Algal richness of temperate biological soil crusts depends on management intensity and correlates with inorganic phosphorus

Karin Glaser¹, Karen Baumann², Peter Leinweber², Tatiana Mikhailyuk³, Ulf Karsten¹

¹ Institute for Biological Sciences, Applied Ecology and Phycology, University Rostock, Germany
² Faculty for Agricultural and Environmental Sciences, Soil Science, University Rostock, Germany
³ M.H. Kholodny Institute of Botany, National Academy of Science of Ukraine, Tereschenkivska St. 2, UA-01004 Kyiv, Ukraine

Correspondence to: Karin Glaser (karin.glaser@uni-rostock.de)

Abstract

Biological soil crusts (BSCs) form the most productive microbial biomass in many drylands and disturbed areas, where higher vegetation is sparse, with a diverse microalgal community as key component. In temperate regions, BSCs are also common, but generally less studied, and they conduct important ecological functions, such as stabilization of soil and enrichment of nutrients. Changes in land use and its intensity strongly influence biodiversity per se and its role for ecosystem processes, particularly in regions which are densely populated like Europe. But systematic studies on land use (i.e. management intensity) gradients in temperate forests on BSCs are missing up to now. To close this gap of knowledge and enhance the understanding of management effects on BSCs, Cyanobacteria and eukaryotic microalgae as key primary producers of these communities were identified from pine and beech forests under different management regimes. Algae were identified morphologically based on enrichment cultivation and categorized as either coccal taxa, which occur typically in high diversity, or filamentous taxa, which have the potential to initiate BSC formation. In total, 52 algal species were recorded, most from the phylum Chlorophyta, followed by Streptophyta and Stramenopiles; Cyanobacteria were much less abundant. The most abundant crust-initiating filamentous algae were three species of Klebsormidium (Streptophyta), a ubiquitous genus often associated with BSCs worldwide with a high tolerance to low pH. Increasing management intensity resulted in higher numbers of algal species, especially the number of coccal algae rose. Furthermore, the proportion of inorganic phosphorus showed tendencies towards a positive correlation with the number of algal species. Thus, management of forests has an impact on the diversity of phototrophic organisms in BSCs, which might affect P cycling in the BSC.

Key words: biological soil crusts, forest, management intensity, phosphorus, algae richness, Klebsormidium
Introduction

Biological soil crusts (BSCs) occur on all continents on Earth, predominantly in arid and semi-arid habitats, but also in temperate regions (e.g. Belnap et al., 2001; Weber et al., 2016). In semiarid and arid environments, BSCs were studied, for example, in deserts of Israel and USA or in polar regions (Borchhardt et al., 2017; Flechtner et al., 1998; Kidron et al., 2010). In temperate regions these habitats include dunes with sparse higher vegetation or disturbed areas in open sites (e.g. former mining sites) (Fischer et al., 2010b; Langhans et al., 2009; Lukešová, 2001; Schulz et al., 2016).

Although BSCs received raising interest in the past years, reports on BSCs from forests are very rare (Seitz et al. 2017). Under mesic conditions the BSCs have to compete with vascular plants and thus their development is often limited. Especially in forest the limitation of light and the occurrence of litter restricts the crust development. But disturbances of vegetation layer change this competitive situation and allow the development of biological soil crusts. Such disturbances occur frequently in temperate forests, for example natural tree fall, pits of wild boars, litter free spots at slopes or molehill-like humps, or human-induced disturbances such as skid trails and clear-cut areas. At these spots, biological soil crust can develop and serve as a starting point for colonization after heavy disturbance and destruction of intact forest ecosystems. Thus, soil crusts can protect disturbed areas from e.g. erosion until the successful regrowth of vascular plants (Seitz et al., 2017) and even enhance the process of regrowth. It has been shown that sperm germination of vascular plants benefit from biological soil crusts (Li et al., 2005; Su et al., 2009).

Disturbance of BSCs due to land use has been reported to have strong negative effects on BSC cover, which resulted in higher soil erosion and C and N losses from the top soil (Barger et al., 2006; Belnap, 2003). Studies on the effect of land use on BSCs were mainly conducted in arid and semiarid regions. These studies reported, for example, a strong negative influence of intensive livestock grazing on BSC cover due to trampling with a recovery period of up to 27 years (Concostrina-Zubiri et al., 2014; Gomez et al., 2004; Williams et al., 2008). Also, ploughing in Australian sand plains reduced the BSCs cover dramatically (Daryanto et al., 2013). In contrast, there are no reports on land use effects in temperate regions or aspects of land use other than grazing on BSCs, such as, for example, fertilization of grass or arable land and silvicultural management.

