Increase of dissolved inorganic carbon and decrease of pH in near surface waters of the Mediterranean Sea during the past two decades

a Sorbonne Université-CNRS-IRD-MNHN, LOCEAN, F-75005 Paris, France
b Remote Sensing and Satellite Research Group, School of Earth and Planetary Sciences, Curtin University, Perth, Australia
c Sorbonne Université-CNRS, Laboratoire d’Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
d Division Technique INSU-CNRS, F- 92195 Meudon Cedex, France

Corresponding author: L. Merlivat (merlivat@locean.upmc.fr)

Abstract

Two 3-year time series of hourly measurements of the fugacity of CO₂ (fCO₂) in the upper 10 m of the surface layer of the northwestern Mediterranean Sea have been recorded by CARIOCA sensors almost two decades apart, in 1995-1997 and 2013-2015. By combining them with alkalinity derived from measured temperature and salinity, we calculate changes of pH and dissolved inorganic carbon (DIC). DIC increased in surface seawater by ~ 25 µmol kg⁻¹ and fCO₂ by 40 µatm, whereas seawater pH decreased by ~ 0.04 (0.0022 yr⁻¹). The DIC increase is about 15% larger than expected from equilibrium with atmospheric CO₂. This could result from natural variability, e.g. the increase between the two periods in the frequency and intensity of winter convection events. Likewise, it could be the signature of the contribution of the Atlantic Ocean as a source of anthropogenic carbon to the Mediterranean Sea through the strait of Gibraltar. We then estimate that the part of DIC accumulated over the last 18 years represents ~30% of the total inventory of anthropogenic carbon in the Mediterranean Sea.
1 Introduction

The concentration of atmospheric carbon dioxide (CO₂) has been increasing rapidly over the 20th century and, as a result, the concentration of dissolved inorganic carbon (DIC) in the near surface ocean increases, which drives a decrease in pH in order to maintain a chemical equilibrium. These changes have complex direct and indirect impacts on marine organisms and ecosystems [Gattuso and Hansson, 2011].

Empirical methods to estimate the anthropogenic CO₂ penetration in the ocean since the industrial revolution have improved over the past few decades [Chen and Millero, 1979; Gruber et al., 1996; Sabine et al., 2008; F Touratier and Goyet, 2004; 2009; Woosley et al., 2016]. As the concentration of anthropogenic carbon, \(C_{\text{ant}} \), cannot be distinguished from the natural background of DIC through total DIC measurements, these methods are based on the analysis of different chemical properties of the water column. Direct estimates of the anthropogenic CO₂ absorption in the sea surface layers are difficult owing to the large natural variability driven by physical and biological phenomena. Bates et al [2014] have extracted the trend from the large variability, based on analysis of a long time series (monthly or seasonal sampling). For the global surface ocean, Lauvset et al. [2015] have used the Surface Ocean CO₂ Atlas (SOCAT) database [Bakker et al., 2014] combined with an interpolation method. Estimates of anthropogenic storage in the Mediterranean Sea differ by about a factor of two [Huertas et al., 2009; F Touratier and Goyet, 2009]. In addition to the anthropogenic signal, oceanic DIC can also be the signature of a strong interannual variability. In the North Atlantic, for instance, McKinley et al. [2011] have shown that the long term trend emerges only after more than 25 years because of natural variability.

A high frequency sampling of the seawater carbon chemistry at the air-water interface over extended periods of time is useful to assess trends and variability of DIC. In this paper we analyze two three-year time series of hourly fugacity of CO₂, \(f\text{CO}_2 \), measured with autonomous CARIOCA sensors [Copin-Montégut et al., 2004; Merlivat and Brault, 1995] in 1995-1997 and 2013-2015, at two nearby locations in the northwestern Mediterranean Sea (Fig. 1). Using measured \(f\text{CO}_2 \), temperature (T) and salinity (S), we derive the other variables of the carbonate system (pH and DIC). The experimental setting is first described, and the recent data obtained over the 2013-2015 period are presented. Combined with the 1995-1997
measurements previously published [Hood and Merlivat, 2001], we estimate the decrease of pH and the increase of DIC. The results are discussed with respect to the contributions of the exchange with atmospheric CO$_2$, to the possible impact of vertical mixing and to recent estimates of the transport of anthropogenic carbon from the Atlantic Ocean over a 18-year period.

2 Material and methods

2.1-The BOUSSOLE and DYFAMED sites

Fig.1. The area of the northwestern Mediterranean Sea showing the southern coast of France, the Island of Corsica, the main current branches (gray arrows), and the location of the DYFAMED site (43°25′N, 7°52′E, red star) (http://doi.org/10.17882/43749) and the BOUSSOLE buoy (43°22′N, 7°54′E, black star) in the Ligurian Sea.

Data collection was carried out at the BOUSSOLE site (43°22′N, 7°54′E) in 2013-2015 [Antoine et al., 2008; Antoine. and others, 2006] and at the DYFAMED site (43°25′N, 7°52′E) in 1995-1997 [J.C. Marty et al., 2002]. These sites are 3 nautical miles apart, both located in the Ligurian Sea, one of the basins of the northwestern Mediterranean Sea (Fig.1). The water depth is of ~2400 m. The prevailing ocean currents are usually weak (<20 cm s$^{-1}$), because these sites are in the central area of the cyclonic circulation that characterizes the
Ligurian Sea. The two sites surrounded by the permanent geostrophic Ligurian frontal jet flow are protected from coastal inputs [Antoine et al., 2008; Heimbürger et al., 2013; Millot, 1999]. Monthly cruises are carried out at the same location.

