The 226Ra-Ba relationship in the North Atlantic during GEOTRACES-GA01

Emilie Le Roy1, Virginie Sanial1,2,3, Matthew A. Charette2, Pieter van Beek1, François Lacan1, Stéphanie H.M. Jacquet4, Paul B. Henderson2, Marc Souhaut1, Maribel I. García-Ibáñez5,6, Catherine Jeandel1, Fiz F. Pérez5, Géraldine Sarthou7

1LEGOS, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (Université de Toulouse, CNRS/CNES/IRD/UPS), Observatoire Midi Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France [emilie.le.roy@legos.obs-mip.fr] 2Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 3Now at Department of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA 4Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288 Marseille, France 5Instituto de Investigaciones Marinas (IIM, CSIC), Eduardo Cabello 6, 36208 Vigo, Spain 6Now at Uni Research Climate, Bjerknes Centre for Climate Research, Bergen 5008, Norway 7Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539, IUEM, Technopôle Brest Iroise, 29280 Plouzané, France

Correspondance to: Emilie Le Roy (emilie.le.roy@legos.obs-mip.fr)

Abstract. We report detailed sections of radium-226 (226Ra, $T_{1/2} = 1602$ y) activities and barium (Ba) concentrations determined in the North Atlantic (Portugal-Greenland-Canada) in the framework of the international GEOTRACES program (GA01 section—GEOVIDE project, May-July 2014). Dissolved 226Ra and Ba are strongly correlated along the section, a pattern that may reflect their similar chemical behavior. Because 226Ra and Ba have been widely used as tracers of water masses and ocean mixing, we investigated more thoroughly their behavior in this crucial region for thermohaline circulation taking advantage of the contrasting biogeochemical patterns existing along the GA01 section. We used an Optimum Multiparameter (OMP) analysis to distinguish the relative importance of physical transport (water mass mixing) and non-conservative processes (sedimentary, river, or hydrothermal inputs; uptake by particles, and dissolved-particulate dynamics) on the 226Ra and Ba distributions in the North Atlantic. Results show that the measured 226Ra and Ba concentrations can be explained by conservative mixing for 58 and 65 % of the samples respectively, notably at intermediate depth, away from the ocean interfaces. 226Ra and Ba can thus be considered as conservative tracers of water mass transport in the ocean interior at the space scales considered here, namely, of the order of few thousand km. However, regions where 226Ra and Ba displayed non-conservative behaviors and in some cases decoupled behaviors were also identified, mostly at the ocean boundaries (seafloor, continental margins, and surface waters). Elevated 226Ra and Ba concentrations found in deep waters of the West European Basin suggest that lower North East Atlantic Deep Water (NEADWl) accumulates 226Ra and Ba from
sediment diffusion and/or particle dissolution during transport. In the upper 1500 m of the West European Basin, deficiencies in ^{226}Ra and Ba are likely explained by their incorporation in planktonic calcareous and siliceous shells, or in barite (BaSO_4) by substitution or adsorption mechanisms. Finally, because Ba and ^{226}Ra display different source terms (mostly deep-sea sediments for ^{226}Ra and rivers for Ba), strong decoupling between ^{226}Ra and Ba were observed at the land-ocean boundaries. This is especially true in the shallow stations near the coasts of Greenland and Newfoundland where high $^{226}\text{Ra}/\text{Ba}$ ratios at depth reflect the diffusion of ^{226}Ra from sediment and low $^{226}\text{Ra}/\text{Ba}$ ratios in the upper water column reflect the input of Ba associated with meteoric waters.

1. Introduction

The primary source of radium-226 (^{226}Ra, $T_{1/2} = 1602$ y) to the ocean was found to be the diffusion from deep-sea sediments following the decay of its parent isotope, ^{230}Th (Koczy, 1958; Kröll, 1953). This mode of introduction led Koczy to use radium data to derive vertical eddy diffusivities and velocities in the deep sea (Koczy, 1958). Since then, ^{226}Ra has been widely used to study the ocean circulation and mixing at a global scale (Chung and Craig, 1980; Ku et al., 1980). In the framework of the Geochemical Ocean Sections Study (GEOSECS) program, special attention was given to ^{226}Ra as its solubility and half-life made it an ideal candidate as a chronometer of the global thermohaline circulation. In particular, its 1602 y half-life is more adapted than the longer half-life of carbon-14 (^{14}C, $T_{1/2} = 5730$ y) that had also been used for that purpose. Therefore, the global oceanic distribution of ^{226}Ra in seawater was extensively documented throughout the major ocean basins and a unique database was generated during the GEOSECS program (Broecker et al., 1970, 1967; Chung et al., 1974; Ku et al., 1970; Ku and Lin, 1976).

Barium (Ba) is an alkaline earth element like ^{226}Ra. Therefore they share a similar geochemical behavior in the ocean (Chan et al., 1976; Fanning et al., 1988; Mathieu and Wolgemuth, 1973). As such, Ba was proposed as a stable analog of ^{226}Ra in order to use the $^{226}\text{Ra}/\text{Ba}$ ratio as a clock in a similar manner as the $^{14}\text{C}/^{12}\text{C}$ ratio. However, the recognition that ^{226}Ra and Ba participate in upper ocean biological cycles (Ku and Luo, 1994) introduced additional complications for the use of the $^{226}\text{Ra}/\text{Ba}$ ratio as a time tracer for deep water ventilation. Both ^{226}Ra and Ba indeed increase with increasing depth, thus reflecting uptake due to biological processes in surface waters, particles scavenging and subsequent release at depth through the dissolution of the settling particles (Broecker et al., 1967; Ku et al., 1970; Ku and Luo, 1994). ^{226}Ra and Ba are thus not only controlled by physical processes, but appear to be incorporated in settling particles such as calcareous and siliceous shells, or in barite (BaSO_4) that precipitates in the mesopelagic zone (Bishop, 1988; Chan et al., 1976; Dehairs et al., 1980; Lea and Boyle, 1989, 1989). Hence, despite different principal sources to the ocean, rivers in the case of
Ba and marine sediment diffusion for 226Ra, their distributions are affected by similar processes in the water column. Barium displays a linear correlation with 226Ra in the global ocean, resulting in a fairly constant 226Ra/Ba ratio of 2.2 ± 0.2 dpm μmol$^{-1}$ (dpm, disintegrations per minute) (Chan et al., 1976; Foster et al., 2004; Ku et al., 1980; Li et al., 1973; Östlund et al., 1987). Similarly, strong correlations were also found between Ba-Si (silicate) and 226Ra-Si although no obvious process links 226Ra or Ba with Si. These latter relationships appeared to be more surprising because Si is not a chemical analog of Ra and Ba. It was first proposed that diatom frustules exported from the upper water column could adsorb Ra and Ba, these elements being then released at depth following the dissolution of the siliceous tests (Bishop, 1988; Chung, 1980; Dileep Kumar and Li, 1996). More recent studies showed that the similar behaviors of Ba and Si (and alkalinity) reflect similar dissolved-particulate interactions (Jeandel et al., 1996; McManus et al., 1999; Rubin et al., 2003). Indeed, Ba is not mechanistically coupled with alkalinity or silicate. Rather, the observed relationships may result from the spatial coherence of different carriers (barite, opal and carbonate) overprinted by hydrodynamics. The formation of biogenic silica, CaCO$_3$ and barite in surface water and their subsequent dissolution in the deeper water column may thus generate parallel oceanic distributions. While barite has been shown to be the main carrier that controls the Ba water column distribution, the relationship between Ba-Ra remains unclear.

While the global GEOSECS program provided valuable information on the coupling between biogeochemical cycles of 226Ra and Ba in the ocean, several unknowns still remain. In this work, we take advantage of a new worldwide program, GEOTRACES, to provide new information on the distribution of 226Ra and Ba and their relationship in the ocean. GEOTRACES program aims to characterize the distribution of trace elements and their isotopes (TEIs) (sources, sinks, internal cycling) in the ocean through a global survey consisting of ocean sections and regional process studies.

In the present study, we report dissolved 226Ra activities and dissolved Ba concentrations in the North Atlantic Ocean and Labrador Sea (GEOMIDE project, GA01 section). The North Atlantic region hosts a variety of globally significant water masses with complex circulation patterns (García-Ibáñez et al., this issue; Lherminier et al., 2010). This area is crucial for the thermohaline circulation, and thus for global climate, through its important role in the ventilation of the deep layer of the global ocean (Seager et al., 2002). As part of this process, the Meridional Overturning Circulation (MOC) includes the northward transport of warm subtropical waters. These surface waters are then cooled and transformed into subpolar waters, and may reach the Labrador and Irminger Seas where deep-water formation and deep convection take place (Bennett et al., 1985; Pickart and Spall, 2007; Yashayaev et al., 2007). We propose to study the relationship between 226Ra and Ba and to test the conservative behavior of these tracers in this specific region. We further document the Ra-Ba-Si relationship along the GA01 section,
as it was done in previous sections conducted during the GEOSECS program and more recently along the GEOTRACES GA03 section.