BSCs can be characterized as “ecosystem-engineers” forming water-stable aggregates that have important ecological roles in primary production, nitrogen cycling, mineralization, water retention, and stabilization of soils (Castillo-Monroy et al., 2010; Evans and Johansen, 1999; Lewis, 2007). While the role of BSC in the C- and N-cycle is well documented, less is known about their role in P cycling. However, recent studies indicated that the number of microalgae species in BSCs is related to soil P content (Baumann et al., 2017; Schulz et al., 2016). But still, only little is known about environmental factors that shape BSC communities and how BSCs in turn affect soil characteristics.

Cyanobacteria and algae represent the most important phototrophic components of BSCs along with macroscopic lichens and bryophytes (Belnap et al., 2001). Eukaryotic algae are probably the least studied phototrophs in BSCs, although these organisms are an essential component of BSCs because of their major contribution to C fixation (Büdel et al., 2016). BSC algae can be categorized as two functional groups. First, filamentous algae as major BSC forming taxa that stabilize soil
particles by gluing them together due to the presence/excretion of mucilage. The filamentous forms occur usually in low diversity but produce high biomass. And second, coccoid algae which are attached to the soil particles or other algae and typically occur in higher diversity but lower biomass (Büdel et al., 2016).

Filamentous cyanobacteria, especially of the genus Microcoleus, are often the dominant phototrophic organisms in most BSCs of drylands and in dunes from temperate regions (Garcia-Pichel et al., 2001; Schulz et al., 2016). They are described as important for BSC formation due to their ability to produce mucilage sheaths and extracellular polymeric substances forming a network between soil particles (Gundlapally and Garcia-Pichel, 2006). In temperate regions, this key function is often taken over by filamentous eukaryotic algae, like Klebsormidium, Xanthonema or Zygogonium (Fischer and Subbotina, 2014; Lukešová, 2001; Pluis, 1994).

The aim of the present study was to characterize for the first time the algal community in BSCs collected in temperate forests of different silvicultural management intensities. In a previous study we presented hints that differences of algal richness in BSCs contributing to P cycling were detected, and the data indicated that BSCs are particularly involved in the transformation of inorganic P to organic P compounds and thus play a key role in the biologically driven P cycling in temperate soils provided a very detailed picture on the distribution of P content, P pools and P species in temperate BSCs and adhering soil (Baumann et al., 2017). Differences of algal richness in BSCs contributing to P cycling were detected, and the data indicated that BSCs are particularly involved in the transformation of inorganic P to organic P compounds and thus play a key role in the biologically driven P cycling in temperate soils. In addition, BSCs responded differently to management intensity depending on forest type (beech versus pine). While algal species richness of BSCs was considered as sum parameter, detailed information on species occurrence is still missing. Therefore, in the present study we identified algal species in a temperate forest and investigated for the first time in detail the influence of silvicultural management intensity on algal richness in BSCs collected at the same plots as in Baumann et al. (2017), plus additional sampling sites. The correlation of BSC algal richness and C, N and P content, in particular on the different fractions of P, was assessed in order to uncover the relation between biogeochemical cycles in BSCs and the BSC-associated alga species.

Material and Methods

Study site

BSC samples were collected in June 2014 and 2015 from plots of the German Biodiversity Exploratories (Fischer et al., 2010a). Forest plots were sampled in the Schorfheide-Chorin Biosphere Reserve in Northeast Germany. The plots differed in the dominant tree species: Scots pine (Pinus sylvestris L.) or European beech (Fagus sylvatica L.). Samples were taken from natural, protected forests and from managed forest (age-class forest) on disturbed areas where BSCs could develop on litter free bare soil (for illustration see Figure 1).
The top millimeters of soil, on which BSC had been visually detected as green cover, were collected by pressing a petri dish in the crust and removing gently with a spatula. After transportation to the lab the upper two millimeters of the crust were separated from the adhering soil underneath using a razor blade and stored dry in paper bags before cultivation. In total, 31 BSCs were collected from 13 pine and 18 beech stands, of which 23 were managed and 8 were natural forest plots (Table 1).

5 Culturing, identification and richness of algae

Solid 3N-Bolds Basal Medium (1.5% agar) with vitamins (Starr and Zeikus, 1993) was used for enrichment cultures in Petri dishes (9.5 cm diameter). Several 7–10 mm BSC pieces were cleaned with forceps to remove all roots and leaves to avoid the additional growth of fungi and bacteria and were placed on the surface of an agar plate under sterile conditions. Plates were incubated at 20°C, 30–35 μmol photons m⁻² s⁻¹ (Osram Lumilux Cool White lamps L36W/840) under a light/dark cycle of 16:8 h L:D. The plates were regularly inspected and colonies were identified four to six weeks after incubation using a light microscope (BX51, Olympus) with Nomarski differential interference optics and 1000x magnification. Light micrographs were taken with an Olympus UC30 camera attached to the microscope and processed with the software cellSens Entry (Olympus). For direct observation of BSC samples, pieces of crust were rewetted with tap water, put on slide and analyzed with the above mentioned microscope with a maximum 400x magnification.

