Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Discussion papers
https://doi.org/10.5194/bg-2018-199
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-2018-199
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 27 Apr 2018

Submitted as: research article | 27 Apr 2018

Review status
This discussion paper is a preprint. It has been under review for the journal Biogeosciences (BG). The revised manuscript was not accepted.

The response of seagrass (Posidonia oceanica) meadow metabolism to CO2 levels and hydrodynamic exchange determined with aquatic eddy covariance

Dirk Koopmans1, Moritz Holtappels2, Arjun Chennu1, Miriam Weber3, and Dirk de Beer1 Dirk Koopmans et al.
  • 1Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
  • 2Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, 27515, Germany
  • 3HYDRA Institute for Marine Sciences, Elba Field Station, Campo nell’Elba, 57034, Italy

Abstract. We investigated light, water velocity, and CO2 as drivers of primary production in Mediterranean seagrass (Posidonia oceanica) meadows and neighboring bare sands using the aquatic eddy covariance technique. Study locations included an open-water meadow and a nearshore meadow, the nearshore meadow being exposed to greater hydrodynamic exchange. A third meadow was located at a CO2 vent. We found that, despite the oligotrophic environment, the meadows had a remarkably high metabolic activity, up to 20 times higher than the surrounding sands. They were strongly autotrophic, with net production half of gross primary production. Thus, P. oceanica meadows are oases of productivity in an unproductive environment. Secondly, we found that turbulent oxygen fluxes above the meadow can be significantly higher in the afternoon than in the morning at the same light levels. This hysteresis can be explained by the replenishment of nighttime-depleted oxygen within the meadow during the morning. Oxygen depletion and replenishment within the meadow do not contribute to turbulent O2 flux. The hysteresis disappeared when fluxes were corrected for the O2 storage within the meadow and, consequently, accurate metabolic rate measurements require measurements of meadow oxygen content. We further argue that oxygen-depleted waters in the meadow provide a source of CO2 and inorganic nutrients for fixation, especially in the morning. Contrary to expectation, meadow metabolic activity at the CO2 vent was lower than at the other sites, with negligible net primary production.

Dirk Koopmans et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Dirk Koopmans et al.
Dirk Koopmans et al.
Viewed  
Total article views: 562 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
394 158 10 562 38 3 4
  • HTML: 394
  • PDF: 158
  • XML: 10
  • Total: 562
  • Supplement: 38
  • BibTeX: 3
  • EndNote: 4
Views and downloads (calculated since 27 Apr 2018)
Cumulative views and downloads (calculated since 27 Apr 2018)
Viewed (geographical distribution)  
Total article views: 553 (including HTML, PDF, and XML) Thereof 547 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 14 Sep 2019
Publications Copernicus
Download
Short summary
Over the next century the dissolved carbon dioxide gas and hydrogen ion concentrations in seawater will triple. We used a new technique that incorporates the net productivity of all organisms in a ten square meter area to examine what the future of seagrass might look like. We compared seagrass at a CO2 vent to seagrass at a conventional shore. Seagrass meadow productivity was reduced at the vent, but it is likely that contaminants in vent fluids may have been the cause.
Over the next century the dissolved carbon dioxide gas and hydrogen ion concentrations in...
Citation