2. Materials and Methods

2.1. Study area; the GEOVIDE project

The GEOTRACES GA01 section (GEOVIDE project; PIs: Géraldine Sarthou, LEMAR, France and Pascale Lherminier, LOPS, France) was conducted in the North Atlantic Ocean between Lisbon, Portugal, and St John’s, Canada (15 May 2014-30 June 2014; Fig.1). The water samples described here were collected on board the R/V Pourquoi Pas?. The section crossed different topographic features and regions with contrasting biogeochemical patterns. It complemented the sections GA03 (U.S.-GEOTRACES) and GA02 (Dutch GEOTRACES) also conducted in the Atlantic Ocean in the framework of the GEOTRACES program. Seventy-eight stations were visited during the GEOVIDE project.

2.2. Sample collection

At 15 of the 78 stations completed during the GA01 cruise, up to 22 discrete 10-L seawater samples were collected through the water column from Niskin bottles. The seawater samples were passed by gravity through 10 g of acrylic fibers impregnated with MnO$_2$ (so called “Mn fibers”), which quantitatively adsorb radium isotopes (assumed to scavenge 100% of Ra; van Beek et al., 2010; Moore and Reid, 1973). High-resolution vertical profiles of 226Ra were thus built to provide a detailed 226Ra section. The samples were unfiltered since particulate 226Ra activities are typically two orders of magnitude lower than the dissolved 226Ra activities (van Beek et al., 2007, 2009). From the same Niskin bottles, 15 mL was collected to determine the Ba concentration, so that Ba and 226Ra analyses were conducted from the same initial sample, which allows us to investigate the 226Ra/Ba ratio in the samples. The Ba samples were collected in pre-cleaned polypropylene bottles (rinsed three times with the same seawater sample), acidified with 15 µL of HCl (10 M, Merck, Suprapur) and kept at room temperature for later analysis.

2.3. Analysis of dissolved 226Ra activities via 222Rn emanation

Radium-226 was determined via its daughter, radon-222 (222Rn; $T_{1/2} = 3.8$ days) using a radon extraction system followed by alpha scintillation counting (Key et al., 1979). The Mn Fiber samples were placed into gas-tight PVC cartridges (Peterson et al., 2009) that were flushed with helium (He) for 5 min at 250 mL min$^{-1}$. The cartridges were sealed and held for approximately 2 weeks (minimum of 5
days) to allow for ^{222}Rn ingrowth from ^{226}Ra decay. The ^{222}Rn was then flushed out from the cartridges using He and cryo-trapped in copper tubing using liquid nitrogen. The copper trap was heated to allow the ^{222}Rn to be transferred to an evacuated “Lucas cells” via a stream of He. The “Lucas cells” are air-tight chambers with inner walls coated with silver-activated zinc sulfide that emits photons when struck by alpha decay particles (Key et al., 1979; Lucas, 1957; Peterson et al., 2009). The cells were held 3 hours to reach the secular equilibrium of all ^{222}Rn decay chain daughters. After 3 hours, the samples were counted overnight on a radon counting system (Model AC/DC-DRC-MK 10-2). The counting uncertainties (1SD, Standard Deviation) were within the range of 2-5% for 10 L volume samples. All samples were appropriately ingrowth and decay corrected. The combined Lucas cell and detector background was ~7% of the typical total measured sample activity. The method was standardized using NIST (U.S. National Institute of Standards & Technology) ^{226}Ra (20 dpm) sorbed onto MnO$_2$ fiber and analyzed in the same manner as the samples, with uncertainties (1SD) of 5% (Charette et al., 2015; Henderson et al., 2013). Vertical profiles of ^{226}Ra from the GEOTRACES GA01 (this study) and GA03 (Charette et al., 2015) sections that were located in close proximity off Portugal (Fig.1) were compared, and showed a good agreement with increasing activities with increasing depth (Fig.S1).

2.4. Analysis of dissolved Ba concentrations

Barium concentrations were measured using an isotope dilution (ID) method (Freydier et al., 1995; Klinkhammer and Chan, 1990) by high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS). This method was adapted to a Thermo Finnigan Element XR instrument (MIO, Marseille). The Ba measurements presented here are the sum of dissolved Ba and a very small fraction of particulate Ba (generally <1% of total Ba, along GEOVIDE up to 1.3% at the bottom of station 32 due to presence of a nepheloid layer; Lemaitre et al., this issue) released from the samples as a result of the acidification step. Hence, while the measurements reported herein are total Ba, they are within analytical uncertainty representative of the dissolved Ba pool. The samples (0.5 mL) were spiked with 300 µL of a ^{135}Ba-enriched solution (93% ^{135}Ba; 95 nmol kg$^{-1}$) and diluted with 15 mL of acidified (2% HNO$_3$, 14 M, Optima grade) Milli-Q grade water (Millipore). The amounts of sample, spike and dilution water were assessed by weighing. The reproducibility of this method is about 1.5% (1 RSD, Relative Standard Deviation), as tested on repeated preparations of the reference solution SLRS-5 (NRC-CNRC river water reference material for trace metals). Average Ba values obtained for SLRS-5 were 13.48 ± 0.20 µg L$^{-1}$ (1 σ) with RSD of 1.5%, which is in good agreement with the certified values (SLRS-5 13.4 ± 0.6 µg L$^{-1}$). The limit of detection calculated as three times the standard deviation of the procedural blank was 0.09 nmol L$^{-1}$.
2.5. Multiparameter mixing model

An Optimum MultiParameter (OMP) analysis was used to distinguish the relative importance of physical transport (i.e., water mass mixing) from non-conservative processes (input from the sediments, rivers or hydrothermal vents, dissolution of particles; uptake by particles and dissolved-particulate dynamics) on the 226Ra and Ba distributions in the North Atlantic. We used the OMP analysis computed for the GA01 section by Garcia Ibanez et al. (this issue) with 12 source water types (SWTs). Based on historical data reported from the North Atlantic, we defined 226Ra and Ba endmember concentrations associated with each SWT (Table S1). The characteristics of SWTs (potential temperature, salinity, and geographical location) reported by Garcia Ibanez et al. (this issue) were used to determine the SWTs endmembers for 226Ra and Ba). In some cases, data from the GA01 section were used for the SWT endmember (Table S1). These 226Ra and Ba SWT endmembers were then used to calculate the 226Ra and Ba concentrations that strictly result from mixing of the different water masses. In this way, we estimated the conservative component of 226Ra and Ba, which can in turn be compared to the in situ concentrations to generate the non-conservative component of 226Ra and Ba along the GA01 section.

The uncertainties for the SWT endmembers were considered to be ± 0.6 dpm 100 L$^{-1}$ for 226Ra and ± 1.5 nmol L$^{-1}$ for Ba, based on typical measurement uncertainties and spatial variability. A Monte Carlo method (250 random perturbations) was used to propagate the SWT endmember uncertainties to the 226Ra and Ba results of the OMP analysis. This allowed us to estimate conservative component uncertainties of ± 0.9 dpm 100 L$^{-1}$ for 226Ra and ± 4.4 nmol L$^{-1}$ for Ba. When the measured 226Ra and Ba values were different from the conservative component values (taking into account the uncertainties on these values), 226Ra and Ba were considered as non-conservative. These non-conservative values can either be positive (representative of a net addition of 226Ra and Ba) or negative (representative of a net removal of 226Ra and Ba).

Note that the OMP analysis was not solved where non-conservative behavior of temperature and salinity is expected (that is, for waters above 100 m and for waters with salinities lower than 34.7). In these latter cases, changes in water mass properties may indeed be due to air-sea interaction or inputs of fresh waters (e.g., near Greenland shelf; Daniault et al., 2011).

3. Results

3.1. Hydrodynamic context

The OMP analysis was used to identify the different water masses (Table 1) crossing the GA01 section. The potential temperature-salinity diagram for all the GA01 stations along with the different
SWT endmembers used in the OMP analysis are represented in Fig. 2. The salinity section is shown in Fig. 3. The different water masses present along the GA01 section are described below.

3.1.1. Upper waters

Three main water masses were found in upper waters (<1000 m) in the investigated area (Fig. 3). First, the Central Waters occupied the upper eastern part of the GA01 section from the Iberian Peninsula to the Rockall Trough (stations 1 to 26). Their distribution was associated with the circulation of the North Atlantic Current (NAC). The NAC transports warm and saline waters northward, connecting the subtropical and the subpolar latitudes, and is part of the upper layer of the Atlantic Meridional Overturning Circulation (AMOC) in the North Atlantic subpolar gyre. The NAC flows eastward from the Grand Banks of Newfoundland, splitting into four branches west of the Mid-Atlantic Ridge (MAR), while incorporating local water masses (Fig. 1). East of the MAR, the two northern branches of the NAC flow northward into the Icelandic Basin, the Rockall Plateau and the Rockall Trough, while the two southern branches flow southward into the West European Basin. The Central Waters can be identified by the highest potential temperature of the entire GA01 section and are represented by two endmembers called East North Atlantic Central Waters (ENACW16 and ENACW12). The ENACW16 is warmer (16 °C) than the ENACW12 that can be identified with a potential temperature of 12.3 °C (Fig. 2).