Morphological identification of algae was based on Syllabus (Ettl and Gärtner, 1995) and, more recent publications on certain algae groups (Darienko et al., 2010; Kostikov et al., 2002; Mikhailyuk et al., 2015). Mucilage of algae was stained with an aqueous solution of methylene blue. Algae were identified that belong to Cyanobacteria, Chlorophyta, Streptophyta and some Stramenopiles (Eustigmatophyceae). Diatoms were regularly observed in direct observation, but excluded from the analyses as the mentioned enrichment cultivation is not suitable for identification of diatoms.

Since enrichment cultivation does not allow a clear conclusion on the abundance of each species, richness of algae (total number of algae and cyanobacteria species in a sample), was used as measure for diversity. As a second parameter, we showed similarity between single plots by presence / absence of individual species, which combines the total number and the identity of the algal species.

Further, we categorized the identified algae in filamentous or coccal life form, because both differ in their ecological function. Filamentous algae, in contrast to coccal algae, have the potential to initiate crust-formation and stabilize the particles by gluing them together.

Environmental variables

The natural and managed forest plots were characterized by differences in the silvicultural management intensity. In natural forests, no management was conducted, meaning that fallen trees were left in place and no trees were cut. In managed age-class forests, the stands were disturbed due to e.g. usage of skid trails and removal of dead trees as well as tree cut. To evaluate the effect of management, the silvicultural management index (SMI) was used. This index takes into account the tree species, stand age and aboveground living and dead wood biomass, i.e. stand density (Schall and Ammer, 2013). The natural forest has
a lower SMI than the managed forest; a pine stand has a higher SMI than a beech stand; high stand density is reflected by a high SMI.

To assess interactions between BSC biodiversity parameters and environmental parameters, the richness, presence or absence of individual algal species and proportion of filamentous algae was linked to the following environmental parameters: main tree species (pine or beech), silvicultural management intensity (SMI), water content and pH of the bulk soil for all 31 plots (water content and pH kindly provided by I. Schöning, Table 1) and, further, for a subset of the samples (n=19), total C, N and P content, organic and inorganic P proportions, both for labile, moderately labile and stable P. Data on latter are not shown here but were presented in detail by Baumann et al. (2017).

Statistical analyses

All statistical analyses were done using the statistical software R version 3.3.0 (R Development Core Team, 2009). Analysis of Variance (ANOVA) was conducted to reveal the effect of environmental parameters on algal and cyanobacteria richness and proportion of filamentous species; their best predictors were selected by backward elimination stepwise regression analysis based on the BIC (Bayesian information criterion) using ‘step’ command in R. The correlation between environmental parameters were checked by Pearson correlation (cor and cor.test commands in R).

To reveal correlations of single environmental parameters with the presence or absence of individual algal species, we applied PerManova (with adonis function in R (Anderson, 2001)) using the Bray–Curtis dissimilarity index (Bray and Curtis, 1957), including permutation test with 1000 permutations. The function “adonis” allows applying non-Euclidean distance metrics and handles both categorical and continuous predictors. For analysis of co-correlation of environmental factors Pearson correlation was used. To test significant differences of environmental factors between tree species, unpaired, two-tailed t-test was performed. Differences with a p-value below or equal to 0.05 were taken as significant.

Results

Algae identification

In total 51 different algae species and one Cyanobacterium were detected in enrichment cultures of all 31 BSC samples. *Stichococcus bacillaris* was the most ubiquitous taxon, observed in 27 out of 31 samples; followed by *Coccomyxa simplex* and *Klebsormidium* cf. *subtile* in 26 out of 23 samples, respectively. All other algal species were detected in less than 50% of the plots; 22 algal species were observed exclusively at one plot (Figure 2). The richness of algae, i.e. the total species number, at each plot ranged from three to 14 species, with the mean of eight and a standard deviation of 2.6 (complete species list is provided in the supplemental Table S1).

The phylum Chlorophyta made up 81% of all detected algae species, followed by Streptophyta (11%) and Stramenopiles (6%). Cyanobacteria were rare in these BSCs, just one species, *Microcoleus vaginatus*, was observed in only one sample.
The identified algae species were differentiated according to their organization form (Figure 3). We found five species with strong filaments (*Klebsormidium cf. flaccidum*, *K. cf. subtyle*, *K. cf. nitens*, *Xanthonema cf. exile*, *Microcoleus vaginatus*) and two genera with short or easily disintegrated filaments (*Interfilum paradoxum*, *Stichococcus bacillaris*). In each BSC at least two different filamentous species were detected indicating their importance for BSC formation. Especially the genus *Klebsormidium* seemed to be highly important for BSCs in forest: in each BSC at least one of in total three observed morphospecies was found (Supp. Table S1).