2.2- Analytical methods

At DYFAMED, fCO$_2$ measurements at 2 m were provided by an anchored floating buoy fitted with a CARIOPA sensor. At BOUSSOLE, measurements were carried out from a mooring normally dedicated to radiometry and optical measurements, and onto which two CARIOPA sensors were attached. Both monitored fCO$_2$ hourly at 3 and 10 m depth (although only one of the two depths was equipped with a functional sensor at some periods); S and T were monitored at the same two depths using a Seabird SBE 37-SM MicroCat instrument. The CARIOPA sensors were adapted to work under pressure in the water column. They were swapped about every 6 months, with serviced and calibrated instruments replacing those having been previously deployed. The accuracy of CARIOPA fCO$_2$ measurements by the spectrophotometric method based on the optical absorbance of a solution thymol blue diluted in seawater is estimated at 2 µatm during both periods. Hood and Merlivat [2001] have reported agreement between fCO$_2$ measured by CARIOPA buoys, similar to the one deployed at DYFAMED, with ship based measurements, during a number of field programs, with an accuracy of 2 µatm and a precision of 5 µatm.

At Boussole, newly designed fCO$_2$ sensors have been calibrated using in situ seawater samples taken at 5 and 10 m depth during the monthly servicing cruises to the mooring. The total alkalinity, Alk, and DIC of the samples were determined by potentiometric titration using a closed cell according to the method developed by [Edmond, 1970]. Certified Reference Materials (CRMs) supplied by Dr. A.G. Dickson (Scripps Institution of Oceanography, San Diego, USA) were used for calibration [Dickson et al., 2007]. The accuracy is estimated at 3 µmol kg$^{-1}$ for both DIC and Alk. fCO$_2$ is calculated using the dissociation constants of Mehrbach refitted by Dickson and Millero [Dickson and Millero, 1987; Mehrbach et al., 1973] as recommended by Alvarez et al.[2014] for the Mediterranean Sea. Uncertainty in derived from an individual sample is expected to be on the order of 5 µatm [Millero, 2007]. About 8 samples have been used to calibrate each CARIOPA sensor so that the uncertainty of the absolute calibration of each fCO$_2$ CARIOPA sensor is estimated at 1.8 µatm. In addition, we observe that the standard deviation of the difference between the CARIOPA fCO$_2$ and fCO$_2$ computed with the monthly discrete samples (Fig. 2b) is equal to 4.4 µatm, consistent with the expected precision on CARIOPA fCO$_2$ of 5 µatm. Alk and S of
the 56 samples taken at BOUSSOLE are linearly correlated according the following relationship:

$$\text{Alk (µmol kg}^{-1}\text{)} = 87.647 S - 785.5 \quad (1)$$

The standard deviation of the Alk data around the regression line is equal to 4.4 µmol kg\(^{-1}\) (r\(^2\)=0.89).

3 Results

3.1 The BOUSSOLE mooring (2013-2015) time series

Temperature and fCO\(_2\) were measured from February 2013 to February 2016. All seasons were well represented, with missing data only in May-July 2013. For some periods, simultaneous measurements were made at 3 and 10 m depth (Fig. 2, a, b, c).

Fig.2. Interannual variability of CARIOCA data on the BOUSSOLE mooring: left column, as a function of time, right column as a function of months for a given year (blue, 2013, green, 2014, red, 2015). (a, d) T, (b, e), fCO\(_2\), (c, f) fCO\(_2\)@13°C. On a, b, c, the dotted lines indicate the period affected by stratification and internal waves (July, 26\(^{\text{th}}\) to October 1\(^{\text{st}}\), 2014 and July, 8\(^{\text{th}}\) to October 1\(^{\text{st}}\), 2015). On 2(b), the open circles correspond to fCO\(_2\) data derived from
DIC and alkalinity measurements of samples taken at 5 and 10 m. On 2(e), the thin lines indicate $fCO_{2_{atm}}$. Note that the color code on (d), (e), (f) is different from (a), (b), (c).