Part of the Central Waters carried by the NAC recirculates toward the Iceland Basin and the Irminger Sea, leading to the formation of subpolar mode waters by mixing and cooling in the subpolar gyre (Lacan and Jeandel, 2004; McCartney, 1992). Iceland Subpolar Mode Water (IcSPMW) is formed in the Icelandic Basin and is located, along GA01, over the Reykjanes Ridges (stations 32 and 38) (Fig. 3). The IcSPMW is described by two endmembers, the SPMW7 and the SPMW8, which are distinguished by their potential temperature of 7.0 °C and 8.0 °C, respectively (Fig. 2). Once formed, the IcSPMW follows the Irminger Current.

Finally, the Irminger Subpolar Mode Water (IrSPMW) is the result of the transformation of the Central Waters and the IcSPMW, and is formed northwest of the Irminger Sea (Krauss, 1995). The IrSPMW is located near Greenland (stations 53, 57 and 60) (Fig. 3) (García-Ibáñez et al., 2015; Lacan and Jeandel, 2004; Read, 2000).

3.1.2. Intermediate waters

The Subarctic Intermediate Water (SAIW) originates in the Labrador Current (Read, 2000). The SAIW is associated with the advection of waters from the Labrador Sea within the NAC; it subducts below the Central Waters at approximately 600 m. Low salinities (34.8 and 34.7) and potential
temperatures of 4.5 °C and 6 °C are representative of the two SAIWs, SAIW\textsubscript{4} and SAIW\textsubscript{6}, respectively (Fig.2).

Around the Rockall Plateau, the SAIW overlies the Mediterranean Water (MW). The MW enters the North Atlantic through the Gibraltar Strait and flows northward while extending westward. The MW can be identified in the West European Basin at approximately 1200 m (stations 1 and 13 in Fig.3) with a salinity of 36.5 (Fig.2; García-Ibáñez et al., 2015).

The Labrador Sea water (LSW) is found in multiple locations and at different water depths along the GA01 section (Fig.3). The LSW is formed by progressive cooling and freshening in winter due to deep convection. The LSW can be characterized by its minimum salinity (34.87) and its minimum potential temperature (3 °C) (Fig.2). The LSW contributes to the stratification of the interior of the North Atlantic and its boundary currents and spreads at intermediate depths in three different basins intersected by the GA01 section (Fig.1). The three independent pathways are: (i) northward into the Irminger Sea (station 44), (ii) eastward across the MAR, through the Charlie-Gibbs fracture zone, then northward into the Iceland Basin (station 32) and eastward into the West European Basin (stations 21 and 26), and (iii) equatorward as a major component of the North Atlantic Deep Water in the Deep Western Boundary Current (DWBC), which constitutes the lower limb of the AMOC. Along these paths, the LSW mixes with both the overlying and underlying water masses and becomes warmer and saltier (Lazier, 1973).

The Polar Intermediate Water (PIW) is characterized by very low salinity (34.9) and potential temperature (less than 2 °C) (Fig.2) and is defined as a separate upper core on the Greenland slope. The PIW is episodically injected into the Irminger Sea and originates from either the Arctic Ocean or the Greenland shelf (Falina et al., 2012; Jenkins et al., 2015; Rudels et al., 2002).

3.1.3. Overflow waters and deep waters

The Iceland-Scotland Overflow Water (ISOW) originates at the Iceland-Scotland sill, and entrains the overlying warm saline atlantic waters (SPMW and LSW). ISOW identification features are a potential temperature of 2.6 °C and a salinity of 34.98 (Fig.2; van Aken and Becker, 1996). ISOW was found at stations located on the Eastern flank of the Reykjanes Ridge (stations 32 and 38) and near Greenland (stations 60 and 64) at great depth (2000-3500 m) (Fig.3).

Overflow waters coming from the Denmark Strait mix with both the SPMW and the LSW during descent into the Irminger Sea to form the Denmark Strait Overflow Water (DSOW) (Fig.1) (Read, 2000; Yashayaev and Dickson, 2008). DSOW is located at the northern end of the Irminger Sea (station 44) and occupies the deepest part of the Greenland continental slope (stations 69 and 77).
(Fig.3). At bottom depth, DSOW is easily identified by a minimum potential temperature of 1.3 °C (Fig.2).

In the Southern Ocean, the Antarctic Bottom water (AABW) is formed by deep winter convection of surface waters. AABW flows to the north along the eastern side of the Atlantic and contributes to the formation of the lower North East Atlantic Deep Water (NEADW) once this water penetrates the Iberian Abyssal Plain by crossing the Mid-Atlantic Ridge (Fig.1). The NEADW is laying at the bottom of the West European Basin (stations 1 to 26 in Fig.3) with a mean salinity of 34.895 and a potential temperature of 1.98 °C (Fig.2). Then, the NEADW recirculates into the Rockall Trough and meets ISOW in the Iceland Basin (van Aken, 2000; McCartney, 1992; Schmitz and McCartney, 1993).

3.2. Distribution of 226Ra and Ba along the GA01 section

The 226Ra distribution for the GA01 section is presented in Fig.4 with Ba concentrations and 226Ra/Ba ratios. The 226Ra activities and Ba concentrations in the water column range from 7 to 25 dpm 100 L$^{-1}$ and from 33.6 to 81.5 nmol L$^{-1}$, respectively. These data are in good agreement with Atlantic data from the GEOSECS program, which range from 6.8 to 23.4 dpm 100 L$^{-1}$ for 226Ra and from 35 to 105 nmol L$^{-1}$ for Ba (Broecker et al., 1976).

For both 226Ra and Ba, the vertical gradient is stronger in the eastern part of the section (West European Basin) than on the western part of the section (from Reykjanes Ridge to Newfoundland). Both are particularly high near the seafloor in the West European Basin (226Ra: 14-25 dpm 100 L$^{-1}$; Ba: 63-82 nmol L$^{-1}$) and are in agreement with data previously reported for this region (Broecker et al., 1976; Charette et al., 2015). At intermediate depths, Ba concentrations range from 40 to 50 nmol L$^{-1}$ in the West European Basin (stations 1 and 21) and 226Ra activities range from 9.5 to 10.9 dpm 100 L$^{-1}$, also in good agreement with literature data (Charette et al., 2015; Schmidt and Reyss, 1996). Low 226Ra and Ba are found in upper waters of the West European Basin and the Iceland Basin (8.1-8.9 dpm 100 L$^{-1}$ and 35-43 nmol L$^{-1}$, respectively). Intermediate 226Ra activities and Ba concentrations (9 dpm 100 L$^{-1}$ and 42 nmol L$^{-1}$, respectively) are observed in bottom waters in Irminger and Labrador Seas. Between the Reykjanes Ridge and Newfoundland, 226Ra activities range between 7-10 dpm 100 L$^{-1}$ in surface and intermediate waters. Similar to 226Ra, Ba concentrations are relatively low in this area, ranging from 39-50 nmol L$^{-1}$. The distributions in 226Ra and Ba are to a first order explained by the different water masses present in the region, as discussed below.
4. Discussion

4.1. 226Ra-Ba and 226Ra-Ba-Si relationships

A linear correlation between 226Ra and Ba is observed for all data collected along the GA01 section (Fig.5). The slope of the 226Ra-Ba linear regression obtained by this study in the North Atlantic is 2.5 ± 0.1 (2SD) dpm μmol$^{-1}$ which agrees with the slope of the 226Ra-Ba linear regression of 2.3 dpm μmol$^{-1}$ reported during the GEOSECS program for all the oceanic basins (Chan et al., 1976). The intercept on the horizontal Ba axis is 4.4 nmol L$^{-1}$ for the GA01 section, which is in agreement with GEOSECS data (Chan et al., 1976; Li et al., 1973). This positive intercept may be the result of a larger riverine Ba input relative to 226Ra (Ku and Luo, 1994). The slope of the 226Ra-Ba linear regression reported from the GEOSECS program is similar from one oceanic basin to the other. The 226Ra/Ba ratio (slightly different from the slope) is also fairly constant throughout the global ocean (2.2 ± 0.2 dpm μmol$^{-1}$; Östlund et al., 1987). This pattern indicates that 226Ra and Ba may behave similarly in the ocean. Since 226Ra and Ba are incorporated in settling particles such as calcareous and siliceous shells or barite (BaSO$_4$) by substitution or adsorption mechanisms (Bishop, 1988; Dehairs et al., 1980; Lea and Boyle, 1989, 1990) and are then released at depth following the dissolution of these particles, the constant 226Ra/Ba ratio suggests that fractionation between 226Ra and Ba during these processes is small.