Correlation of algae richness with plot characteristics and nutrient content

The silvicultural management intensity was measured by applying the silvicultural management index (SMI), which is based on stand density, tree species and stand age. The gravimetric water content of the bulk soil was correlated with the SMI; the pH was independent of the water content, SMI and the main tree species (Table 2). The N content correlated with the C content and both were independent of the SMI and pH. Total P and the proportion of inorganic P were independent of the C and N content, as well as from pH and SMI (Table 2).

The richness of algal species and the proportion of filamentous algae in BSCs only correlated with SMI, water content and proportion of inorganic phosphorus (Table 3). All other tested parameters (C and N content, total P, proportion of organic P, pH, main tree species, and soil horizon) were excluded by stepwise model simplification based on the BIC and thus had no measurable effect on the algal species richness or proportion of filamentous algae. A higher SMI resulted in a higher species richness (Figure 2), especially the proportion of coccal algae was enhanced.

The presence or absence of individual algal species in BSCs significantly correlated with the main tree species (15% explained variance) and with the water content (10% explained variance). The SMI and proportion of inorganic P explained each 5% of the variance, but this was not significant (Table 3).

Discussion

Species composition and abundance

In total 52 algal species were identified in all sampled BSCs (Figure 2), which is a similar or lower richness compared to other reports on BSCs from temperate regions at open sites (Langhans et al., 2009; Schulz et al., 2016), but similar or higher compared to previous reports on algae from forest bulk soil (Khaybullina et al., 2010; Novakovskaya and Patova, 2008; Starks et al., 1981). Nevertheless, the given number is most probably an underestimation of the real algal richness because our results are based on enrichment cultivation followed by morphological assignment. Enrichment cultivation typically covers only cultivable algae, which represent only a small part of all algae in the BSCs (Langhans et al., 2009). A recent paper comparing metagenomic data with morphological data based on enrichment cultivation estimated a match of about 10% (Rippin et al., 2018). Furthermore, it is not always possible to distinguish dormant from currently active microalgae. However, direct
observation of a BSC sample under the microscope gave at least a hint for the dominant active organisms. Using this approach we could prove that all filamentous algae were abundant and always alive in the BSC samples. The morphological identification of algae has known challenges: e.g. sibling species have similar characteristics but are genetically distant (Potter et al., 1997). To overcome these limitations, researchers proposed to combine molecular and morphological methods, since molecular techniques alone sometimes also fail to detect some algae (Büdel et al., 2009; Garcia-Pichel et al., 2001).

All observed algal species are known as terrestrial taxa, most of them were also reported in BSCs (Büdel et al., 2016 and references therein; Ettl and Gärtner, 1995). Chlorophyceae were the most abundant phylum, which is typical for temperate regions (Büdel et al., 2016). Especially most of the unicellular algae belong to Chlorophyta; a high richness of this soil algae (genera Chlamydomonas, Chloromonas, Chlorococcum, and Tetracystis) is characteristic for humid habitats and typical for forest soils (Hoffmann 1989).

Cyanobacteria were represented by only one single species. Cyanobacteria are often reported as predominant species in BSCs in arid regions such as Israel and drylands of the USA (Garcia-Pichel et al., 2001; Kidron et al., 2010). Nevertheless, Cyanobacteria are less abundant in temperate regions (Gypser et al., 2016; Langhans et al., 2009; Pluis, 1994) and even rare in acidic soils, as in the forest plots of our study site Schorfheide-Chorin (Hoffmann et al., 2007; Lukešová, 2001; Lukešová and Hoffmann, 1996). It seems that Cyanobacteria play only a minor role in forest ecosystems with consequences for the ecological traits that some Cyanobacteria species occupy. For example, the ability for nitrogen fixation in phototrophic organisms was only reported from Cyanobacteria and never observed in eukaryotic algae. In forest ecosystems litter and other decomposable biomass provides probably sufficient mineral nitrogen compounds, which might lead to the absence of nitrogen-fixing organisms in these systems in contrast to nitrogen-poor habitats such as dunes or deserts (Langhans et al., 2009; Schulz et al., 2016).

