absgstate for all the RENECOFOR sites
(y-axis) plotted against observed carbon stock aurifil 0.4 m -axis). Each symbol
represents one RENECOFOR site: green trianglesl $tanthe sites dominated by conifers
and orange dots stand for the sites dominated dgdbraves. For each boxplot, the lower and
top edge of the box corresponds to th® aad 7%' percentile data points; lower and top bars
the line within the box represents the median dmdHhollow points indicate outliers. Red
letters below the boxplot denote the statisticalydbses (t-test) with a significance level of
P=0.05*. No clear linear relationship was foundvetn carbon quality and observed carbon
stock at t1.
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Supplementary Materials

Supplementary Materials|: Supplementary tables and figures.

Supplementary Materials||: Database for the meta-analysis of wood and littendcal
composition.
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