How unique are fluxes from different FLUXNET sites?

Extended Budyko Analysis

The following 2 plots show predictability metrics for Potential and Actual evapotranspiration.
Predictability metrics for Potential Evapotranspiration (PET).
Predictability metrics for Actual Evapotranspiration.
Extended BioClim plots

The following figures use the WorldClim BioClim variables.

- Figure 1 shows the remaining predictability metrics for diurnal temperature range,
- Figure 2 shows isothermality,
- Figure 3 shows temperature seasonality,
- Figure 4 temperature annual range,
- Figure 5 precipitation seasonality,
- Figure 6 precipitation of wettest quarter, and
- Figure 7 precipitation of the driest quarter.

There is a hint of a trend towards higher uniqueness in sites that are driest in their wettest quarter, which is perhaps simply a reflection of the same effect seen in Figure 3 in the paper. Other determinants do not have a clear pattern in RMSE uniqueness.

There are some other patterns visible in some of the other predictability metrics, for example there appears to be a trend towards a better overlap metric at sites with a higher BioClim_t_annual_range, as well as sites with a higher BioClim_t_seasonality.
Figure 1: Predictability metrics for temperature diurnal range. Note: The first row is already included in the paper.
Figure 2: Predictability metrics for temperature isothermality.
Figure 3: Predictability metrics for temperature seasonality.
Figure 4: Predictability metrics for temperature annual range.
Figure 5: Predictability metrics for rainfall seasonality.
Figure 6: Predictability metrics for precipitation of the wettest quarter.
Figure 7: Predictability metrics for precipitation of the driest quarter.
Extended Vegetation type analysis

This figure shows the other predictability metrics for grouped vegetation type which were omitted from the paper.
Figure 8: Predictability metrics for vegetation type (grouped, see Methods).
Extended Geographic analysis

This section includes maps of RMSE uniqueness mean for Qh and Qle, mapped as per Figure 11 in the paper, as well as the remaining remoteness metrics, as per Figure 12. Distribution of uniqueness appears to be different for Qh (more high-uniqueness sites), but over-all, both variables have a similar, but less distinct pattern of uniqueness as seen in NEE in Figure 11.

Figure 9: Map of Qh predictability - RMSE uniqueness, averaged across models, as per Figure 11 in the paper.
Predictability ensemble: Qle - rmse uniqueness mean

Figure 10: Map of Qle predictability - RMSE uniqueness, averaged across models, as per Figure 11 in the paper.
Predictability metrics by RMSE uniqueness
Energy Gap Closure analysis

The energy closure problem in FLUXNET is investigated in Figure 11, where we show the actual gap (in W/m^2), and in Figure 12 where we show the absolute energy gap normalised by R_{net}. In the first figure, there is no trend in any flux. In the second figure, there is a trend toward higher uncertainty in sites with large energy gaps relative to their total R_{net}, however this trend is quite uncertain, due to the low number of sites involved.
Figure 11: Predictability metrics for energy gap (W/m²). Sites with positive energy gaps have too much Rnet relative to the over heat fluxes.
Figure 12: Predictability metrics for energy gap normalised by Rnet.
Extended dataset length analysis

The following plot shows the predictability metrics by data set length that were omitted from Figure 13.
Predictability metrics for number of years in dataset.
Fluxnet Citations

Sites, vegetation types, locations and studied periods of flux sites used in this analysis. All data originally from www.fluxdata.org, via https://github.com/trevorkeenan/FLUXNET_citations. Vegetation types: deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf forest (ENF); grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); savanna ecosystem (SAV); shrub ecosystem (SHR); wetland (WET).

