A remote sensing-based biophysical model for daily estimations of evapotranspiration and CO₂ uptake in high-energy water-limited environments

David Helman¹,²⁺, Itamar M Lensky³, Yagil Osem³, Shani Rohatyn⁴, Eyal Rotenberg⁴ and Dan Yakir⁴

¹ Department of Geography and Environment, Bar Ilan University, Ramat Gan 52900, Israel
² Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
³ Department of Natural Resources, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
⁴ Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel

⁺Corresponding author:
David Helman (dh565@cam.ac.uk; davidhelman.biu@gmail.com)

Department of Geography, Bar-Ilan University, Ramat Gan 52900
Israel.

Tel: +972 3 5318342
Fax: +972 3 5344430
Abstract

Estimations of ecosystem-level evapotranspiration (ET) and CO₂ uptake in water-limited environments are scarce and scaling up ground-level measurements is not straightforward. A biophysical approach using remote sensing (RS) and meteorological data (RS-Met) is adjusted to extreme high-energy water-limited ecosystems that suffer from continuous stress conditions to provide daily estimations of ET and CO₂-uptake (measured as gross primary production – GPP) at a spatial resolution of 250-m. The RS-Met was adjusted using a seasonal water deficit factor (fWD) based on daily rainfall, temperature and radiation data. We validated our adjusted RS-Met with eddy-covariance flux measurements using a newly developed mobile lab system and the single active Fluxnet station operating in this region (Yatir pine forest station) in a total of seven forest and non-forested sites across a climatic transect in Israel (280-770 mm y⁻¹). RS-Met was also compared to the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS)-based ET and GPP products (MOD16 and MOD17, respectively) in these sites.

Results show that the inclusion of the fWD significantly improved the model, with R² = 0.64-0.91 for the ET adjusted model (compared to 0.05-0.80 of the non-adjusted model) and R² = 0.72-0.92 for the adjusted GPP model (compared to R² = 0.56-0.90 of the non-adjusted model). The RS-Met (with the fWD) successfully tracked observed changes in ET and GPP between dry and wet seasons across the sites, ET and GPP estimates from the adjusted RS-Met also agreed well with eddy covariance estimates at the annual timescale in the Fluxnet station of Yatir (266±61 vs. 257±58 mm y⁻¹ and 765±112 vs. 748±124 gC m⁻² y⁻¹ for ET and GPP, respectively). Comparison with MODIS products showed consistently lower estimates from the MODIS-based models, particularly at the forest sites. Using the adjusted RS-Met, we show that afforestation significantly increased the water use efficiency (the ratio of carbon uptake to ET) in this region, with the positive effect decreasing when moving from dry to more humid environments, strengthening the importance of drylands afforestation. This simple but yet robust biophysical approach shows a promise for reliable ecosystem-level estimations of ET and CO₂ uptake in extreme high-energy water-limited environments.

Keywords: CO₂; ET; GPP; MODIS; NDVI; water deficit; water stress

Moved (insertion) [2]

Moved up [2]: in seven forest and non-forested sites across a climatic transect in Israel (280-770 mm y⁻¹).

The RS-Met models were used with and without the addition of a seasonal drought stress factor (fWDₗ), which was based on daily rainfall, temperature and radiation data.

The RS-Met models with the inclusion of the fWD were compared to the non-fWD models (r² = 0.06 and r² = 0.01 for ET and GPP, respectively).

This

Deleted: seasonal

Deleted: ETₑₑ euler e
Assessing the water use and carbon uptake in terrestrial ecosystems is important for monitoring biosphere responses to climate change (Ciais et al., 2005; Jung et al., 2010; Reichstein et al., 2013). Accurate estimations of evapotranspiration (ET) and gross primary production (GPP), as a measure of the CO₂ uptake, usually require the integration of extensive meteorological, flux and field-based data (e.g., Wang et al., 2014; Kool et al., 2014). However, scaling up field-based measurements to the ecosystem level is not straightforward and require the use of complex models (Way et al., 2015).

Currently, the eddy covariance (EC) technique is the most direct method for measuring carbon and water vapor fluxes at the ecosystem level (Baldocchi, 2003). The EC approach benefits from continuous temporal coverage; currently (April, 2017), there are more than 560 active EC sites across the globe, as part of the Fluxnet program (http://fluxnet.ornl.gov).

However, there are also some practical and technical limitations. The EC measurement is representative of a relatively small area (<2 km²), and the application of the EC approach is limited to relatively homogeneous and flat terrains. Additionally, most EC towers are concentrated in the US, Europe and Asia, with poor coverage in water-limited regions, such as North Africa and the Eastern Mediterranean (Schimel et al., 2015).

Remote-sensing-based models (RS models) have been used to overcome some of the limitations of EC, complementing the information derived from the flux towers. In contrast to process-driven models, RS models benefit from continuous, direct observation of the Earth’s surface, acquiring data at a relatively high spatial resolution and with full regional to global coverage. Many RS models for the estimation of ET and GPP exist (see review in Kalma et al., 2008), but these algorithms are too complex and most of the models are not provided as accessible products for researchers outside the remote sensing community. Particular exceptions are the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS)-based ET and GPP products (MOD16 and MOD17), which provide 8-day ET and GPP estimates at 1-km for 2000-2015, globally (Mu et al., 2007, 2011, Running et al., 2000, 2004).

In the past decade, several simple biophysical ET and GPP models based on vegetation indices (from satellite data) have emerged, offering assessment at a relatively high-to-moderate spatial and temporal resolutions with an acceptable accuracy (i.e. daily estimates at 250 m, see e.g. Vrouastle et al., 2002; Sims et al., 2008; Maselli et al., 2009, 2014; and...
review of ET models in Glenn et al., 2010). One of those models is the ET model based on the FAO-56 formulation (Allen et al., 1998). The FAO-56 formulation states that the actual ET of irrigated crops can be determined from the reference ET (ET₀) corrected with crop coefficient Kc values (see Eq. 2). The Kc varies mainly with specific plant species characteristics, which enables the transfer of standard Kc values among locations and environments (Allen et al., 2006).

The remote-sensing version of this formulation uses a function of satellite-derived vegetation index, usually the normalized difference vegetation index (NDVI), as a substitute for the crop coefficient. Being a measure of the green plant biomass and the ecosystem leaf area, the NDVI is often used as a surrogate for plant transpiration and rainfall interception capacity (Glenn et al., 2010). Additionally, the NDVI is closely related to the radiation absorbed by the plant and to its photosynthetic capacity (Gamon et al., 1995). However, the direct detection, through NDVI, of the abovementioned parameters at a seasonal timescale is still challenging and usually requires additional meteorological information (Helman et al., 2015a). The RS model based on the FAO-56 formulation combines the two sources of information, satellite and meteorological, providing a daily estimation of actual ET. This model, originally proposed for croplands and other managed vegetation systems (Allen et al., 1998; Glenn et al., 2010), was recently adjusted for applications in natural vegetation systems (Maselli et al., 2014).

For the estimation of GPP, a simple but robust biophysical GPP model is the one based on the radiation use efficiency (RUE) model proposed by Monteith (1977). The classical Monteith-type model depends on the absorbed radiation and on the efficiency of the vegetation at converting this radiation into carbon-based compounds. Accordingly, this Monteith-based model is driven by radiation and temperature data, acquired from meteorological stations, and by the fraction of absorbed photosynthetically active radiation (fAPAR), which can be calculated from the satellite-derived NDVI or EVI. A major challenge in this model, however, is the estimation of the RUE, a key component of the model, which usually depends on plant species type and environmental conditions. Currently, the conventional procedure is to use a plant-species-dependent maximum RUE from a lookup table and adjust it for seasonal changes using some sort of a factor that changes throughout the season based on meteorological data (Running et al., 2004; Zhao and Running, 2010).

