We thank BioGeoSciences for considering our short Technical Note, and for sourcing two reviewers as below. Please find the reviewer requests in black, and with our responses below and in blue.

Reviewer One

The authors present a convincing and thoroughly justified and explained simple theoretical approach for the calculation of stomatal sluggishness following plants’ exposure to ozone for consideration in ESMs. It remains to be seen whether this phenomenon is of significance for the modelling of the global carbon cycle (the impact of ozone on vegetation is unquestionable, but much more experimental evidence is needed to demonstrate that ozone-induced sluggishness occurs across various vegetation types, species and indeed cultivars under various climatic conditions) and the suggested approach might in the long run be considered too simplistic if a more sophisticated biochemical approach for the effect of ozone on abscisic acid and the inclusion of ABA in ESMs will become available, but for the time being - i.e. as an interim solution - the presented model framework is a thought-provoking suggestion that will further the respective scientific debate and enable modellers to potentially add more precision to the calculation of ozone effects on the terrestrial carbon balance. Hence, I strongly support the publication of this technical note.

Thank you for these encouraging comments. We hope that our ozone-induced sluggishness “τ” description can be a useful interim description to map on to future observational campaigns that find this inertia effect.

Three minor comments (of formal nature):

Page 2, line 6: delete "is"

Corrected

Page 3, line 22: e.g. should be within the following brackets

Correct

Page 4, equation 1: describe what "d" in dgl and dt stands for

Eqn 1 is an ordinary differential equation, and so the “d” follows the calculus notation. However, we now write “This leads to the ordinary differential equation, for the rate of change of gl,slug with respect to time, as:”

Reviewer Two

The Authors present a well-defined theoretical framework for inclusion of the effect of ozone-induced stomatal sluggishness in modelling systems. The concept is based on the results of empirical studies showing that the stomatal response to environmental conditions such as drought is sometimes delayed when plants are or have been exposed to ozone. The authors clearly explain and present references showing the importance of implementing this effect in modelling systems that aim to estimate the integrated effects of climate and tropospheric ozone on e.g. terrestrial carbon and water cycles. The framework is presented with the aim of aiding model development and to provide empirical studies with relevant parameters for mapping their results. For this purpose the presented framework is interesting and useful. For the modelling community, the authors present a timely initiative for further development. However, given that the authors have not yet validated the
presented the concept towards empirical data, no suitable parameter values are presented, which means that the framework in its current form serves more as a starting point for further development for the modelling community. The Authors do not suggest how the variations in sluggishness across plant species/plant functional types should be implemented in models, but do point out the need for empirical data for this. Given the limited data available for testing and validating the presented framework, the approach in its current form largely based on assumptions about relevance across plant types/ecosystems and as the Authors highlight, needs to be further developed before being implemented in models. However, as a first step towards a fully developed parameterisation the authors present an interesting approach with the potential to enhance future estimates of the effects of ozone induced damage to terrestrial vegetation.

We thank reviewer 2 for their very thoughtful advice. We appreciate the broadly supportive assessment, but also note some concerns. We have address these as follows:

Reviewer query: “However, given that the authors have not yet validated the presented the concept towards empirical data, no suitable parameter values are presented, which means that the framework in its current form serves more as a starting point for further development for the modelling community”. This links to strongly to the comment P4 below “The application of the sluggishness parameter…..”.

We try to answer this, at least in part, through much better and clearer reference to elevated experiments reported for Siebold’s beech (Hoshika et al., 2012), and for grassland (Hayes et al., 2012). In the former, after approximately two months of double ambient ozone concentrations, then imposed oscillations of light levels on timescale order hours cause a slight lag in stomatal opening, compared to equivalent experiments at ambient O3 levels. This is analogous to our smaller τ of sub-daily magnitude.

In the Hayes grassland experiments, analysis is made of well-watered and reduced-watered experiments, and for different O3 concentration treatments. The notable feature is that for very high O3 levels (order 90 nmol/mol), then beyond 9 weeks and in the drought-induced case, the stomata are almost as wide open as the well-watered case. This suggests a long-term broad inability to respond to changing conditions, and so in-keeping with our τ value of much greater than one day. Please see below as to our precise changed wording.