<table>
<thead>
<tr>
<th>Site code</th>
<th>Veg type</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Period</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT-Neu</td>
<td>GRA</td>
<td>47.1167</td>
<td>11.3175</td>
<td>2002-2012</td>
<td>(Wohlfahrt et al. 2008)</td>
</tr>
<tr>
<td>AU-ASM</td>
<td>ENF</td>
<td>-22.2830</td>
<td>133.2490</td>
<td>2010-2013</td>
<td>(Cleverly et al. 2015)</td>
</tr>
<tr>
<td>AU-Cpr</td>
<td>SAV</td>
<td>-34.0021</td>
<td>140.5891</td>
<td>2010-2014</td>
<td>(Meyer, Kondřivá, and Koerber 2015)</td>
</tr>
<tr>
<td>AU-Cum</td>
<td>EBF</td>
<td>-33.6133</td>
<td>150.7225</td>
<td>2012-2014</td>
<td>(J. Beringer, Hutley, McHugh, et al. 2016a)</td>
</tr>
<tr>
<td>AU-DaS</td>
<td>SAV</td>
<td>-14.1593</td>
<td>131.3881</td>
<td>2008-2014</td>
<td>(Hutley et al. 2011)</td>
</tr>
<tr>
<td>AU-Dry</td>
<td>SAV</td>
<td>-15.2588</td>
<td>132.3706</td>
<td>2008-2014</td>
<td>(Cermusak et al. 2011)</td>
</tr>
<tr>
<td>AU-Emr</td>
<td>GRA</td>
<td>-23.8587</td>
<td>148.4746</td>
<td>2011-2013</td>
<td>(???)</td>
</tr>
<tr>
<td>AU-Fog</td>
<td>WET</td>
<td>-12.5452</td>
<td>131.3072</td>
<td>2006-2008</td>
<td>(Beringer et al. 2013)</td>
</tr>
<tr>
<td>AU-Gin</td>
<td>WSA</td>
<td>-31.3764</td>
<td>115.7138</td>
<td>2011-2014</td>
<td>(???)</td>
</tr>
<tr>
<td>AU-GWW</td>
<td>SAV</td>
<td>-30.1913</td>
<td>120.6541</td>
<td>2013-2014</td>
<td>(???)</td>
</tr>
<tr>
<td>AU-Lox</td>
<td>DBF</td>
<td>-34.4704</td>
<td>140.6551</td>
<td>2008-2009</td>
<td>(Stevens et al. 2011)</td>
</tr>
<tr>
<td>AU-RDF</td>
<td>WSA</td>
<td>-14.5636</td>
<td>132.4776</td>
<td>2011-2013</td>
<td>(Bristow et al. 2016)</td>
</tr>
<tr>
<td>AU-Rig</td>
<td>GRA</td>
<td>-36.6499</td>
<td>145.5759</td>
<td>2011-2014</td>
<td>(J. Beringer, Hutley, McHugh, et al. 2016b)</td>
</tr>
<tr>
<td>AU-TTE</td>
<td>OSH</td>
<td>-22.2870</td>
<td>133.6400</td>
<td>2012-2013</td>
<td>(???)</td>
</tr>
<tr>
<td>AU-Wac</td>
<td>EBF</td>
<td>-37.4259</td>
<td>145.1878</td>
<td>2005-2008</td>
<td>(Kilinc et al. 2013)</td>
</tr>
<tr>
<td>AU-Wom</td>
<td>EBF</td>
<td>-37.4222</td>
<td>144.0944</td>
<td>2010-2012</td>
<td>(???)</td>
</tr>
<tr>
<td>AU-Yac</td>
<td>GRA</td>
<td>-34.9893</td>
<td>146.2907</td>
<td>2012-2014</td>
<td>(Yee et al. 2015)</td>
</tr>
<tr>
<td>BE-Lon</td>
<td>CRO</td>
<td>50.5516</td>
<td>4.7461</td>
<td>2004-2014</td>
<td>(Moureaux et al. 2006)</td>
</tr>
<tr>
<td>BE-Vie</td>
<td>MF</td>
<td>50.3051</td>
<td>5.9981</td>
<td>1996-2014</td>
<td>(Aubinet et al. 2001)</td>
</tr>
<tr>
<td>CA-Man</td>
<td>ENF</td>
<td>55.8796</td>
<td>-98.4808</td>
<td>1994-2008</td>
<td>(Dunn et al. 2007)</td>
</tr>
<tr>
<td>CA-NS1</td>
<td>ENF</td>
<td>55.8792</td>
<td>-98.4839</td>
<td>2001-2005</td>
<td>(Goulden et al. 2006a)</td>
</tr>
<tr>
<td>CA-NS2</td>
<td>ENF</td>
<td>55.9058</td>
<td>-98.5247</td>
<td>2001-2005</td>
<td>(Goulden et al. 2006b)</td>
</tr>
<tr>
<td>CA-NS3</td>
<td>ENF</td>
<td>55.9117</td>
<td>-98.3822</td>
<td>2001-2005</td>