Though simple, both ET and GPP models (hereafter RS-Met) were shown to be promising in accurately assessing daily ET and GPP at a relatively high spatial resolution (<1 km).
(Helman et al., 2017; Maselli et al., 2014, 2006; Veroustraete et al., 2002). However, the use of the RS-Met is limited to ecosystems under normally non-stressful conditions because there is no accurate representation of water availability in these models. Recently, the incorporation of a water-deficit factor (f_{WD}) in these models was proposed by Maselli et al. (2009, 2014), adjusting for short-term stress conditions in water-limited natural ecosystems. The proposed f_{WD} is based only on daily rainfall data and daily potential ET calculated from temperature and/or incoming radiation. The RS-Met with the addition of the f_{WD} was successfully validated against EC-derived estimates of ET and GPP in several sites in Italy (Maselli et al., 2014, 2009, 2006).

However, the RS-Met approach has never been tested in extreme high-energy water-limited environments such as those in the Eastern Mediterranean. Currently, there is only one active Fluxnet station in the entire Eastern Mediterranean (Yatir forest, southern Israel; Fig. 1a) that measures water vapor and carbon fluxes (since 2000); while in this region water is considered to be a valuable resource and the proper management of this resource depends on the accurate assessment of the ET component. Moreover, despite of the well-known important contribution of dryland regions to the global CO$_2$ (Ahlström et al., 2015), there are almost no efforts of estimating CO$_2$ fluxes in forested and non-forested areas in this dry region. This led to the development of the Weizmann mobile lab system (Israel; Fig. 1h) that allows extension of the permanent Fluxnet measurement sites on campaign basis (e.g., Asaf et al., 2013; for technical detail see: http://www.weizmann.ac.il/EPS/Yakir/node/321). Such a system could allow flux and auxiliary analytical measurements across a range of climatic conditions, plant species and ecosystems, as well as addressing land use changes and disturbance. However, to extend these campaign-based measurements in time and space a model fitted to the high-energy water-limited conditions of this region is required.

Here, we adjusted the RS-Met to the extreme hot and dry conditions of the Eastern Mediterranean region. The adjusted RS-Met was examined in a total of seven ecosystems distributed at three precipitation levels along a rainfall gradient (280-770 mm y$^{-1}$) in this region (Israel; Fig. 1). Ecosystems included three pairs of planted forests and adjacent non-forest sites (representing the original area on which these forests were planted). Ground-level campaign measurements of ET and net ecosystem CO$_2$ exchange using the newly developed mobile lab (Fig. 1h) and the continuous flux measurements in the active Fluxnet site in Yatir (Klein et al., 2016; Tatarinov et al., 2016) were used to validate the RS-Met. This combination of model-based estimates and direct flux measurements of ET and CO$_2$ uptake...
across a range of climatic conditions and ecosystems provides a unique opportunity to test and validate the RS-Met approach in this high-energy water-limited region. Particularly, we examined the RS-Met with and without the application of the fWD. We also compared the RS-Met with MODIS ET/GPP products in the studied sites. Our specific goals in this study were: (1) examine the seasonal evolution of the fWD and its role in the RS-Met, (2) compare the model estimates with EC and MODIS ET/GPP products across these high-energy water-limited sites, at a daily and annual basis, and (3) use the RS-Met to estimate changes in water use efficiency (WUE=GPP/ET) following afforestation across the rainfall gradient in Israel, by comparing the three-paired forest vs. non-forest sites.

2. Materials and methods

2.1. Study sites

The sites in this study included three pairs of planted pine forests (Pinus halepensis Mill.) and adjacent non-forested (dwarf shrublands) sites distributed throughout a climatic range in Israel (P = 280 – 770 mm y⁻¹), from dry to sub-humid Mediterranean (Table 1 and Fig. 1a-f), which represent the typical Mediterranean vegetation systems in the Eastern Mediterranean. The three non-forested sites represent the original natural environment on which the pine forests were planted, while the afforested sites are currently managed by the Jewish National Fund (KKL). The non-forested shrubland sites are mostly dominated by Sarcopoterium spinosum (dwarf shrub) in a patchy distribution with a wide variety of herbaceous species, mostly annuals, growing in between the shrub patches during winter to early spring. In addition, we tested the models in one native deciduous forest site dominated by Quercus species. A brief description of the sites is given in the following:

Yatir. The forest of Yatir is an Aleppo pine forest (Pinus halepensis) that was planted by KKL mostly during 1964-1969 in the semi-arid region of Israel (31.34N, 35.05E; Fig. 1a). It covers a total area of c. 2800 ha and lies on a predominantly light brown Rendzinas soil (79 ± 45.7 cm deep), overlying a chalk and limestone bedrock (Llusia et al., 2016). The average elevation is 650 m. The mean annual rainfall in the forest area is 285 mm y⁻¹ (for the last 40 years) and was 279 mm y⁻¹ in the Fluxnet site during 2001-2015 (Table 1). The mean annual temperature in Yatir is 18.2 ºC with 13 and 31 ºC for mean winter (November–January) and summer (May–July) temperatures, respectively. Tree density in Yatir is c. 300 trees ha⁻¹ (Rotenberg and Yakir, 2011) with a tree average height of c. 10 m and canopy leaf area index...
7 (LAI) of 1.4 ± 0.4 m² m⁻², which displays small fluctuations between winter and summer (Sprintsin et al., 2011). The understory in this forest is mostly comprised of ephemeral herbaceous species (*i.e.*, theropytes, geophytes and hemicryptophytes) growing during the wet season (September–April) and drying out in the beginning of the dry season (May–June). A relatively thin needle litter layer covers the forest floor during the needle senescence period (June–August) (Maseyk et al., 2008).

Eshtaol. The forest of Eshtaol was planted in the late 1950’s by KKL with mostly *P. halepensis* trees in the central part of Israel (31.79N, 34.99E; Fig. 1c). The current forest area is c. 1200 ha and lies on Rendzinas soils. The average elevation is 330 m. The mean annual rainfall in this area is c. 500 mm y⁻¹ and was 480 mm y⁻¹ in the site of the EC measurements during 2012-2015 (Table 1). Tree density in Eshtaol is typically 300–350 trees ha⁻¹, with a tree canopy LAI that ranges between 1.9 m² m⁻² and 2.6 m² m⁻² and a tree average height of 12.5 m (Osem et al., 2012).

Birya. The forest of Birya is a *P. halepensis* forest that was mostly planted during the early 1950’s in the northern part of Israel, Galilee region (33.00N, 35.48E; Fig. 1e). The forest covers an area of c. 2100 ha and lies on a Rendzinas and Terra rossa soils. The average elevation is 730 m. The average temperature in this area is 16°C, with an average annual rainfall of 710 mm y⁻¹ and 776 mm y⁻¹ during the years of the EC measurements (2012-2015; Table 1). The average stand density is 375 trees ha⁻¹ with an average tree height of 11 m (Llusia et al., 2016).

HaSolelim. The HaSolelim forest is a native deciduous mixed oak forest dominated by *Quercus ithaburensis*, which is accompanied by *Quercus calliprinos* (evergreen) and few other Mediterranean broadleaved tree and shrub species (Fig. 1g). The forest is located at the northern part of Israel in the Galilee region, 30 km south of the Birya forest (32.74N, 35.23E). The forest covers an area of c. 240 ha and lies on Rendzinas and Terra rossa soils. The elevation in the site of the EC measurements is 180 m (Table 1). The average temperature in this area is a typically 21°C, with a mean annual rainfall of 580 mm y⁻¹ and 543 mm during the years of the EC measurements. The site where the measurements took place is characterized by an average stand density of 280 trees ha⁻¹ and an average tree height of 8 m (Llusia et al., 2016).