Investigations conducted during the GEOSECS program further concluded that 226Ra and Ba were tightly correlated to orthosilicic acid (Si(OH)$_4$) (Chan et al., 1976; Chung, 1980; Ku et al., 1970; Ku and Lin, 1976) despite the fact that 226Ra, Ba, and Si(OH)$_4$ exhibit different chemical behavior in the water column and different source terms. A Ra-Ba-Si relationship is also observed along the GA01 section (Fig.5). Si(OH)$_4$ concentrations generally increase with increasing depth, with a steeper gradient in the West European Basin (Introduction Paper, 2017; This issue), as it was also the case for 226Ra and Ba (Fig.S2). The link between 226Ra, Ba and Si has been shown to reflect parallel dissolved-particle interactions between barite and biogenic silica (Bishop, 1988; Chung, 1980; Jacquet et al., 2005, 2007; Jeandel et al., 1996); the main carrier of 226Ra in the ocean, however, remains an open question. The oceanic Ba-Si and 226Ra-Si relationships may thus be the result of the interaction between ocean biogeochemistry and the water mass transport.

In contrast to the 226Ra-Ba relationship, the slope of the 226Ra-Si(OH)$_4$ relationship observed during GEOSECS exhibited significant spatial variability from one oceanic basin to the other (Li et al., 1973). First, 226Ra and Si are not chemical analogues, as it is the case for 226Ra and Ba. Second, the variability observed in the 226Ra-Si(OH)$_4$ relationship may be related to the large variability of the Si(OH)$_4$ distribution which is mostly governed by the preformed nutrient concentrations of waters feeding into
the main thermocline from surface waters of the Southern Ocean (Sarmiento et al., 2007). In the case of GA01, the 226Ra-Si(OH)$_4$ linear regression slope is 2.4 ± 0.9 (2SD) 10^3 dpm mol$^{-1}$. As a comparison, the 226Ra-Si(OH)$_4$ slope reported for the GEOTRACES-GA03 section conducted south of the GA01 section in the Atlantic Ocean was 2.1×10^3 dpm mol$^{-1}$ (Charette et al., 2015). The slope of the 226Ra-Si(OH)$_4$ linear regression is 34.3×10^3 dpm mol$^{-1}$ in the Pacific Ocean and 14.5×10^3 dpm mol$^{-1}$ in the Antarctic Ocean. The 226Ra-Si(OH)$_4$ relationship has an intercept with the vertical axis of 7.3 ± 0.1 dpm 100 L$^{-1}$, which represents the residual 226Ra resulting from the total usage of Si in surface waters (Ku et al., 1970). According to (Shannon and Cherry, 1971), the removal of 226Ra in the upper waters is limited by Si. For both the 226Ra-Ba and 226Ra-Si(OH)$_4$ relationships, several values are clearly outside of the linear regression trend (Fig.5), a pattern that indicates deviation from the relationship usually observed between 226Ra and Ba (or Si(OH)$_4$). Such deviations may result from non-conservative processes.

4.2. 226Ra and Ba distributions and their relationship with hydrography

A striking feature of the GA01 section is that the 226Ra activities and Ba concentrations are particularly high in the West European Basin below 2000 m (Fig.4), in the NEADWl. This pattern can also be observed in the GA03 section conducted south of the GA01 section (Charette et al., 2015), the two sections being separated by only ca. 500 km in that basin. The NEADWl is mainly formed from waters with a southern origin (Read, 2000). South of the Antarctic Convergence, the surface waters contain high 226Ra activities from the upwelling of deep waters enriched in 226Ra associated with the circumpolar current (Ku and Lin, 1976). The convection of these surface waters leads to the formation of the 226Ra-rich AABW that circulates northward into the Atlantic Ocean. However, the high 226Ra activities of the NEADWl cannot be solely explained by the high 226Ra activities of these waters of southern origin. This will be discussed in section 4.3.1.

In contrast, the lowest 226Ra activities and Ba concentrations reported on the GA01 section are associated with the Central Waters (upper waters of the West European Basin; Fig.4). Central Waters are derived from the NAC and mix with the SAIW and the SPMW. Along their path, Central Waters remain in the upper water column, and therefore are not affected by the deep sedimentary source of 226Ra. West of the Iceland Basin between 200 and 400 m (stations 32 and 38), an increase in the 226Ra activities and Ba concentrations is associated with the IcSPMW.

A slight increase in 226Ra is observed between 1000-1600 m in the West European Basin (Fig.4; Stations 1 and 13) where a salinity maximum is identified. This pattern is associated with the MW. This is corroborated by the slightly higher Ba concentrations and lower 226Ra/Ba ratios, as observed in the Western Mediterranean Sea (van Beek et al., 2009), these waters spreading westward into the Atlantic
Ocean. At these stations, between 30 and 79 % of the water found at 1000-1600 m is of Mediterranean origin (MW), according to the OMP analysis (Garcia Ibanez et al., 2018; this issue).

Relatively uniform and low 226Ra activities and Ba concentrations are found between the surface and 2500 m in the Labrador Sea, up to 2000 m in the Iceland Basin and deeper in the Irminger Basin (Fig.4). These distributions can be related to the LSW which is formed by winter convection in the Labrador Sea (Fröb et al., 2016; Pickart et al., 2003; Yashayaev and Loder, 2016). When formed, the LSW transports the characteristics of surface waters to the deep ocean (i.e., low 226Ra activities and low Ba concentrations). The LSW then spreads into the Irminger and the Iceland Basin while conserving its low 226Ra and Ba signatures. Relatively low 226Ra activities and Ba concentrations are found at bottom depths in the Irminger and Labrador Seas and may be associated with DSOW, which is also a recently ventilated water mass (Lazier, 1973).

Finally, according to the OMP analysis, ISOW is present at several stations along the GA01 section (Garcia-Ibanez et al., this issue). First, on the eastern flank of the Reykjanes Ridge (station 32), 68 % of the water between 2700 and 3000 m is considered as ISOW. Then, in the Labrador Sea (stations 69 and 77), an average of 58 % of the water between 2100 and 3000 m is identified as ISOW. The slight increase in 226Ra activities and Ba concentrations observed at these locations may thus be related to the ISOW.

4.3. Conservative versus non-conservative behavior of 226Ra and Ba

The use of an Optimum Multiparameter (OMP) analysis allowed us to distinguish the relative importance of physical transport (i.e., mixing of water masses) from non-conservative processes on the 226Ra, Ba and 226Ra/Ba ratios distributions in the North Atlantic (Fig.6). The comparison between the vertical profiles of 226Ra and Ba determined along the GA01 section, and those derived from OMP analysis (Fig.7) clearly indicates deviations from the conservative behavior and reflects either an input of 226Ra or Ba (positive anomalies highlighted in red; same color code as in Fig.6) or a removal of 226Ra or Ba (negative anomalies highlighted in blue; same color code as in Fig.6). This comparison reveals that for 58 % of the samples 226Ra can be considered as conservative (activities due to mixing and transport) along the GA01 section (i.e., 58 % of the 226Ra anomalies are within the [-0.9 and 0.9 dpm 100 L$^{-1}$] interval), whereas for 65 % of samples Ba can be considered as conservative (i.e., 65 % of the Ba anomalies are within the [-4.4 and 4.4 nmol L$^{-1}$] interval). A major finding of this study is that 226Ra and Ba are predominantly conservative at intermediate depths: mostly between 500 m to 2000 m, but slightly deeper in the center of deep basins such as at stations 21, 44 and 69 (Fig.6). These locations correspond to the depths where the waters are far from the main sources and sinks of 226Ra and Ba. The non-conservative 226Ra (42 % of the 226Ra) is mostly distributed close to the interfaces such
as surface/subsurface waters and bottom waters (both in the deep West European Basin and the Labrador Sea), near the main sources (seafloor or shallow sediments deposited onto the margins). The non-conservative Ba is mostly distributed in the upper 1500 m and in the deep West European Basin (Fig.6).

The 226Ra/Ba ratios are also reported for all samples in Fig.7. The mean ratio determined along the GA01 section is identical to the ratio determined during the GEOSECS program (2.2 ± 0.2 dpm µmol$^{-1}$; Östlund et al., 1987). 77% of the 226Ra/Ba ratios determined along the GA01 section are within the confidence interval [2.0-2.4 dpm µmol$^{-1}$], indicating little deviation from the mean ratio, a pattern that is likely related to the similar chemical behavior between 226Ra and Ba.

4.3.1. 226Ra inputs and their relationship with Ba

Deep waters of the West European Basin display positive 226Ra and Ba anomalies (stations 1 to 26; Fig.7). The 226Ra anomalies are initiated at shallower depths (ca. 300-2000 m) than the Ba anomalies (ca. 1000—2000m) (Fig.7). As mentioned above, the NEADWl—which is the main water mass of the deep West European Basin—is mainly formed from waters with a southern origin (mainly AABW) that are characterized by high 226Ra and Ba concentrations. However, these southern waters experience a very specific history along their northward transport to the GA01 section that suggests that the high 226Ra activities (and Ba) of the NEADWl cannot be solely explained by the high 226Ra activities (and Ba) of these waters of southern origin. In order to explain the positive 226Ra and Ba anomalies in the deep waters of the West European Basin, we thus need to investigate the fate of 226Ra and Ba in the waters of southern origin that travel northward and reach section GA01. Figure 8 was computed combining GEOSECS and TTO data (226Ra, Si(OH)$_4$, salinity and temperature) associated with the AABW (Spencer, 1972) that travels northward between 60 °S and 40 °N in the West Atlantic Basin. The same data (226Ra, Si(OH)$_4$, salinity and temperature) associated with the NEADWl in the East Atlantic Basin and along GA01 are also reported.