<td>(Goulden et al. 2006c)</td>
</tr>
<tr>
<td>CA-NS4</td>
<td>ENF</td>
<td>55.9144</td>
<td>-98.3806</td>
<td>2002-2005</td>
<td>(Goulden et al. 2006d)</td>
</tr>
<tr>
<td>CA-NS5</td>
<td>ENF</td>
<td>55.8631</td>
<td>-98.4850</td>
<td>2001-2005</td>
<td>(Goulden et al. 2006e)</td>
</tr>
<tr>
<td>CA-NS6</td>
<td>OSH</td>
<td>55.9167</td>
<td>-98.9644</td>
<td>2001-2005</td>
<td>(Goulden et al. 2006f)</td>
</tr>
<tr>
<td>CA-NS7</td>
<td>OSH</td>
<td>56.6358</td>
<td>-99.9483</td>
<td>2002-2005</td>
<td>(Goulden et al. 2006g)</td>
</tr>
<tr>
<td>CA-Qfo</td>
<td>ENF</td>
<td>49.6925</td>
<td>-74.3421</td>
<td>2003-2010</td>
<td>(Bergeron et al. 2007)</td>
</tr>
<tr>
<td>CA-SF1</td>
<td>ENF</td>
<td>54.4850</td>
<td>-105.8176</td>
<td>2003-2006</td>
<td>(Mkhabela et al. 2009a)</td>
</tr>
<tr>
<td>CA-SF2</td>
<td>ENF</td>
<td>54.2539</td>
<td>-105.8775</td>
<td>2001-2005</td>
<td>(Mkhabela et al. 2009b)</td>
</tr>
<tr>
<td>CA-SF3</td>
<td>OSH</td>
<td>54.0916</td>
<td>-106.0053</td>
<td>2001-2006</td>
<td>(Mkhabela et al. 2009c)</td>
</tr>
<tr>
<td>CH-Cha</td>
<td>GRA</td>
<td>47.2102</td>
<td>8.4104</td>
<td>2005-2014</td>
<td>(Mebold et al. 2014)</td>
</tr>
<tr>
<td>Site code</td>
<td>Veg type</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Period</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CH-Dav</td>
<td>ENF</td>
<td>46.8153</td>
<td>9.8559</td>
<td>1997-2014</td>
<td>(Zielis et al. 2014)</td>
</tr>
<tr>
<td>CH-Fru</td>
<td>GRA</td>
<td>47.1158</td>
<td>8.3378</td>
<td>2005-2014</td>
<td>(Immer et al. 2013)</td>
</tr>
<tr>
<td>CH-Lae</td>
<td>MF</td>
<td>47.4781</td>
<td>8.3650</td>
<td>2004-2014</td>
<td>(Etzold et al. 2011)</td>
</tr>
<tr>
<td>CH-Oe1</td>
<td>GRA</td>
<td>47.2858</td>
<td>7.7319</td>
<td>2002-2008</td>
<td>(Ammann et al. 2009)</td>
</tr>
<tr>
<td>CH-Oe2</td>
<td>CRO</td>
<td>47.2863</td>
<td>7.7343</td>
<td>2004-2014</td>
<td>(Dietiker, Buchmann, and Eugster 2010)</td>
</tr>
<tr>
<td>CN-Cha</td>
<td>MF</td>
<td>42.4025</td>
<td>128.0958</td>
<td>2003-2005</td>
<td>(Guan et al. 2006)</td>
</tr>
<tr>
<td>CN-Dan</td>
<td>GRA</td>
<td>44.5934</td>
<td>123.5092</td>
<td>2007-2010</td>
<td>(???)</td>
</tr>
<tr>
<td>CN-Din</td>
<td>EBF</td>
<td>30.4978</td>
<td>91.0664</td>
<td>2004-2005</td>
<td>(Shi et al. 2006)</td>
</tr>
<tr>
<td>CN-Dn2</td>
<td>GRA</td>
<td>42.0467</td>
<td>116.2836</td>
<td>2006-2008</td>
<td>(Chen et al. 2009)</td>
</tr>
<tr>
<td>CN-Ha2</td>
<td>WET</td>
<td>37.6086</td>
<td>101.3269</td>
<td>2003-2005</td>
<td>(???)</td>
</tr>
<tr>
<td>CN-Qia</td>
<td>ENF</td>
<td>42.6414</td>
<td>115.0581</td>
<td>2003-2005</td>
<td>(???)</td>
</tr>
<tr>
<td>CN-Sw2</td>
<td>GRA</td>
<td>41.7902</td>
<td>111.8971</td>
<td>2010-2012</td>
<td>(???)</td>
</tr>
<tr>
<td>CZ-BK2</td>
<td>GRA</td>
<td>49.4944</td>
<td>18.5429</td>
<td>2004-2006</td>
<td>(???)</td>
</tr>
<tr>
<td>CZ-wet</td>
<td>WET</td>
<td>49.0247</td>
<td>14.7704</td>
<td>2006-2014</td>
<td>(Dušek et al. 2012)</td>
</tr>
<tr>
<td>DE-Akm</td>
<td>WET</td>