Wady Attir. This is a xeric shrubland site located southwest to the forest of Yatir (31.33N, 34.99E). The average elevation is 490 m. The site is dominated by semi-shrubs species such
as, *Phagnalon rupestre* L., with *graminae* species, mainly *Stipa capensis* L. (also known as Mediterranean needle grass), *Hordeum spontaneum* K. Koc. (also known as wild barley) and some *Avena* species such as, *A. barbata* L. and *A. sterilis* L., appearing shortly after the rainy season (Leu et al. 2014; Fig. 1b). The mean annual rainfall in this area is 230 mm y\(^{-1}\) (Mussery et al., 2016) and was 280 mm y\(^{-1}\) in the years of the EC measurements (2012-2015; Table 1).

Modiin. The shrubland site of Modiin is located few kilometers from the forest site of Eshtaol and represent the original environment on which this forest was planted (31.87N, 35.01E; Fig. 1d). The average elevation is 245 m. The shrubland site is mostly dominated by *Sarcopoterium spinosum* (dwarf shrub) in a patchy distribution with a wide variety of herbaceous species, mostly annuals, growing in between the shrub patches during winter to early spring. The average rainfall amount in this area was 480 mm y\(^{-1}\) in the years of the EC measurements (Table 1).

Kadita. The shrubland site of Kadita is also dominated by *Sarcopoterium spinosum* (dwarf shrub) in a typical patchy distribution (Fig. 1f). It is located nearby the forest of Birya at an elevation of 815 m (33.01N, 35.46E; Table 1). The mean annual rainfall in this site is similar to that recorded in the Birya forest (i.e., 766 mm y\(^{-1}\) in the years of study).

All shrubland sites have been under continuous livestock grazing for many years, and their vegetation structures are mainly the outcome of both rainfall amount and grazing regime.

2.2. Satellite-derived vegetation index

We used the NDVI from the moderate-resolution imaging spectroradiometer (MODIS) on board NASA's Terra satellite at 250 m spatial resolution (MOD13Q1). The MOD13Q1 NDVI product is a composite of a single day’s value selected from 16-day periods based on the maximum value criteria (Huete et al., 2002). The Terra’s NDVI product is acquired during the morning (10:30 am) and thus provides a good representation of the peak time of the plants’ diurnal activity. The gradual growth of the vegetation enables the interpolation of the 16-day NDVI time series to representative daily values (Glenn et al., 2008; Maselli et al., 2014). We downloaded the 16-day NDVI time series covering the main area of the eddy covariance flux measurement for each site from the MODIS Subsets (http://daacmodis.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl) for the period October 2001 – October 2015. Then, we pre-processed the NDVI time series as described in Helman...
et al. (2014a, 2014b, 2015b) to remove outliers and uncertainties due to cloud contamination and atmospheric disturbances without removing important information (see Fig. S2). The processed 16-day NDVI time series were then interpolated on a daily basis using the local scatterplot smoothing technique (LOESS). This technique is suited for eliminating outliers in non-parametric time series and has been shown to be a useful tool in the interpolation of datasets with a seasonal component (Cleveland, 1979).

2.3. The mobile lab system and the Fluxnet station in Yatir

A newly designed mobile flux measurement system was used in all campaigns (Fig. 1h), based on the 28-m pneumatic mast on a 12-ton 4x4 truck that included a laboratory providing an air-conditioned instrument facility (cellular communication, 18 KVA generator, 4200 WUPS). Flux, meteorological and radiation measurements relied on an eddy-covariance system that provides CO$_2$ measurements and sensible and latent heat fluxes using a three-dimensional sonic anemometer (R3, Gill Instruments, Lymington, Hampshire, UK) and enclosed-path CO$_2$-H$_2$O IRGA (Licor 7200, Li-Cor, Lincoln, NE, USA) using CarboEuroFlux methodology (Aubinet et al., 2000), and EddyPro Software (www.licor.com).

Data were collected using self-designed program in LabVIEW software. Air temperature and relative humidity (HMP45C probes, Campbell Scientific) and air pressure (Campbell Scientific sensors) were measured at 3 m above the canopy. Energy fluxes relied on radiation sensors, including solar radiation (CMP21, Kipp and Zonen), long-wave radiation (CRG4, Kipp and Zonen) and photosynthetic radiation (PAR, PAR-LITE2) sensors. All sensors were installed in pairs facing both up and down and are connected using the differential mode through a multiplexer to a data logger (Campbell Scientific). GPP for each site was calculated from the measured net ecosystem CO$_2$ exchange (NEE) after estimating ecosystem respiration, Re, and using the regression of NEE on turbulent nights against temperature, followed by extrapolating the derived night-time Re-temperature relationship to daytime periods (Reichstein et al., 2005; modified for our region by Afik, 2009). Flux measurements with the mobile system were carried out on a campaign basis, in six of the seven sites, with each campaign representing approximately two weeks in a single site, repeated along the seasonal cycle with mostly two but sometimes only one two-weeks set of measurements per cycle, during the 4 years of measurements, 2012-2015. Continuous flux measurements were carried out in the permanent Fluxnet site of Yatir (xeric forest site). Begun in 2000, the eddy covariance (EC) and supplementary meteorological measurements have been conducted continuously (Rotenberg and Yakir, 2011; Tatarinov et al., 2016), with measurements...
performed according to the Euroflux methodology. Instrumentation is similar to that in the
Mobile Lab except for the use of a closed-path CO$_2$/H$_2$O infrared gas analyzer (IRGA, LI-
7000; Li-Cor, Lincoln, NE) with the inlet placed 18.7 m above ground. Typical fetch
providing 70% (cumulative) contribution to turbulent fluxes was measured between 100 m
and 250 m (depending on the site) along the wind distance. This was taken in consideration
when using the MOD13Q1 product to derive the modeled fluxes.

During April 2012, at the peak activity season in Yatir forest, the mobile lab system for two
weeks deployed at 10 m distance away from the permanent flux measurements tower, were
both EC systems measuring at the same height and fluxes calculated by the same software
(EddyPro 3.0 version; Li-Cor, USA). The linear correlation (R^2) and the slope of the Mobile
Lab measured fluxes of H, LE and NEE vs. the permanent Tower fluxes were 0.9 and 1.0 for
H, 0.8 and 0.9 for LE and 0.9 and 1 for NEE, respectively.

Daily estimates of reference evapotranspiration, i.e. ET$_o$ (in mm d$^{-1}$), for the ET model, the
water deficit and the water availability factors were calculated from the mean daily air
temperature and the daily total incoming solar radiation, measured at the seven sites
following the empirical formulation proposed by Jensen & Haise (1963):

$$\text{ET}_o = \frac{R_g}{2470} (0.078 + 0.0252 T) \quad (1)$$

where T is the mean daily air temperature (in °C), and R_g is the daily global (total) incoming
solar radiation (in kJ m$^{-2}$ d$^{-1}$); ET$_o$ is finally converted into mm d$^{-1}$ by dividing the R_g by 2470
mm kJ m$^{-2}$ d$^{-1}$ (see in Jensen & Haise, 1963). We decided to use this ET$_o$ formulation of
Jensen & Haise (1963) to be consistent with the original RS-Met proposed by Maselli et al.
(2014) though we are aware of the large tradition of works devoted to compare several
methods to estimate ET$_o$ and to prove the validity and limitations of these methods under
different environmental conditions.