Between 60 °S and the equator, the high 226Ra activities of the AABW are associated with relatively low salinity, low temperature, and high Si(OH)$_4$ (Fig.8). Then, while crossing the Mid-Atlantic Ridge at the equator and at 11 °N, the AABW undergoes several important transformations: 226Ra activities and Si(OH)$_4$ concentrations decrease while salinity and temperature tend to increase (Fig.8). The 226Ra and Ba endmembers for the NEADWl were chosen at this specific location to coincide both geographically and with the characteristics (salinity, temperature and Si(OH)$_4$) of the NEADWl endmembers used for the OMP analysis (Fig.8; Fig.S3). This endmember has been chosen far from the GA01 section in the OMP analysis (García-Ibáñez et al., this issue), because between 11 °N and the GA01 section (Fig.8), salinity, temperature, and Si(OH)$_4$ concentrations display relatively
constant trends indicating no major modifications. In contrast, the ^{226}Ra activities display a significant spatial variability north of 11 °N, and clearly increase towards the north (Fig.8). This ^{226}Ra increase is thus decoupled from salinity, temperature, and Si(OH)$_4$, and likely explains the positive anomalies deduced from the OMP analysis in the deep West European Basin (Fig.7). The specific history of these waters of southern origin (waters initially with a high ^{226}Ra activity; decrease in the ^{226}Ra activity at the equator and at 11 °N; new increase of ^{226}Ra activity north of 11 °N) suggest that the ^{226}Ra anomalies observed in the West European Basin are explained by inputs of ^{226}Ra along the northward transport of these waters.

The positive anomalies result from the input of ^{226}Ra (and Ba) following either i) dissolution/remineralization of settling particles that incorporated ^{226}Ra and Ba in the upper water column (this includes the dissolution of barite, since the waters of the Atlantic Ocean are undersaturated with respect to barite; Monnin et al., 1999) and/or ii) diffusion of ^{226}Ra and Ba from deep-sea sediments (Cochran and Krishnaswami, 1980) (see 4.4). Of special note are stations in the West European Basin, which are especially deep (down to 5500 m). Deep sediments generally display elevated ^{230}Th activities due to scavenging of ^{230}Th from the entire water column (Bacon and Anderson, 1982; Nozaki, 1984). The highest dissolved ^{230}Th activities reported along the GA01 section were thus observed in the deep waters of the West European Basin (Deng et al., 2017, this issue). Consequently, because ^{226}Ra is produced by the decay of ^{230}Th in the sediment, the ^{226}Ra diffusive flux in this area is expected to be especially high.

The input of ^{226}Ra in the West European Margin is accompanied by a Ba input since i) positive Ba anomalies are also observed in the deep waters and ii) the $^{226}\text{Ra}/\text{Ba}$ ratios do not significantly deviate from the mean GEOSECS $^{226}\text{Ra}/\text{Ba}$ ratio (Fig.7a). One exception is found at station 21 in the West European Basin, which displays high $^{226}\text{Ra}/\text{Ba}$ at approximately 4000 m (up to 3.17 dpm µmol$^{-1}$). At several stations (21, 26, 32, 38, 44, 60, 64 and 77), lower beam transmission values near the seafloor indicate presence of suspended sediments likely associated with a nepheloid layer. Nepheloid layers are turbid layers formed episodically by strong and intense abyssal currents that are transported along isopycnals away from the site of resuspension of bottom sediments (McCave, 1986). The presence of a benthic nepheloid layer is also indicated by high particulate iron concentrations at these stations (Gourain et al., 2017; this issue). Such process may thus contribute to release ^{226}Ra (and potentially Ba) to the deep water column, following desorption or dissolution of the particles. Similar ^{226}Ra maxima have been observed in the deep waters of the Northeast Pacific suggesting that the ^{226}Ra flux is not uniform over the ocean bottom even on a regional scale (Chung, 1976). Suspended particle dissolution may also play a role here, notably for Ba. This will be discussed in more detailed in section 4.4.
Positive ^{226}Ra anomalies are also found in deep waters at several other stations located in relatively deep basins (> 1200 m) along the GA01 section (e.g. stations 32, 38, 44, 60, 64, 69 and 77). Most of these anomalies are associated with $^{226}\text{Ra}/\text{Ba}$ ratios higher than 2.4 dpm μmol$^{-1}$. The ^{226}Ra positive anomalies observed at the stations mentioned above are thus best explained by the diffusion of ^{226}Ra from the sediment. However, these latter stations do not exhibit a positive Ba anomaly and Ba tends to be conservative. Consequently, the $^{226}\text{Ra}/\text{Ba}$ ratios in the deep waters of these stations are often significantly higher than the mean GEOSECS value (stations 21, 32, 38, 60, 64; Fig.7). This pattern is different to that observed in the West European Basin, a discrepancy that may be explained by the different sediment composition in the two regions, by the different residence time of deep waters in contact with deep-sea sediments (Chung, 1976) and/or different role played by suspended particles dissolution.

A strong ^{226}Ra positive anomaly is observed in the deepest sample collected at station 38 above the Reykjanes Ridge. It cannot be completely excluded that this positive anomaly is attributed to hydrothermal vent since hydrothermal systems are known in the area (Fig.1). High particulate iron and aluminum concentrations were also observed at these stations (Gourain et al., 2017; Menzel et al., 2017; this issue). Enrichment in ^{226}Ra have indeed been observed in hydrothermal systems plume at mid-ocean Ridges (Kadko, 1996; Kadko and Moore, 1988; Kipp et al., 2017; Rudnicki and Elderfield, 1992). Moreover, the ^{226}Ra enrichments are accompanied by slight Ba enrichments, which may support the hydrothermal origin hypothesis, since hydrothermal venting at mid-ocean Ridge constitutes the second major external source of Ba to the ocean (Edmond et al., 1979).

Finally, high $^{226}\text{Ra}/\text{Ba}$ ratios variations are also observed in shallow coastal waters (Fig.7c). At stations 53 and 61, high $^{226}\text{Ra}/\text{Ba}$ ratios are found close to the bottom, in agreement with the input of ^{226}Ra from the sediment, whereas low $^{226}\text{Ra}/\text{Ba}$ ratios are found in subsurface at stations 57, 61 and 78, in association with low salinities (Fig.S2). The low $^{226}\text{Ra}/\text{Ba}$ ratios are thus explained by the input of meteoritic waters in coastal areas, since such waters are known to be the predominant source of Ba to the ocean (Martin and Meybeck, 1979; Wolgemuth and Broecker, 1970). At these shallow stations, the different source terms between ^{226}Ra and Ba therefore leads to important variations of the $^{226}\text{Ra}/\text{Ba}$ ratios (Fig.7c.; stations 53, 57, 61 and 78). These observations clearly indicate that ^{226}Ra may sometimes be decoupled from Ba.

4.3.2. ^{226}Ra removal and its relationship with Ba

Relatively few ^{226}Ra negative anomalies were found along the GA01 section. At the deep open-ocean stations, the negative anomalies are mostly observed in the upper 1000 m (Fig.7; stations 13, 21, 26, 32, 38, 44 and 77), but can also be found as deep as 2000 m (i.e., stations 64 and 69). In most cases,
the negative 226Ra anomalies are associated with significant negative Ba anomalies (stations 13, 21, 26, 38, 44, 64 and 69). Such features are likely explained by biological mediated processes including incorporation of 226Ra and Ba in planktonic as calcareous and siliceous shells (Bishop, 1988), in acantharian skeletons made of celestite (SrSO$_4$) or in barite (BaSO$_4$) crystals (van Beek et al., 2007; Chow and Goldberg, 1960; Shannon and Cherry, 1971; Szabo, 1967; Wolgemuth and Broecker, 1970).

Particularly low dissolved 226Ra/Ba ratios (<2 dpm µmol$^{-1}$) are found in the upper 50 m at stations 21, 32, 64, 69 and 77, a pattern that was also observed in the upper 150 m of the Sargasso Sea, where van Beek et al., (2007) reported similar low dissolved 226Ra/Ba ratios that were accompanied by high 226Ra/Ba ratios in suspended particles. This latter pattern was attributed to the incorporation of 226Ra and Ba in acantharian skeletons. The low dissolved 226Ra/Ba ratios (e.g. 1.7 dpm µmol$^{-1}$, station 77) observed in the upper 200 m along the GA01 section may thus be attributed to acantharians, which have skeletons that incorporate 226Ra preferentially to Ba (van Beek et al., 2007, 2009; Bernstein et al., 1998). The presence of Acantharians was not studied during GEOVIDE. However, previous studies reported presence of acantharians in this area, like for example in the Iceland Basin and in the East Greenland Sea (Antia et al., 1993; Barnard et al., 2004; Martin et al., 2010).