The range of temperature (Fig. 2a) extends from 13°C in winter up to 27°C in summer, followed by progressive cooling in fall. The coldest temperature, 13°C, results from the winter vertical mixing with the deeper Levantine Intermediate Water, LIW, marked by extremes in temperature and salinity [Copin-Montegut and Begovic, 2002]. Temperature provides the main control of the seasonality of fCO_2, from 350 µatm to more than 550 µatm in summer 2013 (Fig. 2b). The fugacity of CO$_2$ in seawater is a function of temperature, DIC, alkalinity, salinity and dissolved nutrients. In the oligotrophic surface waters of the Mediterranean Sea, the effect of nutrients may be neglected. Temperature and DIC have the strongest influences. By normalizing fCO_2 to a constant temperature, the temperature effect can be removed and changes in fCO_2 resulting from changes in DIC can be more easily identified. Figure 2c shows the variability of fCO_2 normalized to the constant temperature of 13°C, ($fCO_2@13$), using the equation of Takahashi et al. [1993]. The underlying processes that govern the seasonal variability of $fCO_2@13$ are successively winter mixing, biological activity (organic matter formation and remineralization) and deepening of mixed layer in fall [Begovic and Copin-Montegut, 2002; Hood and Merlivat, 2001]. Biological processes account for the decline in $fCO_2@13$ observed from March-April to late summer; the ensuing increase of surface $fCO_2@13$ is associated with the deepening of the mixed layer in the fall or convection in winter as the vertical distribution of $fCO_2@13$ at DYFAMED shows a maximum in the 50-150 m layer where a large remineralization of organic matter occurs, the productive layer being mostly between 0 and 40 m [Copin-Montegut and Begovic, 2002]. The contribution of air-sea exchange is not significant [Begovic and Copin-Montegut, 2002]. Over the period 2013-2015, the air-sea CO$_2$ flux from the atmosphere to the ocean surface is equal to -0.45 mol m$^{-2}$ yr$^{-1}$.

During summer 2014, large differences between measurements at 3 and 10 m were observed (Fig. 2, a, b, c between dashed lines). A detailed analysis of the temporal variability during that period underscores the role of inertial waves at the frequency of 17.4 hours that create the observed differences between the 2 depths of observations, the deeper waters being colder and enriched in $fCO_2@13$. T and $fCO_2@13$ variability is dominated by inertial waves. In particular, from 15 to 26 of August 2014, the difference in T between the two depths is as large as 7.6°C, and 5.1°C on average. fCO_2 decreases on average by 32.7 µatm corresponding to an increase of $fCO_2@13$ equal to 42.8 µatm.
The 2013-2015 seasonal and inter-annual variability of T, fCO₂ and fCO₂@13 is illustrated on Fig. 2, d, e, f. The larger interannual changes in temperature (Fig.2, d) are observed during summer, both at 3 m and 10 m depth, while over February and March, a constant value of 13°C is observed as the result of vertical mixing with the LIW. A very large inter-annual variability of fCO₂@13 is observed for T<14°C (Fig. 2,f). This is associated with the winter mixing at the mooring site, which is highly variable from year to year. Winter mixed-layer depth, MLD, varies between 50 and 160 m, at the top of the LIW over the 2013-2015 period [Coppola et al., 2016]. The variable depth of the winter vertical mixing causes the difference in fCO₂@13 as fCO₂ increases with depth [Copin-Montegut and Begovic, 2002]. The deepening of MLD is driven by episodic and intense mixing processes characterized by a succession of events lasting several days, related to atmospheric forcing [Antoine et al., 2008] which lead to increase in fCO₂@13. Figure 2,e illustrates the solubility control of the variability of fCO₂ as fCO₂ increases when T increases. Another cause of inter-annual variability of fCO₂ for T~14°C is the timing of the spring increase of biological activity which differs by a month between years; for instance, it happened at the beginning of April in 2013, T~15-16°C and by mid March in 2014, T~14°C. Another cause is the deepening of the mixed layer due to the fall cooling which varies by a month between years.

3.2 Decadal changes of hydrography

3.2.1 Sea surface temperature changes

Monthly mean values of temperature have been computed for the two three-year periods, 1995-1997 and 2013-2015. In 1995-1997, fCO₂ and T at 2 m were measured with CARIJOCA sensors installed on a buoy at DYFAMED [Hood and Merlivat, 2001]. The mean annual temperature of hourly CARIJOCA data is equal to 18.21°C. For 2013-2015, temperature measurements made on the BOUSSOLE mooring at 3 and 10 meters have been used. For the April to September time interval, there are only data at 3m depth. In addition, temperature data measured half hourly at 0.7 m at a nearby meteorological buoy (43°23’N, 7°50’E) (http://www.meteo.shom.fr/real-time/html/DYFAMED.html) have been used (Fig.3d). Mean annual temperatures are equal to 18.29°C and 17.97°C respectively, based on the meteorological buoy and the BOUSSOLE mooring data. The two sets of data differ essentially during July and August, with the temperatures at 3 m being colder than at 0.7 m, indicating a thermal gradient between the two depths during summer. Therefore, for 2013-

2015, we select the mean annual value computed with the meteorological buoy, 18.29°C, as better representing the sea surface. This value is close to 18.21°C computed for 1995-1997. Then, no significant change of SST is found between the 2 decades, with a mean value equal to 18.25°C.

3.2.2 Sea surface salinity changes

The mean value of salinity and the standard error of the mean computed from 56 samples taken at BOUSSOLE in 2013-2015 are respectively 38.19 and 0.02. In 1998-1999, ship measurements of surface salinity were made during monthly cruises at the DYFAMED site [Copin-Montégut et al., 2004]. The mean salinity and the standard error of the mean of this set of 19 data are respectively 38.21 and 0.03. Thus, there is no significant salinity change between the two decades.