2.4. MODIS ET/GPP products and the PaVI-E model for annual ET

We compared our RS-Met with the products from MODIS-based ET and GPP models, which
details of these models can be found in Mu et al. (2007, 2011) and Running et al. (2000,
2004) for the ET and GPP models, respectively. These products (MOD16 and MOD17 for
ET and GPP, respectively) provide 8-day ET and GPP estimates at 1-km for 2000-2015,
globally. MODIS ET/GPP products were compared with RS-Met at the seasonal and annual
scale in all sites. Importantly, these MODIS products take advantage of the use of vapor
pressure information, which was shown to affect the stomatal conductance of plants whereas our model did not consider this factor directly. We did not use vapor pressure data in the RS-Met because most of the weather stations in this region do not have such information and that would have limited the use of our model. However, the \(f_{vD} \) calculated from radiation, temperature and water supply (rainfall) data, is used in the adjusted RS-Met as an indirect proxy for VPD. To compare with the 8-day MODIS ET/GPP products we averaged the daily RS-Met and EC estimates over the same 8-day periods.

We also compared the RS-Met ET estimates to the annual ET derived from PaVI-E (Parameterization of Vegetation Index for the estimation of ET model; Helman et al., 2015a) at the six sites on an annual basis. The PaVI-E is an empirical model based on simple exponential relationships found between MODIS-derived EVI (and NDVI) and annual ET estimates from EC in 16 Fluxnet sites, comprising a wide range of plant functional types across Mediterranean-climate regions. This simple relationship (PaVI-E) was shown to produce accurate ET estimates at the annual timescale (mm y\(^{-1}\)) and at a moderate spatial resolution of 250 m in this region (Helman et al., 2015a). It was validated against physical-based models (MOD16 and MSG LSA-SAF ETa) and ET calculated from water balances across the same study area. PaVI-E was used for ecohydrological studies in this region, providing insights into the role of climate in altering forest water and carbon cycles (Helman et al., 2017, 2016). The advantage of this model is that it does not require any additional meteorological information but is a proper function of the relationship between observed fluxes and satellite-derived vegetation indices. This makes it interesting to compare with the RS-Met model since the RS-Met is highly dependent on meteorological forcing.

3. Description of the models and the use of a water deficit factor

The RS-Met models used here for the daily estimation of ET and GPP are based on the NDVI and the meteorological data. Each model was applied with and without a water deficit factor \(f_{vD} \) adjustment (i.e., two model versions for ET and two for the GPP).

3.1. The ET model

The RS-Met of daily ET is based on the FAO-56 formulation (Eq. 2):

\[
ET = ET_0 \times (K_c + K_s) \tag{2}
\]
Where K_C and K_S stand for the crop/canopy and soil coefficients, respectively (Allen et al., 1998). In the RS-Met a maximum value of K_C ($K_{C\text{max}}$), which depends on the type of the monitored vegetation (Allen et al., 1998; Allen et al., 2006), and a maximum value of K_S ($K_{S\text{max}}$), for soil evaporation, are used as a reference in the model. The $K_{C\text{max}}$ and $K_{S\text{max}}$ are then multiplied by a linear transformation of the NDVI (i.e., $f(NDVI)$ and $f(1-NDVI)$, respectively (Maselli et al., 2014) to adjust for the seasonal evolution of the crop/canopy and soil coefficients:

$$K_C = K_{C\text{max}} \times f(NDVI)$$ \hspace{1cm} (3)

$$K_S = K_{S\text{max}} \times f(1-NDVI)$$ \hspace{1cm} (4)

The linear transformation of the NDVI used here is the fractional vegetation cover (f_{VC}) that better represent both ET processes: direct soil evaporation and plant transpiration. The f_{VC} is a classical two-end member function based on minimum and maximum values of NDVI, corresponding to a typical soil background without vegetation (NDVI$_{SOIL}$) and an area fully covered by vegetation (NDVI$_{VEG}$), respectively:

$$f_{VC} = (NDVI - NDVI_{SOIL}) / (NDVI_{VEG} - NDVI_{SOIL})$$ \hspace{1cm} (5)

Thus, Eqs. (3) and (4) become:

$$K_C = K_{C\text{max}} \times f_{VC}$$ \hspace{1cm} (6)

and

$$K_S = K_{S\text{max}} \times (1 - f_{VC})$$ \hspace{1cm} (7)

respectively.

The f_{VC} in Eq. (5) is calculated on a daily basis from the interpolated NDVI (daily) data. Note that the f_{VC} in Eq. (6) represents the fraction of the area covered by the vegetation, while in Eq. (7) the term $1 - f_{VC}$ represents the fraction of the bare soil area. Both terms, f_{VC} and $1 - f_{VC}$ in Eqs. (6) and (7), change over the course of a year due to canopy development.
and/or the appearance of ephemeral herbaceous plants. We used here the values of 0.1 and 0.8 for the NDVI_{SOIL} and NDVI_{VEG}, respectively, which are the values observed for bare ground and dense natural vegetation in this region (Helman et al., 2015b).

Finally, from Eqs. (2) and (5-7) we obtain the model without the water deficit factor adjustment (NO WD):

$$\text{ET} = \text{ET}_o \times \left[(f_{VC} \times K_{C,\text{max}}) + (1-f_{VC}) \times K_{S,\text{max}} \right]$$

(8)

Following, we used a water deficit (f_{WD}) and water availability (f_{WA}) factors to adjust the crop/canopy and soil coefficients for water supply conditions at the root-zone and top-soil, respectively, in Eqs. (6) and (7):

$$K_{C} = K_{C,\text{max}} \times f_{VC} \times f_{WD}$$

(9)

$$K_{S} = K_{S,\text{max}} \times (1-f_{VC}) \times f_{WA}$$

(10)

The f_{WD} and f_{WA} in Eqs. (9) and (10) simulate the effects of available water for plant transpiration at the root zone and for surface evaporation at the top-soil, respectively, whereas the f_{WD} is defined as follows:

$$f_{WD} = 0.5 + 0.5 \times f_{WA}$$

(11)

The water availability factor (f_{WA}) is calculated as the simple ratio between the daily rainfall amount and the daily ET$_o$, both cumulated over a period of two months. Basically, the accumulation period could vary for different ecosystem types and environmental conditions. However, we have taken here a period of two months for the native shrublands and planted (and native) forests following previous observations that showed that this period is sufficient to maintain wet the topsoil layer for the whole rainy season in ecosystems in this region (Raz-Yaseef et al. 2010; 2012). Furthermore, changing the accumulation period did not give us a consistently better results in all sites, as the two-month period gave us.
The f_{WA} is set to 1 when the cumulated rainfall amount exceeds the atmospheric demand (i.e., the ET$_{wa}$). Note that the f_{WD} would then vary between 0.5 and 1, meaning that ET is reduced to half the potential maximum in the absence of water supply, simulating the basic transpiration levels maintained by evergreen vegetation (Glenn et al., 2011; Maselli et al. 2014). This reduction in the f_{WD} accounts for water deficit at the root zone, which results in reduced plant transpiration, while short-term effects would be mainly reflected through changes in the NDVI (and consequently in the f_{WC} and f_{APAR}; Glenn et al., 2010; Running and Nemani, 1988). In contrast to the f_{WD}, the f_{WA} is reduced to zero following a dry period longer than two months, making the surface evaporation component null during the dry summer.