Several phytoplankton blooms were observed along the GA01 section, as indicated by the chlorophyll a concentrations (Chl-a) (Fig.S4). The largest bloom was observed in the Labrador Sea in May 2014. Diatoms were the dominant species in the Irminger and Labrador Seas and on the Greenland and Newfoundland margins during GA01 (up to 55 % of the total Chl-a concentration; Tonnard et al., in prep). In the West European Basin, Chl-a was lower in May and June 2014 and coccolithophorids were the dominant species in that area (Tonnard et al., in prep). In these two regions, diatom frustules and coccolithophorids may thus contribute to the removal of 226Ra and Ba (Bishop, 1988; Dehairs et al., 1980), from the water column in these areas that were characterized by noticeable negative anomalies.

Additionally, because the Labrador Sea was sampled in June, during the decline of the bloom, barite that is presumably formed following the decay of settling organic matter may also contribute to the removal of Ba (and 226Ra). High particulate excess Ba (Ba$_{ex}$) concentrations were indeed observed at stations displaying significant Ba negative anomalies: Ba$_{ex}$ concentrations reached a maximum at 400 m at station 13, 21 and 26) and between 400 and 800 m near Greenland, at stations 44, 64 and 69 (Lemaitre et al., 2017, Ba paper, this issue). These Ba$_{ex}$ profiles can be related to the relatively high particulate organic carbon (POC) export flux determined at these stations (e.g. at station 69, Lemaitre et al., 2017, Export paper; this issue). This POC flux would promote barite formation in subsurface (Dehairs et al., 1980; Legeleux and Reyss, 1996) but also deeper in the water column (van Beek et al., 2007). Similarly, Jullion et al., (2017)—by using a parametric OMP analyses as applied in the Mediterranean Sea—also reported quantification of the non-conservative component of the Ba signal
and suggested that the Ba negative anomalies potentially reflected Ba subtraction during barite formation occurring during POC remineralization. The winter deep convection in the Labrador Sea may also potentially explain this relatively deep Ba anomalies by transporting negative Ba and 226Ra anomalies waters toward the deep-sea (Jullion et al., 2017). With the exception of the acantharian skeletons that may impact the dissolved 226Ra/Ba ratios in the upper 200 m, the removal of 226Ra and Ba that takes place deeper in the water column or that involves other processes (e.g. barite precipitation) does not seem to affect significantly the dissolved 226Ra/Ba ratios.

In the shallow coastal stations, lower 226Ra/Ba ratios are observed (Fig.7). These low ratios may also result from the removal of 226Ra and Ba by planktonic shells and/or barite or scavenging by lithogenic particles. However, because these stations are coastal stations, various processes are at play in a relatively shallow water column (i.e. diffusion of 226Ra from the sediments; input of Ba from meteoritic water; removal of Ba and 226Ra by shells and barite) thus complicating the interpretation of the vertical profiles. We note that the low 226Ra/Ba ratios observed in surface of shallow stations near the coast of Greenland (stations 57 and 61) and Newfoundland (station 78) are associated with low salinities (Fig.7c). This decoupling between 226Ra and Ba may be explained by input of freshwater into the coastal zone.

Finally, at several stations, a decrease in the 226Ra activities is observed near the seafloor (stations 13, 21, 44, 60, 64 and 77; Fig.7). Similar decreasing trends near the seafloor have been reported in the Southwest Atlantic and North Pacific for 230Th (Deng et al., 2014; Okubo et al., 2012), a reactive element that strongly adsorbs onto suspended particles. This trend for 230Th was explained by nuclide scavenging at the seafloor (Deng et al., 2014; Okubo et al., 2012). Radium-226—although it is much less particle-reactive than 230Th—and Ba may also be scavenged by resuspended particles near the seafloor and may adsorb onto the surfaces of Mn oxides (Moore and Reid, 1973). High particulate trace element concentrations were also observed at stations 26, 38, and 69 and may be related to nepheloid layers that impact the deep water column up to 200-300 m above the seafloor (Gourain et al., 2017; Menzel et al., 2017; this issue).

4.4. Estimation of 226Ra and Ba input fluxes into the West European Basin

A strong 226Ra positive anomaly is observed in the NEADWI between stations 1 and 21 and below 3500 m. On average, it is 3.3 dpm 100 L$^{-1}$ over this vertical section. This anomaly reflects a concentration difference between the 226Ra measured along GA01 and the 226Ra due to water mass mixing. This concentration difference is associated to the northward transport of the NEADWI, estimated to be 0.9 ± 0.3 Sv (106 m3s$^{-1}$) at 45 °N (GA01 section) (Daniault et al., 2016; McCartney,
Therefore, the positive concentration anomaly can be converted into a 226Ra flux that has to be added to this water mass, $F_{\text{Input-Ra}}$, calculated as follows:

$$F_{\text{Input-Ra}} = A \times T_{\text{NEADWl}} \quad (1)$$

where A is the mean positive anomaly of 226Ra (in dpm m$^{-3}$) determined by the OMP analysis; T_{NEADWl} is the transport associated with the NEADWl (in m3 s$^{-1}$).

This 226Ra input may be associated with a sedimentary source and/or may result from the dissolution of suspended particles. In a first place, we will study the hypothesis of the sedimentary source; the suspended particle source will be discussed in a second place.

The NEADWl at 45 °N is made of up to 92 % of the 11 °N NEADWl endmember. Therefore, the sedimentary input along the northward transport of the NEADWl is calculated across a sediment area between 11 °N and 45 °N (Fig.S3). We consider the distance of 4209 km between 11 °N and the GA01 section and the distance of 1475 km between stations 1 and 21. This leads to a horizontal area of 6.21 10^6 km2 (assuming a constant bathymetry), across which the sedimentary input is assumed to take place.

The 226Ra flux diffusing out of bottom sediments, $F_{\text{Sed-Ra}}$ (in dpm cm$^{-2}$ y$^{-1}$) can be calculated using Eq. (2), assuming that the anomaly is entirely explained by the sediment source:

$$F_{\text{Sed-Ra}} = \frac{F_{\text{Input-Ra}}}{S} \quad (2)$$

where S is the surface area described above (in cm2) and $F_{\text{Input-Ra}}$ is 1.67 10^8 dpm s$^{-1}$.

The calculated $F_{\text{Sed-Ra}}$ is $14.8 \pm 3.1 \ 10^3$ dpm cm$^{-2}$ y$^{-1}$, which is within the range of fluxes reported in the literature. For example, Cochran (1980) reported $F_{\text{Sed-Ra}}$ in the range of $1.5 \ 10^3$ dpm cm$^{-2}$ y$^{-1}$ for the Atlantic Ocean to $2.1 \ 10^3$ dpm cm$^{-2}$ y$^{-1}$ in the Pacific Ocean (Fig.8). Li et al. (1973) estimated 226Ra fluxes diffusing out of the sediment in the Southern Ocean and on the Antarctic shelf of $6.2 \ 10^4$ dpm cm$^{-2}$ y$^{-1}$ and $1.6 \ 10^3$ dpm cm$^{-2}$ y$^{-1}$, respectively. The $F_{\text{Sed-Ra}}$ calculated here is thus slightly higher than the 226Ra sedimentary fluxes reported in the Atlantic Ocean by Cochran (1980). Note, however, that the 226Ra fluxes released from the sediments vary locally as a function of the sedimentary 230Th activity, bioturbation rates, but also as a function of the sediment type and composition (Chung, 1976; Cochran, 1980). The 226Ra fluxes reported in the Atlantic Ocean by Cochran (1980), which are the lowest of all basins, are only available for calcareous ooze type sediment (Cochran, 1980). The NEADWl may cross different types of sediments along its northward path in the Atlantic Ocean. This includes calcareous oozes, fine-grained calcareous sediments and clay (Dutkiewicz et al., 2015). In particular, 226Ra diffusion is expected to be higher in these two latter sediment types (Cochran, 1980).

As for Ba is concerned, the mean positive anomalies deduced from the OMP analysis is 7.0 nmol L$^{-1}$ leading to a $F_{\text{Input-Ba}}$ of 69.5 mol s$^{-1}$. In the same way as 226Ra, a Ba sedimentary flux $F_{\text{Sed-Ba}}$
of $3.19 \pm 1.4 \text{ nmol cm}^{-2} \text{ y}^{-1}$ would be required to explain the Ba anomalies observed in the West European Basin. This flux is on the low end of the Ba sedimentary fluxes reported in different ocean basins, which range from 1.0 to 30 nmol cm$^{-2} \text{ y}^{-1}$ (Chan et al., 1977; Falkner et al., 1993; McManus et al., 1999; Paytan and Kastner, 1996).

Alternatively, the dissolution of settling particles could also contribute to the 226Ra and Ba anomalies observed in the deep waters of the West European Basin. Assuming steady state, we may undertake a mass balance calculation for particulate 226Ra and Ba in the same box as described above (i.e., box defined between 11 °N and the GA01 section, between stations 1 and 21 –1475 km– and between 3500 m depth and the seafloor; Fig.5). Particles enter the box from above as settling particles, but also horizontally, carried within the water masses at 11 °N that travel northward. Particles leave the box by different processes (accumulation in the sediment or northward transport by the water masses) or alternatively may dissolve while settling in the box. In the absence of precise information about the particulate 226Ra and Ba fluxes entering and exiting the box horizontally (i.e. the particulate 226Ra and Ba concentrations at 11 °N and at the GA01 section), we assume that they are of equal importance and therefore that they cancel each other in the mass balance calculation.