3.3 Decadal changes of fCO\(_2\)@13

3.3.1 Time series of fCO\(_2\)@13 in 1995-1997 and 2013-2015

The two time series of high frequency data were analyzed in order to quantify the change of fCO\(_2\)@13 at the sea surface two decades apart. To account for the interannual seasonal variability as well as irregular sampling, we performed an analysis of the change of fCO\(_2\)@13 as a function of SST (Fig. 3, a and b). For the 2013-2015 data set, we excluded summer data measured at 10 m depth as they were not representative of the surface mixed layer due to a strong stratification. Much larger fCO\(_2\)@13 values are observed at low temperature than at high temperature, the decrease being similar for the two studied periods and strongly non linear. As described in section 3.1, large values at low temperature result from mixing with enriched deep waters during winter, and low values for 26°C-28°C temperatures occur at the end of summer after biological drawdown of carbon. An increase of fCO\(_2\)@13 between the 2 periods is evident across the range of temperatures.
Fig. 3. (a) $fCO_2@13$ as a function of temperature for hourly data in 2013, 2014 and 2015. The yellow dots indicate mean $fCO_2@13$. (b) as in (a) but for all hourly data in 1995-1997 (black) and in 2013-2015 (red). (c) as in (b), but for average values per 1°C interval (standard deviation as dotted line). The difference between the two periods is also displayed (dashed blue curve, scale on the right axis; the mean difference over all SST is represented by the horizontal blue line). (d) Mean monthly sea surface temperature for 1993-1995 (black curve; CARIOCA sensors), 2013-2015 (green; CARIOCA sensors), 2013-2015 (red, meteorological buoy). Corresponding mean annual values are indicated by dotted lines.

3.3.2 Trend analysis and statistics

To quantify the change of $fCO_2@13$ between the two data sets, we proceed as follows: data are binned by 1°C temperature intervals, thereby removing any potential seasonal weighting, especially towards the 13-14°C winter months temperature. The measurements made in this temperature interval represent about 25% of the total number of data for both periods. For each of the fourteen 1°C step, the mean and standard deviation of hourly $fCO_2@13$ measurements are reported in Table 1 and on Fig. 3c. The mean temperature within each 1°C step differ for the two periods as the distribution of individual measurements are not identical.
For both data sets, a monotonic relationship between $fCO_2@13$ and T is observed with correlation coefficients respectively equal to -0.861 and -0.857. The difference in $fCO_2@13$ between the two periods, $dfCO_2@13$, is derived in each temperature step, as the difference between column 2 and 6 of Table 1. The variability of this difference is estimated as the quadratic mean of the standard deviation in each time series. Both values are reported in Table 1, column 9 and 10, and on Fig. 3c. The distribution of each $dfCO_2@13$ values around the mean over all SST of $dfCO_2@13$ seems random and indicates no trend dependency with SST (Fig. 3c). This suggests that the processes which control the seasonal variation of $fCO_2@13$ at the sea surface have not changed over the last two decades.

We have estimated the uncertainties in the estimates of the difference $dfCO_2@13$ with 2 methods. Firstly, the arithmetic mean of $dfCO_2@13$ is equal to 33.17 μatm, with a standard deviation, SD, and standard error, SE, respectively equal to 6.29 μatm and 1.68 μatm. A 95% confidence interval is thereby achieved within $1.96 \times SE$, i.e 3.29 μatm. A second approach consists of computing a weighted average of the mean of $dfCO_2@13$. In this case, mean weighted value of $dfCO_2@13$ over the whole range of temperature is estimated, the weights being equal to the variance of $dfCO_2@13$ in each temperature step. It is equal to 32.70 μatm. The weighted SD, and the associated SE, of the 14 data points are respectively equal to 4.85 μatm and 1.30 μatm. A 95% confidence interval is achieved within 2.54 μatm. The difference between the two mean $dfCO_2@13$ estimates is 0.47 μatm, well below SE. In the following, we have chosen the former method.
Table 1:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>dfCO2@13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>deviation µatm</td>
</tr>
<tr>
<td>T¹ °C</td>
<td>fCO2@13 µatm</td>
<td>N</td>
</tr>
<tr>
<td>13.45</td>
<td>331.58</td>
<td>1212</td>
</tr>
<tr>
<td>14.45</td>
<td>305.28</td>
<td>495</td>
</tr>
<tr>
<td>15.37</td>
<td>281.54</td>
<td>447</td>
</tr>
<tr>
<td>16.44</td>
<td>274.43</td>
<td>182</td>
</tr>
<tr>
<td>17.58</td>
<td>275.54</td>
<td>190</td>
</tr>
<tr>
<td>18.47</td>
<td>277.34</td>
<td>300</td>
</tr>
<tr>
<td>19.62</td>
<td>265.43</td>
<td>342</td>
</tr>
<tr>
<td>20.50</td>
<td>258.08</td>
<td>529</td>
</tr>
<tr>
<td>21.56</td>
<td>271.15</td>
<td>239</td>
</tr>
<tr>
<td>22.49</td>
<td>250.75</td>
<td>742</td>
</tr>
<tr>
<td>23.57</td>
<td>252.22</td>
<td>320</td>
</tr>
<tr>
<td>24.41</td>
<td>245.85</td>
<td>506</td>
</tr>
<tr>
<td>25.50</td>
<td>250.06</td>
<td>215</td>
</tr>
<tr>
<td>26.42</td>
<td>256.29</td>
<td>279</td>
</tr>
</tbody>
</table>