The model is adjusted to root-zone and surface water deficit conditions (f_{WD} and f_{WA}) by replacing Eqs. (6) and (7) by Eqs. (9) and (10):

$$ET = ET_0 \times \left\{ \left[f_{WC} \times K_{C_{\text{max}}} \times f_{WA} \right] + \left[\left[1 - f_{WC} \right] \times S_{\text{max}} \times f_{WA} \right] \right\} $$

(12)

Here we used a $K_{C_{\text{max}}}$ value of 0.7 for both forests and non-forest sites, and a S_{max} value of 0.2 for soil evaporation in both (adjusted and unadjusted for water deficit conditions) models, as in Maselli et al., (2014).

Finally, the model derives daily ET estimates (in mm d$^{-1}$) at the spatial resolution of the MODIS NDVI product, i.e., 250 m.

3.2. The GPP model

For the GPP model, we used the biophysical radiation use efficiency model proposed by Monteith (1977):

$$GPP = RUE \times f_{APAR} \times PAR$$

(13)

where PAR is the daily incident photosynthetic active radiation (in MJ m$^{-2}$), calculated as 45.7% from the incoming measured global solar radiation (Nagaraja Rao, 1984), and f_{APAR} is the fraction of the PAR that is actually absorbed by the canopy (range from 0 to 1). The f_{APAR} was derived here from the daily NDVI time series following the linear formulation:

$$f_{APAR} = 1.1638 \times \text{NDVI} - 0.1426,$$

which was proposed by Myneni & Williams (1994). This linear formulation was successfully applied in similar remote-sensing-based GPP models for similar ecosystems by Verostraete et al. (2002), Maselli et al. (2006, 2009) and Helman et...
al. (2017); RUE is the radiation use efficiency (in g C MJ⁻¹), which is the efficiency of the plant for converting the absorbed radiation into carbon-based compounds and which changes over the course of a year (Garbulsky et al., 2008).

The RUE is an important component in the GPP model and is the most challenging parameter to compute. It is usually considered to be related to vapor pressure deficit, water availability, temperature and plant species type (Running et al., 2000), and there have been several recent efforts to directly relate it to the photochemical reflectance index (PRI), which can also be derived from satellites (Garbulsky et al., 2014; Peñuelas et al., 2011; Wu et al., 2015).

Currently, the conventional modeling of RUE for Mediterranean ecosystems is not straightforward and is mostly site specific, derived for specific local conditions (Garbulsky et al., 2008). Here, we used the simple approach proposed by Veroustraete et al., (2002) and further developed by Maselli et al., (2009), which states that a potential RUE (RUE_MAX in g C MJ⁻¹) can be adjusted for seasonal changes using a function based on temperature and water deficit conditions (fWT):

\[RUE = RUE_{\text{MAX}} \times f_{\text{WT}} \] \hfill (14)

The fWT adjusts the RUE_MAX for seasonal changes following changes in water availability and temperature conditions:

\[f_{\text{WT}} = T_{\text{CORR}} \times f_{\text{WD}} \] \hfill (15)

where T_{\text{CORR}} is a temperature correction factor calculated on a daily basis (Veroustraete et al., 2002):

\[T_{\text{CORR}} = \frac{e^{a \frac{\Delta H_{\text{AP}}}{RT}}}{1 + e^{a \frac{\Delta H_{\text{DP}}}{RT}}} \] \hfill (16)

where \(a \) is a constant equal to 21.9; \(\Delta H_{\text{AP}} \) and \(\Delta H_{\text{DP}} \) are the activation and deactivation energies (in J mol⁻¹), equal to 52750 and 211, respectively; \(G \) is the gas constant, equal to 8.31 J K⁻¹ mol⁻¹; \(\Delta S \) is the entropy of the denaturation of CO₂ and is equal to 710 J K⁻¹ mol⁻¹; and \(T \) is the mean daily air temperature (in Kelvin degrees); and \(f_{\text{WD}} \) is the same water-deficit factor as in Eq. (11).
The water deficit factor, \(f_{WD} \), is used here only in the model that considers water supply conditions. Thus, in the model without the \(f_{WD} \), the \(f_{ST} \) would be only a function of the temperature, and thus \(f_{ST} = T_{CORR} \) (in Eq. 15). Following Garbulsky et al., (2008) and Maselli et al., (2009), a constant value of 1.4 g C MJ\(^{-1}\) was used here for \(RUE_{MAX} \) in all sites and model variations (i.e., with and without the \(f_{WD} \)). The exclusion of direct measurements of vapor pressure deficit (VPD) as an input in the model is indeed a limitation; however, we tried to maintain a model with minimal input data that will be available from standard weather stations (VPD information is currently lacking from most of the weather stations in this region). The inclusion of the \(f_{WD} \), which includes radiation, temperature and water supply (rainfall) information is used as an indirect proxy for VPD in the model.

Finally, daily GPP values were computed from the model at a spatial resolution of 250 m for each of the seven sites and compared with EC estimates and the MODIS GPP product. It should be stated that the use of the EC-derived GPP as a reference in the validation should be taken with caution because GPP by itself is modeled and not directly measured. This may introduce uncertainties to the validation that could be contaminated by self-correlation.

4. Testing the water deficit factor in high-energy water-limited environments

To show the importance of the water deficit factor (\(f_{WD} \)) in adjusting the model to seasonal variations in the fluxes, we demonstrate the seasonal evolution of the \(f_{WD} \) together with that of the main drivers of the RS-Met at the dryland pine forest site of Yatir (Fig. 2). Figure 2a shows that the \(f_{WD} \) moderate the increase of \(K_C \) (blue line in middle panel of Fig. 2a) at the beginning of the rainy season (November-January) even though the \(f_{VC} \) (green line in lower panel of Fig. 2a) is relatively high likely due to the appearance of ephemeral herbaceous vegetation in the forest understory (Helman et al., 2015b). This is a realistic scheme since the herbaceous vegetation has little contribution to the ecosystem fluxes but a significant contribution to the NDVI (and thus to the \(f_{VC} \) signal (Helman, n.d.), as observed by the low EC GPP at this time (red dots in lower panel of Fig. 2a). Thus, the \(f_{WD} \) has an important role in reducing the \(K_C \) to a more realistic low values at this stage of the year when there is less water available for the trees. The same applies for the end of the rainy season and summer, in May-August, when the \(E_T \) is relatively high but there is almost no available water for ET, as implied from the low \(f_{WD} \) (black line in upper panel of Fig. 2a).

In the GPP model, the \(f_{WD} \) reduces the high RUE at both ends of the rainy season, adjusting the GPP to the water deficit conditions at the root-zone during these periods (Fig. 2b). Here...
again, the low f_D reduces the contribution of the high fAPAR (and the RUE) in the model during the start of the rainy season due to the growth of ephemeral plants in the understory (green and blue lines in lower and middle panels of Fig. 2b, respectively). This is because there is still not sufficient water in the root-zone during this period. Particularly noted, though, is the significant reduction in GPP at the end of the rainy season and during the summer (May-August), when the PAR (yellow line in lower panel of Fig. 2b) is high but less water is available for transpiration and subsequently for photosynthesis.