The filamentous alga *Klebsormidium* was found in nearly all BSCs of our study, whereas species with similar strong filaments (*Microcoleus* and *Xanthonema*) were only found occasionally. Filamentous algae can be regarded as key players in BSCs because of their potential as BSC-initiating organisms by building tight networks among particles (Büdel et al., 2016). Some investigated forest BSC were formed as well by moss protonema, which has filamentous nature and was determined as crust-forming organism (Weber et al. 2016). However, *Klebsormidium* seems to be the most important crust-initiating alga in forest ecosystems of Schorfheide-Chorin. This genus can tolerate a wide range of environmental factors and, thus, has a cosmopolitan distribution in numerous terrestrial and freshwater habitats (Karsten et al., 2016; Rindi et al., 2011 and references therein). Its presence in other terrestrial habitats such as natural rocks in plain and mountainous areas (Mikhailyuk et al., 2008), caves (Vinogradova and Mikhailyuk, 2009), sand dunes (Schulz et al., 2016), tree barks (Freystein et al., 2008), acidic post-mining sites (Lukešová, 2001), bases of urban walls (Rindi and Guiry, 2004) and building facades (Barberousse et al., 2006) is well documented. As many terrestrial algae, *Klebsormidium* is tolerant to light exposure during dehydration (Gray et al., 2007). This is a typical situation which BSC algae have to cope with because increase of light in the morning is often associated with dehydration (Raanan et al., 2016). A recent study in Central Europe, however, observed that *Klebsormidium* is sensitive to increasing light during cellular water loss (Pierangelini et al., 2017). The distribution of *Klebsormidium* in nearly all samples
from Schorfheide-Chorin forest plots may be explained by a lower radiation and also lower evaporation of water in the forest ecosystem compared to open habitats (such as inland dunes), where besides *Klebsormidium* other filamentous algae were dominant (Langhans et al., 2009; Pluis, 1994). Also, the forest soil pH is rather acidic (min: 3.23; max: 3.86, Table 1) which supports a dominance of *Klebsormidium* (Škaloud et al., 2014). Thus, the low light availability, low water evaporation and the acidic soil reaction plausibly explain the presence and dominance of *Klebsormidium* as a potential BSC-initiating algal taxon in nearly all BSCs from Schorfheide-Chorin forest plots.

We identified three morpho-species of the genus *Klebsormidium* in our samples (Figure 2). All three morpho-species were reported from aeroterrestrial habitats in Central Europe (Glaser et al., 2017; Mikhailyuk et al., 2015). *Klebsormidium* has morphological features which can be easily recognized, but the identification down to species level is difficult due to morphological plasticity (Lokhorst, 1996). And still, in times of molecular identification, the debate on species definition in the genus *Klebsormidium* is ongoing (Mikhailyuk et al., 2015; Rindi et al., 2017). Therefore, the definition of clades within *Klebsormidium* was and still is a helpful tool to differentiate between morpho- or genotypes on a species-like level (Rindi et al., 2011). Studies comparing clades at different localities on the one hand observed a global ubiquity, and local endemism on the other hand (Ryšánek et al., 2014). Especially the clade composition seems to differ depending on the habitat. In detail, *Klebsormidium* cf. *flaccidum* (B/C clade) was abundant in closed as well as in open habitats, whereas *K. cf. nitens* and *K. cf. subtile* (E clade) were predominantly distributed in forest (Glaser et al., 2017; Mikhailyuk et al., 2015). In this study, we also observed in BSCs from forests more often *Klebsormidium* cf. *subtile* and *K. cf. nitens* than *K. cf. flaccidum*. Nevertheless, in desiccation experiments the recovery rates of these clades were similar (Donner et al., 2017a, 2017b). It is still an open question, which environmental factors caused the slight habitat preferences of the different clades. Additional ecophysiological experiments combining potential factors, such as light regimes, desiccation frequency and duration and pH, might in future explain this habitat preferences of *Klebsormidium* clades.

Correlation with SMI

The richness of algal species as well as the proportion of coccal algae were positively correlated with the silvicultural management index (SMI), which means that we discovered more alga species in BSCs from managed than from natural forest ecosystems. This finding corresponded with conclusions about high algal richness on disturbed or cultivated soils (Hollerbakh & Shtina, 1969; Hoffmann, 1989). The SMI reflects the main tree species and the stand density as a result of management practice. Most studies in the Biodiversity Exploratories on soil microorganisms in forests observed rather an effect of the main tree species on the community than of the SMI (Goldmann et al., 2015; Kaiser et al., 2016; Purahong et al., 2014); just on study on litter decaying fungi and bacteria observed significant difference between natural and managed beech forests (Purahong et al., 2015). Kaiser et al. (2016) discussed that the different tree species influence the community of soil bacteria by shifting the pH in soil; the pH was described in the mentioned study as the main predictor for bacterial community composition. However, the differences in the bulk soil pH between beech and pine forest were not significant in Schorfheide-
Chorin (Table 1) and the algae in BSCs were not affected by soil pH. We therefore rejected an effect of the SMI via the pH on the algal species richness in Schorfheide-Chorin.

However, SMI combines other potential factors which may affect BSC microalgae, namely water regime and light availability due to stand density and tree species. The sampled forest plots in the exploratory Schorfheide-Chorin were dominated by either beech or pine trees, both differing in their light regime: in beech forests the canopy shade changes during spring and therefore radiation on the ground can be higher in winter and spring than in pine forests. Also, the stand density, another parameter of the SMI, could affect the light regime on the ground: higher density would result in less photosynthetic active radiation for photosynthetic active soil organisms. The radiation is often coupled with evaporation of pore water (Raanan et al., 2016) and, hence, the stand density could have an indirect effect on the BSC organisms via an altered water regime. Thus, we expect that the SMI affected the algae richness in BSC via lower light availability and lower evaporation rates. This is supported by the two-way analysis of water content and SMI, both of which is described as highly important for algal species richness. Nevertheless, it should be noted that the water content was measured in the bulk soil which might differ from that of BSC. For future studies on microalgae in BSCs it would be important to examine also available light on the ground and the water content in the BSC.