In response to “The Authors do not suggest how the variations in sluggishness across plant species/plant functional types should be implemented in models”, we note that land surface models are evolving and starting to include more PFTs. We now write, and in part adopting reviewer wording: “The representation of general Plant Functional Types (PFTs) in land surface models is evolving, and including a larger set of them (e.g. Harper et al., 2016 changes the JULES model from five basic PFTs to nine). In the event that comprehensive measurements show variations in sluggishness between species, then this could inform future PFT definitions”.

Based on this reviewer’s query about PFTs, we additionally add in Discussion: “Existing PFTs in large-scale land models may have to be split to accommodate different responses. For trees for example, birch and oak are found to have high and low sensitivity respectively in existing models of ozone-induced stomatal closure (Sitch et al., 2007). Hoshika et al. (2018)* find similarly that sluggishness effects might be stronger in white birch than deciduous oak.”

Specific comments

P.1 lines 11-13: Consider moving this to the introduction.

Yes, we have done this

P. 2, lines 22-23: Please explain the link between ozone events and blocking anticyclones, or insert reference.

This is an area of active research in the UK at the moment (and undoubtedly elsewhere). However we have just checked, and as yet, the research is not yet available in peer-review papers. On this basis, we have decided to remove this sentence.

P. 4, Eq. (1): The application of the sluggishness parameter is illustrated with two example values that are shown to fit with some selected results in the literature. Although interesting, the selected parameter values seem somewhat arbitrary, and are not linked to other factors presented as being relevant, such as ozone levels (as ambient concentrations or accumulated fluxes) or vegetation types. The examples would be more relevant to the community if they were put in context with corresponding conditions.

Please provide reference or other explanation for the choice of parameter values in these examples. Are they particularly relevant for certain types of vegetation? How do these values link to ozone levels? -Have these specific values been chosen based on the empirical data sets in the literature to which they are compared in the discussion? Please provide some context and/or reference for these example values in order to make them more relevant for the readers.

Here we present the additional text now placed in the manuscript. This also gives our precise answer to the general comment by Reviewer 2 of: However, given that the authors have not yet validated.

We now write in the paper: “Our two representative values are guided by the experimental measurements presented for Siebold’s beech (Hoshika et al., 2012), and for grassland (Hayes et al., 2012). In the former, after approximately two months of double ambient ozone concentrations, then imposed oscillations of light levels on timescale order hours cause a slight lag in the beech stomatal opening, compared to equivalent experiments at ambient O₃ levels. This is analogous to our smaller τ of sub-daily magnitude. In the grassland experiments, analysis is made of well-watered and reduced-watered experiments, and for different O₃ concentration treatments. The notable feature in those experiments is that for very high O₃ levels (order 90 nmol/mol), then beyond nine weeks and in the drought-induced case, the stomata are almost as wide open as the well-watered case. This suggests a long-term broad inability to respond to changing conditions, and so in-keeping with our high sluggish τ value of much greater than one day”.

P. 6, lines 16-20: The concept of linking the sluggishness to accumulated exposure to ozone has already been explained, and if necessary can easily be explained again without the use of equations in the text. Mathematical expressions and integrals are not required at this point, but could rather be introduced earlier in the paper, for example in Chapter 2.

We have moved the bulk of p6, lines 12-20 to instead be under section “Sluggishness parameter τ₀₃ and modelled stomatal opening”. This now means that in that section, not only is parameter τ₀₃ defined, but also presented a discussion as to how it may change dependent on exposure time to elevated ozone levels.
P.7, lines 9-13: Repetition, and strictly not conclusions based on results of this article. Perhaps better placed under discussion.

We have moved these sentences back to the Discussion part of the paper.

Technical corrections

P. 2, line 6: remove “is”

Done

P.3, line 18: remove “and”?

Done

P. 6, line 17: Remove parenthesis around the concentration based critical threshold.

We have removed the square brackets around the concentration (and similarly elsewhere).

P. 6, line 21-22: please rephrase for clarity.

We have re-worded the entire paragraph, as revisiting this text, it is clear there is also a lack of clarity between the points made in the three sentences. We now write: “If the ABA signalling process plays a key role in linking tropospheric ozone levels to stomata sluggish effects, then careful analysis is needed of data from experimental examples of well-watered vegetation at high ozone levels. This is because high ABA concentrations generally increase during periods of soil moisture stress, to which stomata response by lowering their opening. If therefore sluggishness is also observed during well-watered periods, and hence for low ABA concentrations, then this suggests that additional mechanisms operate beyond this hormone in linking ozone concentrations to inertial of stomata.”