5. Comparisons with MODIS and the Fluxnet station in Yatir

5.1. Daily ET and GPP

We compared the daily estimates of the modeled ET with MODIS ET/GPP products and the active Fluxnet station at the dryland pine forest of Yatir for 2002-2012 (Table 1). As expected from the noted above (Section 4), the model without the water deficit factor (NO f_D in Fig. 3a and 3e) overestimated the ET in comparison to the eddy covariance measurements, particularly from mid spring to the end of the summer (Fig. 3a,e). The peak ET was shifted to late July – early September, while the ET measured from the eddy covariance showed an earlier peak, in March. The large overestimation of the model without the f_D was associated with the high ET, during the spring and summer (R=0.91; P<0.001; see also Fig. 2a), which is the driver of the ET model (Eqs. 2, 8 and 12), following the low humidity and augmented radiation load at this time of the year (Fig. 2 and Rotenberg and Yakir, 2011; Tatarinov et al., 2016). However, including the f_D in the model helped to correct for this overestimation, by linking ET to the available soil water (Fig. 2a), resulting in a good agreement between the model and the eddy covariance estimates (Fig. 3c and 3e; Table 2).

When comparing the modeled GPP with the EC estimates at Yatir, the model without the f_D (NO f_D in Fig. 3b and 3f) produced higher values during both ends of the rainy season (October-November and May-June). In particular, the model without the f_D overestimated the GPP during the start of the rainy season (indicated by the arrows in Fig. 3b). This was likely due to the increase in the NDVI following the appearance of ephemeral herbaceous plants in the understory of these Mediterranean forests in the beginning of the rainy season, as already pointed out in the previous section (see also Helman et al., 2015b). The herbaceous vegetation in the understory of Yatir provides a meaningful contribution to the NDVI signal,
although it constitutes only a minor component in terms of the biomass and the CO₂ uptake of the forest (Helman et al., 2015b; Rotenberg and Yakir, 2011). Considering f_{\text{ET}} in the model thus abridged the RUE, counterbalancing the high contribution of the herbaceous vegetation to the FAPAR through the high NDVI. This also better simulated the water deficit conditions experienced by the woody vegetation, which is the main contributor to the GPP in Yatir, during the dry period (Fig. 3d and 3f).

These results explicitly show that the water deficit factor is useful in “forcing” the model onto the woody vegetation activities (strongly restricted by water shortage at both ends of the rainy season), reducing the impact of other components, such as the peak activities of the understory vegetation that, obviously, does not suffer from water shortage and responds to small early season moisture input (Helman et al., 2014a, n.d.; Mussery et al., 2016).

Comparison with MODIS ET/GPP products show a consistent underestimation of the fluxes at the peak season and overestimation at the dry season, implying that these models need to be adjusted to root-zone water deficit conditions in such high-energy water-limited sites (Fig. 4). This is in spite of the use of vapor pressure data in these models (Mu et al., 2007, 2011; Running et al., 2000, 2004). These results suggest that including the f_{\text{ET}} in global models, such as the MODIS-based models, might at least reduce the observed dry period overestimations and increase fluxes at the wet season.

5.2. Annual-basis comparisons

We then examined the adjusted RS-Met on an annual scale, first by comparing the interannual variation in the modeled ET with that from the EC and with that from the MODIS ET product at Yatir (Fig. 5a). This analysis indicated that RS-Met can also reproduce the annual ET with a fair accuracy, showing a moderate but significant correlation with the total annual ET derived from the daily summed EC estimates (R=0.78; P<0.05; N=10; Fig. 5b) and comparable mean annual ET (266±61 vs. 257±58 mm y^{-1} for ET_{\text{MOD}} and ET_{\text{EC}}, respectively). MODIS ET, in turn, was not correlated with EC (R=0.10; P>0.1; N=11) showing little year-to-year variations in the annual ET (Fig. 5a,c).

Both the RS-Met and the EC were significantly correlated with P (R=0.60 and 0.93; P=0.05 and <0.001, respectively), showing similar patterns in water use (ET/P ratio), though differing in magnitude in some of the years studied (black and red lines in upper panel of Fig. 5a and Fig. S3). The little year-to-year variation in the MODIS ET resulted in a noisier pattern of water use (green line in upper panel of Fig. 5a) compared to that calculated from...
the RS-Met and EC. A noisy water use pattern was also noted in the RS-Met (compared to that from the EC), particularly in dry years (Fig. S3; e.g., 2003, 2005 and 2008; Fig. 5a).

Higher ET in the RS-Met was likely the result of discrepancies in daily estimates during the summer between the RS-Met and EC (\(R^2 = 0.05, P=0.1\) for June-August; Fig. 5a). This is supported by the observation of a 5-fold higher bias between EC and RS-Met summer daily estimates in those dry years (bias = -0.146 mm d\(^{-1}\)) compared to remaining years (bias = -0.029 mm d\(^{-1}\)). These negative biases imply an average overestimation by the RS-Met model during the summer compared to observed (EC) ET estimates.

In contrast, the correlation between the RS-Met and EC was high and significant for daily estimates during the rainy season (\(R^2 = 0.80, P<0.0001\) for October-May; Fig. 5c). The relatively large discrepancies between RS-Met and EC during the summer indicate the low sensitivity of the RS-Met model to relatively low ET fluxes (i.e., <1.0 mm d\(^{-1}\)). This likely suggests the need to adjust the water availability factor (\(f_{WA}\)) to positive values for a longer period, particularly at the end of the rainy season-beginning of the summer.

The annual ET, as estimated from both the RS-Met and EC, was higher than the total rainfall amount in some of the years studied (Fig. S3). A similar pattern was previously reported in forests in water-limited regions (Helman et al., 2016; Raz-Yaseef et al., 2012; Williams et al., 2012). ET higher than rainwater supply indicates that trees use water stored in deep soil layers during wet years in the subsequent dry years (e.g., 2006 and 2008; Raz-Yaseef et al., 2012; Barbeta et al., 2015). Thus, the ‘transfer’ of surplus rainwater from previous years should be also taken into consideration when adjusting the model with available water through the \(f_{WA}\) and \(f_{WD}\) which are currently calculated only with the seasonal rainfall. Theoretically, this could be done by summing the available water from the previous year (calculated as \(P – ET\)) to the two-month summed \(P\) in the calculation of the \(f_{WA}\) and \(f_{WD}\). Of course, this would be applied only after completing the ET estimation of the first year.

The adjusted RS-Met GPP (i.e., that with the \(f_{WD}\)) was also comparable to the GPP from the EC (765±112 vs. 748±124 g C m\(^{-2}\) y\(^{-1}\), for \(GPP_{MOD}\) and \(GPP\)\([\text{EC}]\), respectively), and highly correlated at the annual scale (Fig. 6a,b), with an \(R = 0.91\) (\(P<0.001\); \(N=9\)) and a low MAE of 52 g C m\(^{-2}\) y\(^{-1}\) (Relative error of \(c.\) 7%). MODIS GPP showed inferior correlation with EC estimates at the annual scale, with an R of 0.58 (\(P=0.08\); \(N=10\), Fig. 6c).

6. Testing the RS-Met across a rainfall gradient
6.1. Comparison with seasonal ET and GPP from EC and MODIS products

We next compared the ET and GPP estimates from the RS-Met model with the field campaign data and MODIS ET/GPP products across the remaining six ecosystems. Comparison between estimates based on the RS-Met model, with and without the daily drought stress factor, with those from the EC, indicated significantly higher correlations of the adjusted model (i.e., with the drought stress factor) with EC estimates ($P<0.06$ and $P<0.01$ for ET and GPP, respectively; Table 2). Only the shrubland site of Kadita showed a higher ET correlation of EC with the unadjusted model. This was likely due to the continuous ET fluxes throughout the summer period in this relatively moist site, which was not captured by the model.