Although the SMI positively affected the algal richness, the presence or absence of individual algal species was correlated with the main tree species but not with the SMI. Broadleaf litter has a higher quality in terms of a more favorable C:N and C:P ratio compared to coniferous litter (Cleveland and Liptzin, 2007; McGroddy et al., 2004). It might be that the community in pine forest is shifted towards algal species, which can cope better with the suboptimal C:N:P ratio. But also other, above mentioned factors (light regime and water evaporation) differ between both forest types and could thus have contributed to the observed differences in algal species.

Correlation with C, N, and P

BSCs have different important ecological functions, for example BSCs enhance the nutrient content in the top soil layer (Baumann et al., 2017; Evans and Johansen, 1999). To assess the relationship between BSC community and biogeochemical cycling in BSCs, the content of total C, N and P and additionally the different P fractions (organic, inorganic, labile and stable fractions) were correlated with algal richness. We did not observe a correlation between the richness of algae and the total C, N and P content, although the presence of BSCs lead to an enhanced content of total C, N and P and in particular the proportion of organic P (Baumann et al., 2017). Hence, we assume that algal species are functional redundant and a low species richness in BSCs can conduct the functional role of enhancing C, N and P content. A more detailed analysis of the P fractions gave a slightly different picture: the proportion of inorganic P was correlated with the proportion of filamentous algae and shows a tendency to a correlation with the richness of BSC algae. Soluble inorganic phosphate originates either from P-mineral weathering, desorption of mineral-bound phosphates or from mineralization of organic matter (Mackey and Paytan, 2009) and can be assimilated by organisms. Thus, a low amount of inorganic P could indicate a high take-up rate of BSC organisms and, thus, a more closed P cycle due to higher algae richness (Baumann et al., 2017).
Conclusion

We observed that BSCs are able to coexist in temperate forest ecosystems, because natural and human-induced disturbances, such as wind fall and skid trails, leave space for crusts to develop. For the first time we report on the algae richness in BSCs from temperate forests under different management intensity. The rather acidic forest soil supports a clear dominance of *Klebsormidium*-morphotypes as the main crust-initiating filamentous algae, while Cyanobacteria play a negligible role at our study site. Higher management intensity resulted in a higher richness of algae, especially the proportion of coccal taxa increased. We expect that the silvicultural management intensity in forests affect the algae richness via higher stand density in managed forest, which changes the light regime and also the water evaporation.

We expected a correlation between the total content of phosphorus, N, and P with the number of algal species or their identity, respectively, because it was described before that BSCs enhance nutrients compared to bulk soil. In contrast, we observed no correlation between the total content of C, N and P and the species richness of algae. Nevertheless, the fraction of inorganic P showed tendencies towards a correlation with the algae in BSCs, especially with the content of filamentous species. Our study gives the first hint of a potential relation between the biogeochemical cycle in BSCs and alga species. This relation should be studied in more detail by e.g. gene expression analyses to understand if and how algae in BSCs influence the cycling of P. Also, forthcoming studies should include other crust-associated organisms, like fungi and bacteria, to identify key players on the ecological role of BSCs in the P cycle.

Competing interests. The authors declare that they have no conflict of interest.

Special issue statement. This article is part of the special issue “Biological soil crusts and their role in biogeochemical processes and cycling”

Acknowledgements. The authors would like to thank Nadine Borchhardt for her help during BSC sampling. Water content and pH data were provided by Ingo Schöning, Theresa Klötzing and Marion Schrumpf (May Planck Institute for Biogeochemistry, Jena, Germany).

We thank the managers of the three Exploratories, Martin Gorke and all former managers for their work in maintaining the plot and project infrastructure; Christiane Fischer for giving support through the central office, Michael Owonibi for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalkof for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 "Infrastructure-Biodiversity-Exploratories" (subproject Crustfunction - KA899/28-1 and LE903/12-1). Fieldwork permits were issued by the responsible
state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG). TM thanks the Alexander von Humboldt Foundation for financial support.