The vertical particulate flux entering the box, from above, can be calculated as follows:

$$F_{\text{Part}} = C_p \times V_s \times S \quad (3)$$

where x is either 226Ra or Ba, C_p is either the particulate 226Ra activities or the particulate Ba concentrations at 3500 m, V_s is the settling speed for suspended particles and S is the horizontal surface area described above ($6.21 \times 10^6 \text{ km}^2$).

We use the value of 0.007 dpm 100 L$^{-1}$ for the mean 226Ra particulate activity at 3500 m, a value that was reported for the Atlantic Ocean, Sargasso Sea (van Beek et al., 2007) and the value of 0.087 nmol L$^{-1}$ for the mean Ba particulate concentration at 3500 m, a value that was determined along the GA01 section (Lemaitre et al., this issue). We use the settling speeds (V_s) reported for suspended particles in the literature and that typically range from 100 to 1000 m y$^{-1}$ (Bacon and Anderson, 1982; Krishnaswami et al., 1976; Roy-Barman et al., 2002). The F_{Part} thus obtained range from 1.4×10^6 to $13.8 \times 10^6 \text{ dpm s}^{-1}$ for 226Ra, while the F_{Part} range from 1.7 and 17.2 mol s$^{-1}$ for Ba. Of this total F_{Part}, some fraction may dissolve while settling, while the remainder will accumulate in the sediment. This dissolution flux is named $F_{\text{dissolution}}$, where x is either 226Ra or Ba. We use the sediment Ba accumulation rates reported by Ginele and Dahmke (1994) in the Atlantic Ocean to calculate the particulate Ba flux that exits the box ($F_{\text{Accumulation-Ba}}$: 2.0 to 13.4 mol s$^{-1}$); hence, by difference the $F_{\text{dissolution-Ba}}$ is 0-15.2 mol s$^{-1}$ (Fig.10). This value is of the same order of magnitude of the $F_{\text{Input-Ba}}$.

needed to explain the Ba anomalies (6.28 mol s⁻¹). Therefore, in the case of Ba, the dissolution of settling particles may entirely explain the OMPA-derived anomalies. The sediment 226Ra accumulation rates can be calculated from the Ba accumulation rates estimated above, using the 226Ra/Ba ratio determined in sinking particles collected in the Sargasso Sea near the seafloor (i.e., 1.5 dpm µmol⁻¹; van Beek et al., 2007). The sediment 226Ra accumulation flux thus calculated, $F_{\text{Accumulation-Ra}}$, is $2.9 \times 10^6 - 19.6 \times 10^6$ dpm s⁻¹, leading to $F_{\text{dissolution-Ra}}$ of $0-10.9 \times 10^6$ dpm s⁻¹ (Fig.10). Therefore, $F_{\text{dissolution-Ra}}$ cannot account for more than 37% of the required 226Ra flux ($F_{\text{Input-Ra}}$). This implies that even if the settling speed is high (1000 m yr⁻¹; high turnover of the particles), the particle dissolution cannot account for the entire $F_{\text{Input-Ra}}$. The remaining (minimum of 63%) therefore has to be sustained by 226Ra diffusion from the sediments.

While the above calculations have to be taken with caution given the numerous assumptions in the mass balance model, overall they suggest that the 226Ra positive anomalies observed in the West European Basin may be explained entirely by 226Ra that diffuses out of the sediments. However, it cannot be excluded that the dissolution of settling particles also contributes to the 226Ra enrichment. In contrast, the Ba positive anomalies may be explained either by the diffusion of Ba from sediment or by the dissolution of settling particles or by a combination of these two processes. These conclusions are in line with the current knowledge about 226Ra and Ba sources in the deep ocean (Broecker et al., 1970; Chan et al., 1976, 1977; Ku et al., 1980).

5. Conclusion

We investigated the distribution of dissolved 226Ra activities and Ba concentrations in the North Atlantic Ocean along the GA01 section. To a first order, the 226Ra and Ba patterns appear to be correlated to the water masses (e.g. high 226Ra and Ba in NEADWl in the West European Basin; low 226Ra and Ba in Central Waters; slight increase of 226Ra in the MW). Using a mixing model, we show that the measured 226Ra and Ba concentrations can be explained by conservative mixing for 58% and 65% of the samples respectively, notably at intermediate depth (mostly between 1000 m and 2000 m) and slightly deeper in the middle of deep basins, away from the ocean interfaces. These locations correspond to the depths where the waters are away from the main sources of 226Ra and Ba. 226Ra and Ba can thus be considered as conservative tracers of water mass transport in the ocean interior at the space scales considered here, namely, of the order of few thousand km.

Our study also highlighted several regions where significant input or loss of 226Ra and Ba takes place. In the West European Basin, the deep waters (NEADWl) accumulate both 226Ra and Ba while flowing from 11 °N to the GA01 section. Mass balance calculations suggest that these enrichments are predominantly explained by sediment diffusion for 226Ra, with a possible contribution from suspended
particle dissolution, while both the sediment and suspended particle dissolution could significantly contribute to the Ba enrichments. This pattern contrasts with that observed in the deep waters collected elsewhere along the section that do not display Ba enrichments associated to the 226Ra enrichments. Bottom nepheloid layers may also contribute to the release of 226Ra (and Ba) to the deep water column at several stations. Interestingly, nepheloid layer processes seem to also act as potential removal of 226Ra (and Ba) at several other stations. Significant input of Ba—likely associated with meteoritic waters—is found in the upper water column near Greenland. Finally, 226Ra and Ba are removed from the upper water column, likely primarily due to biological mediated processes such as incorporation of 226Ra and Ba into barite (BaSO_4) that are presumably formed following the decay of settling organic matter and/or adsorption onto diatom frustules, a mechanism that would explain the 226Ra-Ba relationship reported here. Similarly, strong correlations were also found between Ba-Si and 226Ra-Si although no obvious process links 226Ra or Ba with Si, except maybe for the adsorption of Ba and (226Ra) onto diatom frustules. It cannot be excluded, however, that the observed Ba-Si and 226Ra-Si relationships may result from the spatial coherence of different carriers overprinted by hydrodynamics.

Our study also provides evidence of significant decoupling between 226Ra and Ba. In the upper 200 m, the 226Ra/Ba ratios reach low values (<2 dpm µmol$^{-1}$), a pattern that has been observed in other regions and was related to acantharian skeletons that incorporate 226Ra preferentially to Ba (van Beek et al., 2007; Bernstein et al., 1998). Finally, deviations from the mean GEOSECS 226Ra/Ba ratios were observed in the shallow coastal waters of Greenland and Newfoundland: the predominant input of Ba due to input of meteoritic waters leads to lower 226Ra/Ba ratios whereas near the seafloor, the input of sedimentary 226Ra leads to higher 226Ra/Ba ratios.

The absence of a stable isotope for radium led geochemists to consider Ba as a stable analog for 226Ra because 226Ra and Ba display a similar chemical behavior, with the aim of using the 226Ra/Ba ratio as a chronometer for the thermohaline circulation. This study confirms that 226Ra and Ba behave similarly in the ocean interior away from external sources, both elements being predominantly conservative in the studied area over distances of the order of a few thousands of km. However, this study also highlights regions where 226Ra and Ba deviate from a conservative behavior, an important consideration when considering the balance between the large-scale oceanic circulation and biological activity over long time scales. Decoupling between 226Ra and Ba has been observed, in most cases at the ocean boundaries as the result of dissolved 226Ra and Ba external sources. In addition, suspended particle dissolution may differently impact the dissolved 226Ra and Ba content of intermediate and deep waters (as shown for the NEADWI); such process would therefore potentially modify their 226Ra/Ba ratios and would complicate the use of this ratio as a chronometer. Inclusion of the different sources and sinks and particle/dissolved interactions in global ocean models should help to refine the use of the
$^{226}\text{Ra}/\text{Ba}$ ratio as a clock to chronometer the thermohaline circulation, as was proposed several decades ago during the GEOSECS program.

Figure Caption

Figure 1: Station locations of the GA01 section between Portugal and Newfoundland in the North Atlantic (black and blue dots). Stations investigated for ^{226}Ra and Ba are marked as blue dots. The main currents and water masses in the North Atlantic are also represented. The major hydrothermal vents located near the GA01 section are indicated by black triangles. Stations investigated during the US-GEOTRACES-GA03 section, also conducted in the Atlantic Ocean, are reported on the lower panel (red dots).

Figure 2: Potential temperature-salinity diagram—including a zoom for bottom waters—of the water samples (colored dots) from the GA01 section. The properties of the source water types (based on García-Ibáñez et al., 2017; This issue) used in the Optimum Multiparameter (OMP) analysis are reported with white circles. Isopycnals are also plotted (potential density referenced to 0 dbar).