In general, while using the daily drought stress factor did not improve (for the ET, $P>0.1$, as indicated by a two-tailed Student’s t-test) or only marginally improved (for the GPP, $P=0.09$, as indicated by a two-tailed Student’s t-test) RS-Met estimates in the non-forest sites, it significantly improved the ET and GPP estimates in forest sites ($P<0.05$ and $P<0.016$ for ET and GPP, respectively, as indicated by a two-tailed Student’s t-test). The adjusted RS-Met successfully tracked changes in ET and CO$_2$ fluxes from dry to wet season in all sites. Similar to the shown in Yatir, MODIS ET/GPP fluxes were much lower than observed fluxes. This underestimation was particularly noted in the forest sites (Fig. 7 and Fig. S4).

Overall, the adjusted RS-Met was in good agreement with the eddy covariance measurements, with the cross-site regressions producing highly significant linear fits (Fig. 8a, b; $R=0.82$ and $R=0.86$; and MAE = 0.47 mm d$^{-1}$ and MAE = 1.89 g C m$^{-2}$ d$^{-1}$ for ET and GPP, respectively). Comparing between the EC vs. RS-Met regressions and the EC vs. MODIS ET/GPP regressions, using 8-day averaged fluxes values, produced the following linear fits: $ET_{RS-Met} = 1.16 \cdot ET_{EC} - 0.11 \ (R = 0.88; \ P<0.0001; \ N = 36)$ and $ET_{MODIS} = 0.38 \ \ ET_{EC} + 0.33 \ (R = 0.65; \ P<0.0001; \ N = 33)$ and $GPP_{RS-Met} = 1.09 \cdot GPP_{EC} + 0.21 \ (R = 0.92; \ P<0.0001; \ N = 36)$ and $GPP_{MODIS} = 0.43 \cdot GPP_{EC} + 1.31 \ (R = 0.77; \ P<0.0001; \ N = 33)$, showing a consistent underestimation of both MODIS products (MOD16 and MOD17) in those sites across sites (Fig. 8c, d).

The water-use efficiency (WUE; the slope of the regression between ET and GPP in Fig. S5) was slightly higher at 2.32 g C kg$^{-1}$ H$_2$O from the RS-Met compared to the low 1.76 g C kg$^{-1}$ H$_2$O from EC, but it was within the range reported for similar ecosystems in this region (Tang et al., 2014).

6.2. Annual-basis comparisons
To expand our analysis across the rainfall gradient, and because we do not have continuous estimations from the EC at the six sites, we compared the annual ET and GPP from the adjusted RS-Met with those from MODIS ET/GPP products. In the case of ET, we also added annual estimates derived from the empirical PaVI-E model (Helman et al. 2015). The results of our ET comparison showed that the RS-Met and PaVI-E models produced comparable estimates in most of the sites (Fig. 9a), with the only exception being the dryland non-forest site of Wady Attir, which showed higher estimates from RS-Met than from PaVI-E (P<0.01, as indicated by Tukey HSD separation procedure). MODIS ET was in accordance with estimates of RS-Met and PaVI-E in shrubland sites in spite of the underestimation of this product during the wet season likely due to the relatively higher ET at the beginning of the rainy season (Fig. 7a). However, MODIS ET was significantly lower than the other two models in the forest sites and also lower than the shrubland sites (Fig. 9a). The cross-site regression between the annual estimates from RS-Met vs. those from the EC produced a highly significant linear fit (R=0.94; P<0.01), confirming the potential use of the RS-Met in assessing ET at the annual scale across the rainfall gradient in those forest and non-forest sites.

MODIS GPP showed relatively comparable estimates to RS-Met at the annual scale due to its overestimation during the dry season that compensated its underestimation during the peak growth season (Fig. 9b). Here again, though, underestimation was observed in forest sites, particularly in the sites of Eshtaol and Birya.

6.3. Changes in water use efficiency following afforestation across rainfall gradient

We finally used the adjusted RS-Met to assess the impact of afforestation on the water and carbon budgets across the rainfall gradient in Israel by comparing fluxes in the three pine forests (i.e., Yatir, Eshtaol and Birya) with those from the adjacent shrubland sites (i.e., Wady Attir, Modiin and Kadita, respectively). Results showed that the ET significantly increased due to the afforestation of these areas, particularly at the more humid site of Birya (c. 53%), but to a lesser extent at the less humid site of Eshtaol (by c. 20%) and with almost no change in ET in the dryland site of Yatir (4%). The GPP also significantly increased in those three paired-sites. Overall, afforestation across the rainfall gradient was responsible for a significant increase in the WUE in this region (Fig. 10). Nevertheless, the positive change in the WUE decreased when moving from the dry Yatir-Wady Attir paired site (279 mm y\(^{-1}\)) to
the more humid paired-site of Birya-Kadita (766 mm y-1; Fig. 10), strengthening the importance of afforestation efforts in drylands areas.

7. Summary and conclusions

We have tested here a biophysical-based model of ET and CO\textsubscript{2} fluxes driven by satellite-derived vegetation index and meteorological data (RS-Met) and adjusted with a seasonal water deficit factor. The model was validated against direct flux measurements from extensive field campaigns and a fixed Fluxnet station, and compared with MODIS ET/GPP products at seven evergreen forest and adjacent non-forested ecosystem sites along a steep rainfall gradient in the high-energy water-limited Eastern Mediterranean region. Adjusting the model with the water deficit factor generally improved its performance compared to using the model without this factor, particularly in forest sites. The model also outperformed MODIS-based ET/GPP models, which showed generally lower estimates, particularly in the forest sites suggesting that these models might benefit from the inclusion of the water deficit factor.

Our results show the potential use of this simple biophysical remote-sensing-based model in assessing ET and GPP on a daily basis and at a moderate spatial resolution of 250 m, even in high-energy water-limited environments. The addition of a water deficit factor (based on daily rainfall and radiation and/or temperature data alone) in the RS-Met significantly improved its performance in shrublands and especially in forests in this region and might be used in other global models. Nevertheless, careful attention should be paid to adjusting the deficit water factor to local conditions, with their further development particularly required at the end of the rainy season-beginning of the dry period.

Using the RS-Met, we were able to estimate changes in water use efficiency due to afforestation across the rainfall gradient in Israel. Overall, afforestation across our study area was responsible for a significant increase in the WUE. However, the positive change in the WUE decreased when moving from dry (279 mm y-1) to more humid (766 mm y-1) regions, strengthening the importance of drylands afforestation.

Finally, the use of this simple RS-Met approach linked to flexible campaign-based ground validation, as demonstrated in this study, represents a powerful basis for the reliable extension of ET and GPP estimates across spatial and temporal scales in regions with low density of flux stations.
Acknowledgments

David Helman acknowledges personal grants provided by the Bar-Ilan University Presidential Office (Milgat Hanasi), the JNF-Rieger Foundation, USA, and the Hydrological Service of Israel, Water Authority. S. Rohatyn acknowledges scholarships provided by Ronnie Appleby fund, the Advanced School of Environmental Science of the Hebrew University, and the Israel Ministry of Agriculture. We thank E. Ramati for helping with field work and data processing, G. Fratini for helping with EddyPro, and H. Sagi and A. Pelner for technical assistance. We are also grateful to the Meteorological Service of Israel for providing meteorological data and to NASA for making public the MODIS NDVI datasets. This research was partly supported by the Hydrological Service of Israel, Water Authority (Grant No. 4500962964). Flux measurements were made possible through the financial support from the Israel Science Foundation (ISF), Minerva foundation, JNF-KKL, the Hydrological Service of Israel, Water Authority, and C. Wills and R. Lewis program in Environmental Science.

References

Helman, D., (under review). Land Surface Phenology: What do we really ‘see’ from space?