References

Table 1. General information on study sites: sample location, main tree species, management status, silvicultural management index (SMI), water content and pH from bulk soil analyses, and proportion of inorganic P as % of total P; n.d. = not determined, * taken from Baumann et al. (2017)

<table>
<thead>
<tr>
<th>Plot</th>
<th>latitude</th>
<th>longitude</th>
<th>main tree species</th>
<th>managed</th>
<th>SMI</th>
<th>Water content</th>
<th>pH</th>
<th>proportion of inorganic P (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW_01</td>
<td>52.900847</td>
<td>13.846367</td>
<td>pine</td>
<td>yes</td>
<td>0.351</td>
<td>12.08</td>
<td>3.64</td>
<td>20.8</td>
</tr>
<tr>
<td>SW_02</td>
<td>52.951729</td>
<td>13.778028</td>
<td>pine</td>
<td>yes</td>
<td>0.329</td>
<td>14.36</td>
<td>3.60</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_03</td>
<td>52.920707</td>
<td>13.643002</td>
<td>pine</td>
<td>yes</td>
<td>0.334</td>
<td>11.69</td>
<td>3.47</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_04</td>
<td>52.917347</td>
<td>13.847311</td>
<td>pine</td>
<td>yes</td>
<td>0.136</td>
<td>13.89</td>
<td>3.50</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_05</td>
<td>53.057034</td>
<td>13.885366</td>
<td>beech</td>
<td>yes</td>
<td>0.211</td>
<td>13.89</td>
<td>3.42</td>
<td>22.8</td>
</tr>
<tr>
<td>SW_06</td>
<td>53.057034</td>
<td>13.885366</td>
<td>beech</td>
<td>yes</td>
<td>0.211</td>
<td>13.89</td>
<td>3.42</td>
<td>18.6</td>
</tr>
<tr>
<td>SW_07</td>
<td>52.907443</td>
<td>13.841688</td>
<td>beech</td>
<td>yes</td>
<td>0.319</td>
<td>17.85</td>
<td>3.64</td>
<td>17.0</td>
</tr>
<tr>
<td>SW_08</td>
<td>52.907443</td>
<td>13.841688</td>
<td>beech</td>
<td>yes</td>
<td>0.319</td>
<td>17.85</td>
<td>3.64</td>
<td>14.9</td>
</tr>
<tr>
<td>SW_09</td>
<td>53.107348</td>
<td>13.694419</td>
<td>beech</td>
<td>no</td>
<td>0.082</td>
<td>18.61</td>
<td>3.73</td>
<td>20.3</td>
</tr>
<tr>
<td>SW_10</td>
<td>53.107348</td>
<td>13.694419</td>
<td>beech</td>
<td>no</td>
<td>0.082</td>
<td>18.61</td>
<td>3.73</td>
<td>18.5</td>
</tr>
<tr>
<td>SW_11</td>
<td>53.191797</td>
<td>13.930338</td>
<td>beech</td>
<td>no</td>
<td>0.059</td>
<td>20.67</td>
<td>3.38</td>
<td>13.7</td>
</tr>
<tr>
<td>SW_12</td>
<td>53.191797</td>
<td>13.930338</td>
<td>beech</td>
<td>no</td>
<td>0.059</td>
<td>20.67</td>
<td>3.38</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_13</td>
<td>53.044587</td>
<td>13.810103</td>
<td>beech</td>
<td>no</td>
<td>0.017</td>
<td>16.43</td>
<td>3.56</td>
<td>17.2</td>
</tr>
<tr>
<td>SW_14</td>
<td>53.044587</td>
<td>13.810103</td>
<td>beech</td>
<td>no</td>
<td>0.017</td>
<td>16.43</td>
<td>3.56</td>
<td>35.0</td>
</tr>
<tr>
<td>SW_15</td>
<td>53.091096</td>
<td>13.637843</td>
<td>pine</td>
<td>yes</td>
<td>0.381</td>
<td>9.91</td>
<td>3.70</td>
<td>9.2</td>
</tr>
<tr>
<td>SW_16</td>
<td>53.090294</td>
<td>13.633704</td>
<td>pine</td>
<td>yes</td>
<td>0.281</td>
<td>12.38</td>
<td>3.66</td>
<td>7.5</td>
</tr>
<tr>
<td>SW_17</td>
<td>52.917914</td>
<td>13.752174</td>
<td>pine</td>
<td>yes</td>
<td>0.276</td>
<td>15.81</td>
<td>3.38</td>
<td>16.7</td>
</tr>
<tr>
<td>SW_18</td>
<td>52.914542</td>
<td>13.737553</td>
<td>pine</td>
<td>yes</td>
<td>0.330</td>
<td>6.06</td>
<td>3.72</td>
<td>9.4</td>
</tr>
<tr>
<td>SW_19</td>
<td>53.076583</td>
<td>13.863986</td>
<td>pine</td>
<td>yes</td>
<td>0.335</td>
<td>8.40</td>
<td>3.57</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_20</td>
<td>53.088606</td>
<td>13.635384</td>
<td>pine</td>
<td>yes</td>
<td>0.357</td>
<td>8.99</td>
<td>3.66</td>
<td>12.8</td>
</tr>
<tr>
<td>SW_21</td>
<td>52.915588</td>
<td>13.740451</td>
<td>pine</td>
<td>yes</td>
<td>0.218</td>
<td>13.02</td>
<td>3.44</td>
<td>12.3</td>
</tr>
<tr>
<td>SW_22</td>
<td>52.895826</td>
<td>13.852147</td>
<td>pine</td>
<td>yes</td>
<td>0.217</td>
<td>13.30</td>
<td>3.47</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_23</td>
<td>52.895826</td>
<td>13.852147</td>
<td>pine</td>
<td>yes</td>
<td>0.217</td>
<td>13.30</td>
<td>3.47</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_24</td>
<td>52.940022</td>
<td>13.782612</td>
<td>beech</td>
<td>yes</td>
<td>0.161</td>
<td>16.82</td>
<td>3.62</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_25</td>
<td>52.940022</td>
<td>13.782612</td>
<td>beech</td>
<td>yes</td>
<td>0.161</td>
<td>16.82</td>
<td>3.62</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_26</td>
<td>52.914769</td>
<td>13.862365</td>
<td>beech</td>
<td>yes</td>
<td>0.250</td>
<td>15.66</td>
<td>3.68</td>
<td>25.2</td>
</tr>
<tr>
<td>SW_27</td>
<td>52.914769</td>
<td>13.862365</td>
<td>beech</td>
<td>yes</td>
<td>0.250</td>
<td>15.66</td>
<td>3.68</td>
<td>33.3</td>
</tr>
<tr>
<td>SW_28</td>
<td>52.900977</td>
<td>13.928326</td>
<td>beech</td>
<td>yes</td>
<td>0.229</td>
<td>18.85</td>
<td>3.72</td>
<td>14.8</td>
</tr>
<tr>
<td>SW_29</td>
<td>52.900977</td>
<td>13.928326</td>
<td>beech</td>
<td>yes</td>
<td>0.229</td>
<td>18.85</td>
<td>3.72</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_30</td>
<td>53.051266</td>
<td>13.844995</td>
<td>beech</td>
<td>no</td>
<td>0.070</td>
<td>14.08</td>
<td>3.71</td>
<td>n.d.</td>
</tr>
<tr>
<td>SW_31</td>
<td>53.051266</td>
<td>13.844995</td>
<td>beech</td>
<td>no</td>
<td>0.070</td>
<td>14.08</td>
<td>3.71</td>
<td>n.d.</td>
</tr>
</tbody>
</table>
Table 2. Significant Pearson correlation coefficients to reveal correlations between environmental factors, which might affect or be affected by the biodiversity of algae. This co-correlation analysis should support the correct interpretation of potential important factors of the biodiversity. SMI-silvicultural management index; n.s. – not significant