T¹ °C	fCO2@13 µatm	N	standard deviation µatm
13.55	363.14	6869	18.07
14.43	337.16	3270	16.65
15.57	321.10	3112	11.09
16.42	313.79	1818	11.09
17.56	306.83	1528	14.65
18.45	296.57	2621	10.95
19.41	291.84	1406	13.45
20.50	293.16	1135	18.21
21.54	297.96	2385	18.57
22.49	290.27	2385	18.57
23.47	296.92	747	21.77
24.40	280.44	959	14.82
25.53	284.05	456	14.81
26.29	286.71	249	11.23

3.4 Changes of seawater carbonate chemistry in surface waters

We estimated the DIC and pH changes related to the increase of fCO₂@13 measured at the sea surface 18 years apart, assuming a mean salinity equal to 38.2, a mean alkalinity equal to 2562.3 µmol kg⁻¹ following equation (1), and a mean in situ temperature, T, equal to 18.25°C. The dissociation constants of Mehrbach refitted by Dickson and Millero [Dickson and Millero, 1987; Mehrbach et al., 1973] were used. pH is calculated on the seawater scale.
The uncertainty of dfCO2@13, 3.3µatm, has been propagated to compute the combined uncertainty in dDIC and dpH\textsubscript{SWS}. The uncertainties in the equilibrium constants are neglected in this propagation of uncertainties. Likewise, an implicit assumption is that there is no systematic error on DIC and pH\textsubscript{SWS} derived from fCO2@13 between the two time periods; in particular, mean temperature and salinity remain the same (section 3.2). This is further discussed in section 4.1. We compute an increase of DIC, dDIC, equal to 25.2+/-2.7 µmol kg-1 (1.40+/-0.15 µmol kg-1 yr-1) and the decrease of pH\textsubscript{SWS}, dpH\textsubscript{SWS} equal to -0.0397+/-0.0042 pH\textsubscript{SWS} (-0.0022+/-0.0002 pH\textsubscript{SWS} yr-1) (Table 2).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
 & d fCO\textsubscript{2}* @ 13 & d fCO\textsubscript{2}* @ T & d DIC* & d pH\textsubscript{SWS} & dfCO\textsubscript{2}@T & d pH\textsubscript{SWS} \\
 & µatm & µatm & µmolkg-1 & pH unit & annual µatm yr-1 & annual pH unit yr-1 \\
\hline
sea surface & 33.2 & 41.4 & 25.2 & -0.0397 & 2.30 & 1.40 \\
& +/-3.3 & +/-4.1 & +/-2.7 & +/-0.0042 & +/-0.23 & +/-0.15 \\
& & & & & & -0.0022 \\
& & & & & & +/-0.0002 \\
\hline
atmosphere & 34.3 & **20.8 & 1.91 & 1.15 & & \\
Lampedusa data & & +/2.3 & +/-1.3 & +/-0.13 & +/-0.07 & \\
\hline
dfCO\textsubscript{2}@T\textsubscript{ant}/dfCO\textsubscript{2}@T\textsubscript{sea} & 0.83 & 0.83 & & & & \\
& +/-0.10 & +/-0.09 & & & & \\
\hline
\end{tabular}
\caption{Table 2}
\end{table}

T, mean annual temperature equal to 18.25°C

**, dDIC\textsubscript{ant}

***dpH\textsubscript{SWS} computed at T

3.5 Changes in atmospheric and seawater fCO2

The increase of atmospheric fCO\textsubscript{2} from 1995-1997 to 2013-2015 was computed from monthly atmospheric xCO\textsubscript{2} concentrations measured at the Lampedusa Island station (Italy) (35°31’N, 12°37’E) (http://ds.data.jma.go.jp/gmd/wdcgg/) (see equation 3 in [Hood and Merlivat, 2001]). Considering a mean annual in situ temperature equal to 18.25°C and an atmospheric pressure of 1 atm, we derived a mean atmospheric fCO\textsubscript{2} equal to 355.3+/-0.8 µatm for 1995-1997 and 389.6+/-0.9 µatm for 2013-2015, that is an increase of 34.3+/-2.3 µatm (95% confidence interval) (Table 2). At this temperature, the change of fCO\textsubscript{2} at the sea surface is 41.4+/-4.1 µatm. Thus the contribution of the increase in atmospheric CO\textsubscript{2} is...
responsible for 84+/−5 % of the increase of fCO$_2$ measured in the surface waters. With the same salinity and alkalinity as previously, the corresponding change in surface DIC, assuming air-sea equilibrium, would be 20.8+/− 1.3 µmol kg$^{-1}$ (Table 2).