<td>53.8662</td>
<td>13.6834</td>
<td>2009-2014</td>
<td>(???)</td>
</tr>
<tr>
<td>DE-Gri</td>
<td>GRA</td>
<td>50.9500</td>
<td>13.5126</td>
<td>2004-2014</td>
<td>(Prescher, Grünwald, and Bernhofer 2010a)</td>
</tr>
<tr>
<td>DE-Kli</td>
<td>CRO</td>
<td>50.8931</td>
<td>13.5224</td>
<td>2004-2014</td>
<td>(Prescher, Grünwald, and Bernhofer 2010b)</td>
</tr>
<tr>
<td>DE-Lkb</td>
<td>ENF</td>
<td>49.0996</td>
<td>13.3047</td>
<td>2009-2013</td>
<td>(Lindauer et al. 2014)</td>
</tr>
<tr>
<td>DE-Obe</td>
<td>ENF</td>
<td>50.7867</td>
<td>13.7213</td>
<td>2008-2014</td>
<td>(???)</td>
</tr>
<tr>
<td>DE-RuR</td>
<td>GRA</td>
<td>50.6219</td>
<td>6.3041</td>
<td>2011-2014</td>
<td>(Post et al. 2015)</td>
</tr>
<tr>
<td>DE-RuS</td>
<td>CRO</td>
<td>50.8659</td>
<td>6.4472</td>
<td>2011-2014</td>
<td>(Maunder et al. 2013)</td>
</tr>
<tr>
<td>DE-Seh</td>
<td>CRO</td>
<td>50.8706</td>
<td>6.4497</td>
<td>2007-2010</td>
<td>(Schmidt et al. 2012)</td>
</tr>
<tr>
<td>DE-SfN</td>
<td>WET</td>
<td>47.8064</td>
<td>11.3275</td>
<td>2012-2014</td>
<td>(Hommeltenberg et al. 2014)</td>
</tr>
<tr>
<td>DE-Spw</td>
<td>WET</td>
<td>51.8923</td>
<td>14.0337</td>
<td>2010-2014</td>
<td>(???)</td>
</tr>
<tr>
<td>DE-Tha</td>
<td>ENF</td>
<td>50.9624</td>
<td>13.5652</td>
<td>1996-2014</td>
<td>(Grünwald and Bernhofer 2007)</td>
</tr>
<tr>
<td>DK-Don</td>
<td>CRO</td>
<td>56.4842</td>
<td>9.5872</td>
<td>2005-2005</td>
<td>(???)</td>
</tr>
<tr>
<td>DK-NuF</td>
<td>WET</td>
<td>64.1308</td>
<td>-51.3861</td>
<td>2008-2014</td>
<td>(Westergaard-Nielsen et al. 2013)</td>
</tr>
<tr>
<td>DK-Sor</td>
<td>DBF</td>
<td>55.4859</td>
<td>11.6446</td>
<td>1996-2014</td>
<td>(Pilegaard et al. 2011)</td>
</tr>
<tr>
<td>DK-ZaF</td>
<td>WET</td>
<td>74.4814</td>
<td>-20.5545</td>
<td>2008-2011</td>
<td>(Stiegler et al. 2016)</td>
</tr>
<tr>
<td>ES-Ln2</td>
<td>OSH</td>
<td>36.9695</td>
<td>-3.4758</td>
<td>2009-2009</td>
<td>(???)</td>
</tr>
<tr>
<td>FI-Hyy</td>
<td>ENF</td>
<td>61.8474</td>
<td>24.2948</td>
<td>1996-2014</td>
<td>(???)</td>
</tr>
<tr>
<td>FI-Jok</td>
<td>CRO</td>
<td>60.8986</td>
<td>23.5135</td>
<td>2000-2003</td>
<td>(Lohila 2004)</td>
</tr>
<tr>
<td>FI-Lom</td>
<td>WET</td>
<td>67.9972</td>
<td>24.2092</td>
<td>2007-2009</td>
<td>(???)</td>
</tr>
<tr>
<td>FI-Sod</td>
<td>ENF</td>
<td>67.3619</td>
<td>26.6378</td>
<td>2001-2014</td>
<td>(Thum et al. 2007)</td>
</tr>
<tr>
<td>FR-Fon</td>
<td>DBF</td>
<td>48.4764</td>
<td>2.7801</td>
<td>2005-2014</td>
<td>(Delpierre et al. 2015)</td>
</tr>
<tr>
<td>FR-Gri</td>
<td>CRO</td>
<td>48.8442</td>
<td>1.9519</td>
<td>2004-2013</td>
<td>(Loubet et al. 2011)</td>
</tr>
<tr>
<td>FR-LBr</td>
<td>ENF</td>
<td>44.7171</td>
<td>-0.7693</td>
<td>1996-2008</td>
<td>(Berbigier, Bonnefond, and Mellmann 2001)</td>
</tr>
<tr>
<td>FR-Pue</td>
<td>EBF</td>
<td>43.7414</td>
<td>3.5958</td>
<td>2000-2014</td>
<td>(Rambal et al. 2004)</td>
</tr>
<tr>
<td>GF-Guy</td>
<td>EBF</td>
<td>5.2788</td>
<td>-52.9249</td>
<td>2004-2014</td>
<td>(Bonial et al. 2008)</td>