<table>
<thead>
<tr>
<th></th>
<th>main tree species</th>
<th>SMI</th>
<th>water content</th>
<th>pH</th>
<th>C_t content</th>
<th>N_t content</th>
<th>P_t content</th>
<th>proportion of inorganic P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMI water content</td>
<td>-0.6</td>
<td></td>
<td>0.77</td>
<td>-0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_t content</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_t content</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_t content</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td></td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>proportion of inorganic P</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>-0.78</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Effect of environmental factors on algae richness, filamentous algae proportion (both estimated by ANOVA) and presence or absence of individual algal species (estimated by PerMANOVA) quantified by the percentage of explained variance. The significance level is indicated by: ***-p<0.001, **-p<0.01, *-p<0.05, °-p<0.1, ns- not significant

<table>
<thead>
<tr>
<th></th>
<th>algae richness</th>
<th>proportion of filamentous algae</th>
<th>presence or absence of individual algal species</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMI water content</td>
<td>30.5 % **</td>
<td>37.7 % ***</td>
<td>5.6 % n.s.</td>
</tr>
<tr>
<td>proportion inorganic P</td>
<td>15.7 % *</td>
<td>14.0 % **</td>
<td>9.6 % *</td>
</tr>
<tr>
<td>main tree species</td>
<td>11.0 % °</td>
<td>29.1 % ***</td>
<td>5.8 % n.s.</td>
</tr>
<tr>
<td></td>
<td>0.9 % n.s.</td>
<td>0.3 % n.s.</td>
<td>14.7 % ***</td>
</tr>
</tbody>
</table>
Figure 1. Top row: overview of the sampling sites; bottom row: close-up of the sampled crusts. Left pictures were taken from an intensively managed pine forest; right pictures from a natural beech forest.
Figure 2. Frequency of occurrence of each algae species in biological soil crust from forest sites (n=31).
Figure 3. Filamentous and some examples of coccoid algae from forest BSCs: algae with strong filaments: A-Xanthanema cf. exile, B-Microcoleus vaginatus, C-Klebsormidium cf. flaccidum; coccoid algae: D-Chloroidium ellipsoideum, E-Eustigmatos magnus, F-Coccomyxa simplex; algae with short or easily disintegrated filaments: G-Stichococcus bacillaris, H-Interfilum paradoxum; scale bar = 5µm
Figure 4. Plot of algae richness in BSCs from forests over the silvicultural management index (SMI), natural forest has a low SMI (<0.1), managed forests a high SMI; the line indicates the best linear fit (slope: 13.6, p<0.001 (Anova))