4 Discussion

4.1 Time change of surface alkalinity

High frequency measurements of fCO$_2$ and temperature over 2 periods of 3 years, 2 decades apart, have allowed the computation of an increase of DIC equal to 25.1+/−2.3 µmol kg$^{-1}$ assuming no change of alkalinity. In the range of salinity of the BOUSSOLE samples, 37.9 to 38.5, the alkalinity values computed with Eq (1) are larger than those predicted by the relationship established for the DYFAMED site, with a mean difference equal to 10+/−2 µmol kg$^{-1}$ [Copin-Montegut and Begovic, 2002]. In both cases alkalinity measurements were made with a potentiometric method using certified reference material supplied by A.G. Dickson for calibration. It is difficult to identify the cause for a possible change of alkalinity between the 2 periods, 18 years apart, while no salinity change has been observed. At a coastal site 50 km away from DYFAMED, Kapsenberg et al. [2017] have measured an increase of alkalinity unrelated to salinity over the period from 2007 to 2015. They attribute it to changes in freshwater inputs from land. However, based on data from Coppola et al. [2016], alkalinity in the upper 50m at DYFAMED did not change significantly from 2007 through 2014 (3.204 µmol kg$^{-1}$, P=0.0794, r^2=0.08). Thus, we cannot conclude on whether the difference observed at DYFAMED/BOUSSOLE between the two periods is real or an artifact of measurement techniques. As a sensitivity test, we compute the expected changes of DIC and pH from 1995-1997 to 2013-2015 for a mean alkalinity increase of 10 µmol kg$^{-1}$: we get annual changes, dDIC=+0.46 µmol kg$^{-1}$ yr$^{-1}$ and dpH=−0.0001 pH unit yr$^{-1}$, which are well below errors estimated in section 3.4. Hence, such a change in alkalinity does not significantly affect the increase of DIC and the decrease of pH shown in Table 2.

4.2 Drivers of the temporal change of DIC in surface waters

The increase in sea surface DIC from 1995-1997 to 2013-2015 is 25.2+/−2.7 µmol kg$^{-1}$ (Table 2) whereas the expected contribution due to ocean uptake of anthropogenic CO$_2$ is 20.8+/−1.3 µmol kg$^{-1}$. In order to interpret the difference between these two values, we examine potential changes that may result from interannual variability in local physical and biological processes or anthropogenic carbon invasion from lateral advection of Atlantic waters.

4.2.1 Natural variability
Time series of the mixed layer depth, MLD, show a strong variability in winter at interannual scale. During the two periods, 1995-1997 and 2013-2015, the winter MLD never exceeded 220 m, whereas values over 300 m were observed in 1999 and especially in February and March 2006 with values close to 2000 m [Coppola et al., 2016; Pasqueron de Fommervault et al., 2015]. These episodes of strong and deep vertical mixing must have entrained DIC-rich LIW in the surface waters. This entrainment could be causing an increase in DIC between the 1995-1997 and 2013-2015 periods. Monthly surface samples collected at the Dyfamed time series station between 1998 and 2013 indicate an increasing DIC trend of 1.35 µmol kg⁻¹ yr⁻¹. This value is known with great uncertainty ($r^2 = 0.05$) because of the large seasonal variability displayed in the monthly samples [Gemayel et al., 2015]. Nevertheless, this value is closer to the trend we calculated between the two periods, 1993-1995 and 2013-2015 (1.40 µmol kg⁻¹ yr⁻¹) than to the trend inferred from the atmospheric increase (1.15 µmol kg⁻¹ yr⁻¹). On DYFAMED time series, we find no evidence that the strong increase in MLD observed during winters 1999 and especially 2006 resulted in a further increase in DIC.

The monthly cruises of the Dyfamed time-series study have also been analyzed in order to investigate the hydrological changes and some biological consequences over the period 1995-2007 [J. C. Marty and Chiavérini, 2010]. These authors show that extreme convective mixing events such as recorded in 1999 and 2006 are responsible for large increases in nutrient content in surface layers and conclude that the biological productivity is increasing especially during the 2003-2006 period, which could lead to a larger consumption of carbon, i.e. a decrease of DIC.

4.2.2 Anthropogenic carbon exchange through the Strait of Gibraltar.

The concentration of oceanic anthropogenic carbon, C_{ant}, is not a directly measurable quantity. To estimate it, several empirical methods have been developed. Flecha et al. [2012] computed the anthropogenic carbon inventory in the Gulf of Cadiz. They used observations made during a cruise in October 2008 throughout the oceanic area covered by the Gulf of Cadiz and the Strait of Gibraltar to estimate C_{ant} with 3 methods: ΔC^* [Gruber et al., 1996], TrOCA [F Touratier and Goyet, 2004; F. Touratier et al., 2007], φC_T^0 [Vazquez-Rodriguez et al., 2009]. In the 3 cases, their results indicate a net import of C_{ant} from the Atlantic towards the Mediterranean through Gibraltar.

Schneider et al. [2010], using the transit time distribution method applied to a dataset of a Mediterranean cruise in 2001, estimated a net anthropogenic carbon flux across the Strait of Gibraltar into the Mediterranean Sea of 3.5 Tg C yr⁻¹. Over the whole period from 1850 to 2001, this contribution of C_{ant} represents almost 10% of the total C_{ant} inventory of the
Mediterranean Sea. Accordingly, about 90% must have been taken directly by equilibrium with atmospheric CO$_2$. Based on a high-resolution regional model, Palmieri et al. [2015] computed the anthropogenic carbon storage in the Mediterranean basin. They concluded that 75% of the total storage of C$_{ant}$ in the whole basin comes from the atmosphere and 25% from net transport from the Atlantic through the Strait of Gibraltar. The findings of these two studies support our estimated change of DIC of (17+/-10) % in addition to the direct contribution of air-sea exchange suggesting that it could result from the anthropogenic carbon input from the Atlantic Ocean towards the Mediterranean basin.