</tr>
<tr>
<td>IT-BCi</td>
<td>CRO</td>
<td>40.5238</td>
<td>14.9574</td>
<td>2004-2014</td>
<td>(Vitale et al. 2015)</td>
</tr>
<tr>
<td>IT-CA1</td>
<td>DBF</td>
<td>42.3804</td>
<td>12.0266</td>
<td>2011-2014</td>
<td>(Sabbatini et al. 2016a)</td>
</tr>
<tr>
<td>IT-CA2</td>
<td>CRO</td>
<td>42.3772</td>
<td>12.0260</td>
<td>2011-2014</td>
<td>(Sabbatini et al. 2016b)</td>
</tr>
<tr>
<td>IT-CA3</td>
<td>DBF</td>
<td>42.3800</td>
<td>12.0222</td>
<td>2011-2014</td>
<td>(Sabbatini et al. 2016c)</td>
</tr>
<tr>
<td>IT-Cp2</td>
<td>EBF</td>
<td>41.7043</td>
<td>12.3573</td>
<td>2012-2014</td>
<td>(Fares et al. 2014)</td>
</tr>
<tr>
<td>Site code</td>
<td>Veg type</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Period</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>IT-Cpz</td>
<td>EBF</td>
<td>41.7052</td>
<td>12.3761</td>
<td>1997-2009</td>
<td>(Garbulsky et al. 2008)</td>
</tr>
<tr>
<td>IT-Isp</td>
<td>DBF</td>
<td>45.8126</td>
<td>8.6336</td>
<td>2013-2014</td>
<td>(Ferréa et al. 2012)</td>
</tr>
<tr>
<td>IT-Lav</td>
<td>ENF</td>
<td>45.9562</td>
<td>11.2813</td>
<td>2003-2014</td>
<td>(B. Marcolla, Pitacco, and Cescatti 2003b)</td>
</tr>
<tr>
<td>IT-MBo</td>
<td>GRA</td>
<td>46.0147</td>
<td>11.0458</td>
<td>2003-2013</td>
<td>(Marcolla et al. 2011)</td>
</tr>
<tr>
<td>IT-Ro1</td>
<td>DBF</td>
<td>42.4081</td>
<td>11.9209</td>
<td>2002-2012</td>
<td>(Tedeschi et al. 2006)</td>
</tr>
<tr>
<td>IT-Ro2</td>
<td>DBF</td>
<td>42.3903</td>
<td>11.9209</td>
<td>2003-2014</td>
<td>(Chiesi et al. 2005)</td>
</tr>
<tr>
<td>IT-SRo</td>
<td>ENF</td>
<td>44.7279</td>
<td>10.2844</td>
<td>1999-2012</td>
<td>(Chiesi et al. 2005)</td>
</tr>
<tr>
<td>IT-Tor</td>
<td>GRA</td>
<td>45.8444</td>
<td>7.5781</td>
<td>2008-2014</td>
<td>(Galvagno et al. 2013)</td>
</tr>
<tr>
<td>NO-Adv</td>
<td>WET</td>
<td>78.1860</td>
<td>15.9230</td>
<td>2011-2014</td>
<td>(????)</td>
</tr>
<tr>
<td>NO-Blv</td>
<td>SNO</td>
<td>78.9216</td>
<td>13.8311</td>
<td>2008-2009</td>
<td>(Lüers et al. 2014)</td>
</tr>
<tr>
<td>RU-Che</td>
<td>OSH</td>
<td>70.8291</td>
<td>147.4943</td>
<td>2003-2014</td>
<td>(Molen et al. 2007)</td>
</tr>
<tr>
<td>RU-Fyo</td>
<td>ENF</td>
<td>56.4165</td>
<td>32.9221</td>
<td>1998-2014</td>
<td>(Kurbatova et al. 2008)</td>
</tr>
<tr>
<td>RU-Ha1</td>
<td>GRA</td>
<td>54.7252</td>
<td>90.0022</td>
<td>2002-2004</td>
<td>(Marchesini et al. 2007)</td>
</tr>
<tr>
<td>US-AR1</td>
<td>GRA</td>
<td>36.4267</td>
<td>-99.4200</td>
<td>2009-2012</td>
<td>(Raz-Yaseef et al. 2015a)</td>
</tr>
<tr>
<td>US-ARb</td>
<td>GRA</td>
<td>35.5497</td>
<td>-98.0402</td>
<td>2005-2006</td>
<td>(Raz-Yaseef et al. 2015c)</td>
</tr>
<tr>
<td>US-ARC</td>
<td>GRA</td>
<td>35.5465</td>
<td>-98.0400</td>
<td>2005-2006</td>
<td>(Raz-Yaseef et al. 2015d)</td>
</tr>
<tr>
<td>US-ARM</td>
<td>CRO</td>
<td>36.6058</td>
<td>-97.4888</td>
<td>2003-2012</td>
<td>(Fischer et al. 2007)</td>
</tr>
<tr>
<td>US-GLE</td>
<td>ENF</td>
<td>41.3665</td>
<td>-106.2399</td>