Figure 3: Distribution of salinity (CTD data) along the GA01 section. The different water masses are also reported, following García-Ibáñez et al. (2017; this issue). The station numbers are found on top of the figure. The sampling depths for ^{226}Ra are shown for each vertical profile (black dots).

Figure 4: Distribution of (a) dissolved ^{226}Ra activities (dpm 100 L$^{-1}$), (b) dissolved Ba concentrations (nmol L$^{-1}$) and $^{226}\text{Ra}/\text{Ba}$ ratio (dpm µmol$^{-1}$) along the GA01 section. Station numbers are found on top of the panels. The sampling depths are shown for each vertical profile (black dots).

Figure 5: Relationships between ^{226}Ra and Ba (red dots) and between ^{226}Ra and Si(OH)$_4$ (blue dots) along the GA01 section in the North Atlantic. The best linear fit for the two plots is also reported ($R=0.93$ for the two plots). The slopes of the relationships between ^{226}Ra-Ba and between ^{226}Ra-Si(OH)$_4$ are expressed in 107 dpm nmol$^{-1}$ and in 108 dpm µmol$^{-1}$, respectively.

Figure 6: Difference between the measured concentrations and those calculated by the OMP analysis, for ^{226}Ra (a), Ba (b) and (c) $^{226}\text{Ra}/\text{Ba}$ ratio along the GA01 section. Positive anomalies reflect recent tracer addition, while negative ones reflect recent tracer removal.

Figure 7: Vertical profiles of dissolved ^{226}Ra and Ba concentrations determined along the GA01 section: (a) West European Basin; (b) Iceland Basin and Irminger Basin, (c) the Greenland and Newfoundland margins, and (d) Labrador Basin. As a comparison, the conservative ^{226}Ra and Ba vertical profiles derived from the OMP analysis are also reported in solid grey lines. The discrepancy between the two vertical profiles indicates deviation from the conservative behavior and reflects either an input of ^{226}Ra or Ba (positive anomalies highlighted in red; same color code as Fig.6) or a removal of ^{226}Ra or Ba (negative anomalies highlighted in blue; same color code as Fig.6). The OMP analysis has not been solved for the shallow coastal stations 53 and 78. The $^{226}\text{Ra}/\text{Ba}$ ratios are also reported, together with the mean GEOSECS $^{226}\text{Ra}/\text{Ba}$ ratio (2.2 ± 0.2 dpm µmol$^{-1}$; black dashed line) together with its one standard deviation (grey shaded area). Note that the scale may be different from one station to the other and the vertical axis was cut to 1000 m. The seafloor is represented by the bottom axis.

Figure 8: Geographical variation of ^{226}Ra activities (red dots), salinity (blue dots), temperature (yellow dots) and Si(OH)$_4$ concentrations (green dots) in AABW and the NEADW1 between 60°S and 45°N (GA01 section) in the Atlantic Ocean based on data from the GEOSECS and TTO programs. The ^{226}Ra activities, salinity, temperature and Si(OH)$_4$ concentrations from GA01 are represented with open circles. The values used as endmembers for the OMP analysis are also identified by the black circles. The shaded area represents the region where transformation of the AABW into NEADW1 takes place.

Figure 9: ^{226}Ra fluxes diffusing out of the sediment in relationship with bottom water ^{226}Ra activities determined in different oceanic basins (P=Pacific Ocean, A=Atlantic Ocean, I=Indian Ocean and AA=Southern Ocean) by Cochran (1980). The ^{226}Ra flux calculated in this study to explain the positive anomalies in the West European Basin is also reported (red dot).

Figure 10: ^{226}Ra and Ba flux estimations: F_{Part} is the particulate flux entering the box and $F_{\text{Accumulation}}$ is the sediment accumulation flux and $F_{\text{Dissolution}}$ is the flux of particle dissolution assuming that all the settling particles dissolve. x is either ^{226}Ra or Ba. Both maximum and minimum values are shown for F_{Part} and $F_{\text{Accumulation}}$. Max $F_{\text{Dissolution}}$ represents a maximum value since it is calculated by subtracting the minimum value of $F_{\text{Accumulation}}$, from the maximum value of F_{Part}. $F_{\text{Dissolution}}$ is thus comprised between zero (if all F_{Part} accumulates in the sediment) and this latter value.

Figure S1: Comparison of the vertical profiles of dissolved ^{226}Ra at stations 1 and 13 of the GA01 section (black and red dots, respectively) and station 1 of the GA03 section (U.S.-GEOTRACES; blue dots) off Portugal.

Figure S2: Vertical profiles of dissolved ^{226}Ra activities and dissolved Ba concentrations with the conservative ^{226}Ra and Ba vertical profiles derived from the OMP analysis, $^{226}\text{Ra}/\text{Ba}$ ratios, Si(OH)$_4$ concentrations, salinity (black line) and potential temperature (red line) for (a) the Iberian margin and the West European Basin, (b) the Iceland Basin and the Irminger Sea, (c) the Greenland margin, and (d) the
Labrador Sea and the Newfoundland margin. Note that the scale may be different from one station to the other and the vertical axis was cut to 1000 m. The bottom is represented by the bottom axis.

Figure S3: Location of each endmember source water types (SWTs) used for the OMP analysis (black circles). The surface of the basin, S, used to calculate the fluxes is represented by the grey hatched area.

Figure S4: Satellite Chlorophyll-a concentrations (MODIS Aqua from http://oceancolor.gsfc.nasa.gov), in mg m$^{-3}$ during the GA01 cruise in (a) May 2014 and (b) June 2014. The dashed line indicates the location of the GA01 section. Stations investigated in this work are indicated by dots. White dots indicate the stations investigated during the corresponding month.

Figure S5: Schematic box model used to calculate the input fluxes in the West European Basin: $F_{\text{Sed-x}}$ is the flux diffusing out of bottom sediments, $F_{\text{Part-x}}$ is the vertical flux of particles entering the box from above, $F_{\text{Accumulation-x}}$ is the flux of particles accumulating in the sediment and $F_{\text{H-In-x}}$ and $F_{\text{H-Out-x}}$ represent horizontal fluxes of dissolved species or particles coming in and out of the box due to transport, respectively. x is either ^{226}Ra or Ba.

Table S1: Characteristics and location of each endmember source water types (SWTs).

Table S2: ^{226}Ra activities, Ba concentrations, ^{226}Ra/Ba ratios, potential temperature and salinity at the different stations of the GA01 section.
1 Acknowledgement

The present research and Emilie Le Roy’s fellowship are co-funded by the European Union and the Région Occitanie-Pyrénées-Méditerranée (European Regional Development Fund). We are grateful to the captain and crew of the N/O Pourquoi Pas?. The GEOVIDE project is co-funded by the French national program LEFE/INSU (GEOVIDE), ANR Blanc (GEOVIDE, ANR-13-BS06-0014) and RPDOC (ANR-12-RPDOC-0025-01), LabEx MER (ANR-10-LABX-19) and IFREMER. The GEOVIDE cruise would not have been achieved without the technical skills and commitment of Catherine Kermabon, Olivier Ménage, Stéphane Leizour, Michel Hamon, Philippe Le Bot, Emmanuel de Saint-Léger and Fabien Péralut. We are grateful to Manon Le Goff, Emilie Grosstefan, Morgane Gallinari and Paul Tréguer for Si(OH)$_4$ sampling and analysis. This work was also co-funded by the French national program LEFE/INSU “REPAP” (PI S. Jacquet) and the U.S. National Science Foundation (PI M. Charette, OCE-1458305; OCE-1232669). For this work M.I. García-Ibáñez and F.F. Pérez were supported by the Spanish Ministry of Economy and Competitiveness through the BOCATS (CTM2013-41048-P) project co-funded by the Fondo Europeo de Desarrollo Regional 2014–2020 (FEDER). Several figures were constructed using Ocean Data View (Schlitzer, 2003). Therefore, R. Schlitzer is warmly thanked. Satellite chlorophyll-a visualizations used in this study were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC.

References

Figure 2
Figure 3
Ba (nmol L$^{-1}$)

Si(OH)_4 (µmol L$^{-1}$)

Figure 5

$Y = 0.25x - 1.1 \pm 0.3$

$Y = 0.24x + 7.3 \pm 0.1$
Figure 7

A) West European Basin

Station 1

Station 13

Station 21

Station 26

B) Iceland and Irminger Basins

Station 32

Station 38

Station 44
Figure 7

C) Greenland and Newfoundland Margins

Station 53

Station 57

Station 61

Station 78

D) Labrador Basin

Station 60

Station 64

Station 69

Station 77
Figure 8

AABW vs. NEADW

- Salinity
- Temperature (°C)
- Si(OH)₄ (μmol kg⁻¹)

226Ra (dpm 100 kg⁻¹)
Figure 9

The figure shows a scatter plot correlating $^{226}\text{Ra}_{\text{bottom water}}$ (dpm 100 kg$^{-1}$) against $^{226}\text{Ra}_{\text{Flux}_{\text{sed}}}$ (dpm cm$^{-2}$ y$^{-1}$). The plot includes data points for different sediment types: Calcareous, Siliceous, Siliceous/Clay, and Clay. Each sediment type is represented by a different symbol and color.