Huertas et al. [2009] and Schneider et al. [2010] report DIC$_{ant}$ surface concentrations respectively equal to 65-70 µmol kg$^{-1}$ at the Strait of Gibraltar in the years 2005-2007 and close to 65 µmol kg$^{-1}$ in the western basin in 2001. We extrapolate these figures to the year 2014, assuming a mean increase rate of DIC equal to 1.4 µmol kg$^{-1}$yr$^{-1}$ as previously computed (Table 2). Taking into account the increase of DIC$_{ant}$ equal to 25.2 µmol kg$^{-1}$ between 1995-1997 and 2013-2015, we estimate that the contribution of the change of DIC$_{ant}$ over the last 18 years represents ~30% of the total change since the beginning of the industrial period (t~1800).

4.3 Long-term trends in surface DIC and pH

The annual changes of DIC and pH$_{SWS}$ calculated between 1995-1997 and 2013-2015 are respectively equal to 1.40 +/-0.15 µmol kg$^{-1}$ and -0.0022 +/-0.0002. At the DYFAMED site, at 10 m, Marcellin Yao et al. [2016] studied the time variability of pH over 1995-2011, based on measurements of T, S, Alk and DIC sampled approximately once a month. They computed a mean annual decrease of -0.003 ± 0.001 pH units on the seawater scale that is not significantly different from our estimate. For the global surface ocean, Lauvset et al. [2015] have reported a mean rate of decrease of pH, -0.0018 +/-0.0004 for 1991-2011. This value is also within the limits of uncertainty of the pH change computed in our study.

Bates et al. [2014] examined changes in surface seawater CO$_2$-carbonate chemistry at the locations of seven ocean CO$_2$ time series that have been gathering sustained observations from 15 to 30 years with monthly or seasonal sampling. Six stations are located in the Atlantic and Pacific oceans in a latitudinal band between 10° N and 68°N. The range of increasing and decreasing annual trends of DIC and pH extends from 0.93 +/-0.24 to 1.89 +/-0.45 µmol kg$^{-1}$yr$^{-1}$ and -0.0014 +/-0.0005 to -0.0026 +/-0.0006 respectively. The Revelle factor of surfaces waters vary from 9-10 in the low latitude to 12-15 in the subpolar time series sites, with higher Revelle factor values reflecting reduced capacity to absorb atmospheric CO$_2$. The
data show that the increase of DIC is not only controlled by the buffer capacity of the water but also compounding effects of changes in physical factors as strengthening of winter mixing or larger air-sea uptake [Olafson et al., 2010].

The increase of DIC computed at DYFAMED is in the upper range of values reported at the other time series. A low Revelle factor, close to 10, characterizes the Mediterranean Sea because of its warm and high-alkalinity waters. Moreover, as the result of a relatively short deep water renewal time estimated to be 20-40 years in the western basin [Schneider et al., 2010], the waters of the Mediterranean Sea have a relatively high capacity to absorb anthropogenic CO₂ from the atmosphere and transport it to depth.

The calculated decrease of pH in surface water at DYFAMED and in the global ocean are quite similar, despite the higher alkalinity of the Mediterranean Sea. Thermodynamic equilibrium calculations have highlighted the alkalinity effect on the anthropogenic acidification of the Mediterranean Sea [Palmieri et al., 2015]. Their results show that, notwithstanding a higher total alkalinity, the average anthropogenic change in surface pH of the Mediterranean Sea does not differ significantly from that of the global average ocean.

5 Conclusion

High-frequency ocean fCO₂ measurements made by CARIOCA sensors have been used to calculate trends in fCO₂, DIC and pH over a period of two decades notwithstanding a short-time and natural seasonal variability of these properties at the sea surface. We have estimated a large change of sea surface carbonate chemistry, an increase of DIC and a decrease of pH. The computed increase of DIC is larger than the change expected from chemical equilibrium with atmospheric CO₂. This could be the result of a strong interannual variability of the winter mixing as observed between the two periods 1993-1995 and 2013-2015. Likewise, our results support modeling work and analysis of vertical profiles measurements that suggest that the Atlantic Ocean contributes a substantial amount of anthropogenic carbon to the Mediterranean basin, (17+/10) %, which lies between the estimates of 10% by Schneider et al. [2010] and 25% by Palmieri et al. [2015].

Data availability: Time series data from Dyfamed (19951997) are available in the SOCAT v3 database. Boussole data (2013-2015) will be available in SOCAT v6.

Acknowledgments

Seawater samples were analyzed for DIC and Alk by the SNAPO-CO₂ at LOCEAN in Paris.
The CO2Sys toolbox of [Pierrot et al., 2006] has been used for the calculations of DIC and pH. The adaptation of CARIOCA sensors to high pressure has been supported by the BIO-optics and CARbon EXperiment (BIOCAREX) project, funded by the Agence Nationale de la Recherche (ANR,Paris). We are grateful for helpful comments from Gilles Reverdin and the reviewers on the manuscript. Many thanks to Laurent Coppola who kindly provided additional MLD data at Dyfamed.