<td>2004-2014</td>
<td>(Frank et al. 2014)</td>
</tr>
<tr>
<td>US-Ha1</td>
<td>DBF</td>
<td>42.5378</td>
<td>-72.1715</td>
<td>1991-2012</td>
<td>(Urbanski et al. 2007)</td>
</tr>
<tr>
<td>US-Me1</td>
<td>ENF</td>
<td>44.5794</td>
<td>-121.5000</td>
<td>2004-2005</td>
<td>(Irvine, Law, and Hibbard 2007)</td>
</tr>
<tr>
<td>US-Me2</td>
<td>ENF</td>
<td>44.4253</td>
<td>-121.5574</td>
<td>2002-2014</td>
<td>(Irvine et al. 2008)</td>
</tr>
<tr>
<td>US-Me6</td>
<td>ENF</td>
<td>44.3233</td>
<td>-121.6078</td>
<td>2010-2014</td>
<td>(Ruehr, Martin, and Law 2012)</td>
</tr>
<tr>
<td>US-Myb</td>
<td>WET</td>
<td>38.0498</td>
<td>-121.7651</td>
<td>2010-2014</td>
<td>(Mattes et al. 2014)</td>
</tr>
<tr>
<td>US-Ne1</td>
<td>CRO</td>
<td>41.1651</td>
<td>-96.4766</td>
<td>2001-2013</td>
<td>(Verma et al. 2005a)</td>
</tr>
<tr>
<td>US-Ne2</td>
<td>CRO</td>
<td>41.1649</td>
<td>-96.4701</td>
<td>2001-2013</td>
<td>(Verma et al. 2005b)</td>
</tr>
<tr>
<td>US-Ne3</td>
<td>CRO</td>
<td>41.1797</td>
<td>-96.4397</td>
<td>2001-2013</td>
<td>(Verma et al. 2005c)</td>
</tr>
<tr>
<td>US-ORv</td>
<td>WET</td>
<td>40.0201</td>
<td>-83.0183</td>
<td>2011-2011</td>
<td>(Morin et al. 2014)</td>
</tr>
<tr>
<td>US-PFa</td>
<td>MF</td>
<td>45.9459</td>
<td>-90.2723</td>
<td>1995-2014</td>
<td>(Desai et al. 2015)</td>
</tr>
<tr>
<td>US-Prr</td>
<td>ENF</td>
<td>65.1237</td>
<td>-147.4876</td>
<td>2010-2013</td>
<td>(Nakai et al. 2013)</td>
</tr>
<tr>
<td>US-SRG</td>
<td>GRA</td>
<td>31.7894</td>
<td>-110.8277</td>
<td>2008-2014</td>
<td>(Scott et al. 2015a)</td>
</tr>
<tr>
<td>Site code</td>
<td>Veg type</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Period</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>US-Ton</td>
<td>WSA</td>
<td>38.4316</td>
<td>-120.9660</td>
<td>2001-2014</td>
<td>(Baldocchi et al. 2010)</td>
</tr>
<tr>
<td>US-Tw1</td>
<td>WET</td>
<td>38.1074</td>
<td>-121.6469</td>
<td>2012-2014</td>
<td>(Oikawa et al. 2017)</td>
</tr>
<tr>
<td>US-Tw2</td>
<td>CRO</td>
<td>38.1047</td>
<td>-121.6433</td>
<td>2012-2013</td>
<td>(Knox et al. 2016)</td>
</tr>
<tr>
<td>US-Tw3</td>
<td>CRO</td>
<td>38.1159</td>
<td>-121.6467</td>
<td>2013-2014</td>
<td>(Baldocchi, Sturtevant, and Contributors 2015)</td>
</tr>
<tr>
<td>US-Tw4</td>
<td>WET</td>
<td>38.1030</td>
<td>-121.6414</td>
<td>2013-2014</td>
<td>(Baldocchi 2016)</td>
</tr>
<tr>
<td>US-Umb</td>
<td>DBF</td>
<td>45.5598</td>
<td>-84.7138</td>
<td>2000-2014</td>
<td>(Gough et al. 2013a)</td>
</tr>
<tr>
<td>US-Umd</td>
<td>DBF</td>
<td>45.5625</td>
<td>-84.6975</td>
<td>2007-2014</td>
<td>(Gough et al. 2013b)</td>
</tr>
<tr>
<td>US-Var</td>
<td>GRA</td>
<td>38.4133</td>
<td>-120.9507</td>
<td>2000-2014</td>
<td>(Ma et al. 2007)</td>
</tr>
<tr>
<td>US-Whs</td>
<td>OSH</td>
<td>31.7438</td>
<td>-110.0522</td>
<td>2007-2014</td>
<td>(Scott et al. 2015b)</td>
</tr>
<tr>
<td>US-Wi0</td>
<td>ENF</td>
<td>46.6188</td>
<td>-91.0814</td>
<td>2002-2002</td>
<td>(Noormets, Chen, and Crow 2007a)</td>
</tr>
</tbody>
</table>

Baldocchi, Dennis, Cové Sturtevant, and Fluxnet Contributors. 2015. “Does Day and Night Sampling Reduce Spurious Correlation Between Canopy Photosynthesis and Ecosystem Respiration?” *Agricultural and Forest

Measurements of an Old Spruce Forest at the Anchor Station Tharandt.” *Tellus B* 59 (3). Informa UK Limited. doi:10.3402/tellusb.v59i3.17000.

Leuning, Ray, Helen A. Cleugh, Steven J. Zegelin, and Dale Hughes. 2005. “Carbon and Water Fluxes over a Temperate Eucalyptus Forest and a Tropical Wet/Dry Savanna in Australia: Measurements and Comparison

Raz-Yaseef, Naama, Dave P. Billesbach, Marc L. Fischer, Sebastien C. Biraud, Stacey A. Gunter, James A. Bradford, and Margaret S. Torn. 2015a. “Vulnerability of Crops and Native Grasses to Summer Drying in the

Stiegler, Christian, Magnus Lund, Torben Rejle Christensen, Mikhail Mastepanov, and Anders Lindroth.

Wohlfahrt, Georg, Albin Hammerle, Alois Haslwanter, Michael Bahn, Ulrike Tappeiner, and Alexander Cernusca. 2008. “Seasonal and Inter-Annual Variability of the Net Ecosystem CO2exchange of a Temperate