References

Antoine, D., F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott (2008), Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project), Journal of Geophysical Research, 113(C7).

Copin-Montegut, C., and M. Begovic (2002), Distributions of carbonate properties and oxygen along the water column (0–2000 m) in the central part of the NW Mediterranean Sea (Dyfamed site): influence of winter vertical mixing on air–sea CO2 and O2 exchanges, Deep-Sea Research II 49, 2049-2066.

Table 1:

Distribution of temperature, fCO$_2$@13, and increase dfCO$_2$@13 data binned by 1°C temperature interval for the 2 periods 1995-1997 and 2013-2015.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 °C</td>
<td>fCO$_2$@13 µatm</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.45</td>
<td>305.28</td>
<td>495</td>
</tr>
<tr>
<td>15.37</td>
<td>281.54</td>
<td>447</td>
</tr>
<tr>
<td>16.44</td>
<td>274.43</td>
<td>182</td>
</tr>
<tr>
<td>17.58</td>
<td>275.54</td>
<td>190</td>
</tr>
<tr>
<td>18.47</td>
<td>277.34</td>
<td>300</td>
</tr>
<tr>
<td>19.62</td>
<td>265.43</td>
<td>342</td>
</tr>
<tr>
<td>20.50</td>
<td>258.08</td>
<td>529</td>
</tr>
<tr>
<td>21.56</td>
<td>271.15</td>
<td>239</td>
</tr>
<tr>
<td>22.49</td>
<td>250.75</td>
<td>742</td>
</tr>
<tr>
<td>23.57</td>
<td>252.22</td>
<td>320</td>
</tr>
<tr>
<td>24.41</td>
<td>245.85</td>
<td>506</td>
</tr>
<tr>
<td>25.50</td>
<td>250.06</td>
<td>215</td>
</tr>
<tr>
<td>26.42</td>
<td>256.29</td>
<td>279</td>
</tr>
</tbody>
</table>
Table 2

Seasonally detrended long term and annual trends of seawater carbonate chemistry and atmosphere composition.

<table>
<thead>
<tr>
<th></th>
<th>Δ fCO$_2$ @ 13 µatm</th>
<th>Δ fCO$_2$ @ T µatm</th>
<th>Δ DIC * µmol kg$^{-1}$</th>
<th>Δ pH$_{sws}$ *** pH unit</th>
<th>ΔfCO$_2$ @ T annual µatm yr$^{-1}$</th>
<th>Δ DIC annual µmol kg$^{-1}$ yr$^{-1}$</th>
<th>Δ pH$_{sws}$ annual pH unit yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sea surface</td>
<td>33.2 +/- 3.3</td>
<td>41.4 +/- 4.1</td>
<td>25.2 +/- 2.7</td>
<td>-0.0397 +/- 0.0042</td>
<td>2.30 +/- 0.23</td>
<td>1.40 +/- 0.15</td>
<td>-0.0022 +/- 0.0002</td>
</tr>
<tr>
<td>atmosphere Lampedusa data</td>
<td>34.3 +/- 2.3</td>
<td>**20.8 +/- 1.3</td>
<td>1.91 +/- 0.13</td>
<td>1.15 +/- 0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔfCO2@T${sea}$/dfCO2@T${sea}$</td>
<td>0.83 +/- 0.10</td>
<td>0.83 +/- 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T, mean annual temperature equal to 18.25°C

**, dDIC$_{ant}$

***, dpH$_{sws}$ computed at T
Figure 1. Fig.1. The area of the northwestern Mediterranean Sea showing the southern coast of France, the Island of Corsica, the main current branches (gray arrows), and the location of the DYFAMED site (43°25′N, 7°52′E, red star) (http://doi.org/10.17882/43749) and the BOUSSOLE buoy (43°22′N, 7°54′E, black star) in the Ligurian Sea.
Fig. 2. Interannual variability of CARILOCA data on the BOUSSOLE mooring: left column, as a function of time, right column as a function of months for a given year (blue, 2013, green, 2014, red, 2015). (a, d) T, (b, e), fCO$_2$, (c, f) fCO$_2@13^\circ$C. On a, b, c, the dotted lines indicate the period affected by stratification and internal waves (July, 26th to October 1st, 2014 and July, 8th to October 1st, 2015). On 2(b), the open circles correspond to fCO$_2$ data derived from DIC and alkalinity measurements of samples taken at 5 and 10 m. On 2(e), the thin lines indicate fCO$_{2\text{atm}}$. Note that the color code on (d), (e), (f) is different from (a), (b), (c).
Fig. 3. (a) $f\text{CO}_2@13$ as a function of temperature for hourly data in 2013, 2014 and 2015. The yellow dots indicate mean $f\text{CO}_2@13$. (b) as in (a) but for all hourly data in 1995-1997 (black) and in 2013-2015 (red). (c) as in (b), but for average values per 1°C interval (standard deviation as dotted line). The difference between the two periods is also displayed (dashed blue curve, scale on the right axis; the mean difference over all SST is represented by the horizontal blue line). (d) Mean monthly sea surface temperature for 1993-1995 (black curve; CARIOCA sensors), 2013-2015 (green; CARIOCA sensors), 2013-2015 (red, meteorological buoy). Corresponding mean annual values are indicated by dotted lines.