Helman, D., Leu, S., Mussery, A., (under review) Contrasting effects of two Acacia species on understorey growth in a drylands environment: Interplay of water and light

doi:10.1016/j.agrformet.2013.09.003

doi:10.1007/s00468-015-1317-x

doi:10.1007/s00442-011-2010-4

doi:10.1038/srep07483

Tatarinov, F., Rotenberg, E., Maseyk, K., Ogée, J., Klein, T., Yakir, D., 2016. Resilience to
doi:10.1111/nph.13791

A., Running, S. W., Zhao, M., Wofsy, S. C., Dunn, A. L., Law, B. E., Campbell, J. L.,
Site-level evaluation of satellite-based global terrestrial gross primary production and

https://doi.org/10.1016/j.ecolmodel.2006.06.008

uptake of a mature Acacia mangium plantation estimated from sap flow measurements

CO2 and temperature on trees and the importance of scaling. Plant. Cell Environ. 38,
991–1007. doi:10.1111/pce.12527

Williams, C.A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C., Schwalm, C.,
Wohlfahrt, G., Hasler, N., Bernhofer, C., Foken, T., Papale, D., Schymanski, S.,
Schaefer, K., 2012. Climate and vegetation controls on the surface water balance:
Synthesis of evapotranspiration measured across a global network of flux towers. Water

Wu, C., Huang, W., Yang, Q., Xie, Q., 2015. Improved estimation of light use efficiency by
removal of canopy structural effect from the photochemical reflectance index (PRI).

Zhao, M., Running, S.W., 2010. Drought-Induced Reduction in Global Terrestrial Net
Table 1. Site characteristics and locations divided into two groups of forest (top) and non-forest (bottom) sites. In each group, sites are arranged from the dry to the humid (from top to bottom).

<table>
<thead>
<tr>
<th>Site</th>
<th>Location (Lat, N; Lon, E)</th>
<th>PFT</th>
<th>Dominant species</th>
<th>Grazing</th>
<th>Altitude</th>
<th>P</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yatir</td>
<td>31.3451; 35.0519</td>
<td>CF</td>
<td>P. halepensis</td>
<td>sheep</td>
<td>660</td>
<td>279</td>
<td>0.19</td>
</tr>
<tr>
<td>Eshtaol</td>
<td>31.7953; 34.9954</td>
<td>CF</td>
<td>P. halepensis</td>
<td>sheep</td>
<td>385</td>
<td>480</td>
<td>0.34</td>
</tr>
<tr>
<td>HaSolelim</td>
<td>32.7464; 35.2317</td>
<td>OF</td>
<td>Q. ithaburensis</td>
<td>cattle</td>
<td>180</td>
<td>543</td>
<td>0.42</td>
</tr>
<tr>
<td>Birya</td>
<td>33.0015; 35.4823</td>
<td>CF</td>
<td>P. halepensis</td>
<td>cattle</td>
<td>750</td>
<td>766</td>
<td>0.63</td>
</tr>
<tr>
<td>Wady Attir</td>
<td>31.3308; 34.9905</td>
<td>SH</td>
<td>Phagnalon rupestre</td>
<td>sheep</td>
<td>490</td>
<td>279</td>
<td>0.11</td>
</tr>
<tr>
<td>Modin</td>
<td>31.8698; 35.0125</td>
<td>SH</td>
<td>S. spinosum</td>
<td>cattle</td>
<td>245</td>
<td>480</td>
<td>0.32</td>
</tr>
<tr>
<td>Kadita</td>
<td>33.0110; 35.4614</td>
<td>SH</td>
<td>S. spinosum</td>
<td>cattle</td>
<td>815</td>
<td>766</td>
<td>0.63</td>
</tr>
</tbody>
</table>

PFT is the plant functional type (CF, Coniferous forest; OF, oak forest; SH, shrubland); Grazing indicates the main grazing regime in the site; altitude is in meters above sea level; P is the mean annual rainfall (mm y⁻¹); and AF is the aridity factor calculated as the P to the ET₀ ratio (in mm mm⁻¹).
Table 2. Statistics of the comparison between the RS-Met with the addition of the water deficit factor (f_{WD}) and without its addition (NO f_{WD}) and the eddy covariance-derived measurements.

<table>
<thead>
<tr>
<th>Site</th>
<th>N</th>
<th>Correlation</th>
<th>MAE</th>
<th>N</th>
<th>Correlation</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yatir</td>
<td>2228</td>
<td>0.05*</td>
<td>0.76</td>
<td>1.9</td>
<td>0.18</td>
<td>2293</td>
</tr>
<tr>
<td>Eshtaol</td>
<td>47</td>
<td>0.16*</td>
<td>0.64</td>
<td>1.3</td>
<td>1.6</td>
<td>54</td>
</tr>
<tr>
<td>HaSolelim</td>
<td>40</td>
<td>0.72</td>
<td>0.79</td>
<td>2.0</td>
<td>0.8</td>
<td>41</td>
</tr>
<tr>
<td>Biryu</td>
<td>57</td>
<td>0.72</td>
<td>0.85</td>
<td>1.8</td>
<td>1.8</td>
<td>57</td>
</tr>
<tr>
<td>Wady Attir</td>
<td>28</td>
<td>0.80</td>
<td>0.91</td>
<td>0.5</td>
<td>0.7</td>
<td>29</td>
</tr>
<tr>
<td>Modiin</td>
<td>43</td>
<td>0.62</td>
<td>0.64</td>
<td>1.9</td>
<td>1.0</td>
<td>43</td>
</tr>
<tr>
<td>Kadita</td>
<td>28</td>
<td>0.80</td>
<td>0.67</td>
<td>0.8</td>
<td>1.0</td>
<td>28</td>
</tr>
</tbody>
</table>

The mean absolute error (MAE) is in mm d$^{-1}$ for the ET and in g C m$^{-2}$ d$^{-1}$ for the GPP. All the correlations were highly statistically significant at $P<0.001$, except for the ET model without the f_{WD} at the forest site of Yatir (*). The number of days used for the correlation in each site and flux is indicated (N=days).
Figures

Fig. 1. Views of the seven study sites along the climatic gradient (a – g) and the newly mobile flux measurement system used in this study (h). Sites include three paired of planted pine forests (*Pinus halepensis*) and adjacent non-forest sites (representing the original environment on which these forests were planted): Yatir (a) and Wady Attir (b); Eshtaol (c) and Modiin (d); Birya (e) and Kadita (f). The deciduous oak forest of HaSolelim is shown (d). The three paired sites (a-f) represent the geo-climatic transition from xeric to mesic environments in Israel, respectively.
Fig. 2. Seasonal evolution of the water deficit factor (f_{WD}; black line in upper panel) and the main drivers of the modeled ET (a) and GPP (b) at the semiarid pine forest of Yatir (ET_{RS-Met} and GPP_{RS-Met}, respectively; black line in lower panel) for the seasonal years 2008/9 and 2009/10. EC fluxes are also shown (ET_{Obs} and GPP_{Obs}, red and purple dots, respectively). The K_C and the radiation use efficiency (RUE) both without the addition of the f_{WD} (blue in middle panels) are shown together with the potential ET (ET_o; yellow in a), the fraction of vegetation cover (f_{VC}; green in a), the photosynthetic active radiation (PAR; yellow in b), and the fraction of absorbed PAR (f_{APAR}; green in b). Colored vertical bands indicate the critical periods when the addition of f_{WD} is particularly useful.
Fig. 3. Observed (EC) and modeled (RS-Met) ET and GPP at Yatir. Shown in (a – d) are the RS-Met with (black) and without (grey) the water deficit factor (f_{WD}). Closer look at selected years 2009/10 and 2003/4 are shown in (e) and (f), respectively. Inserts show the correlations between modeled and observed fluxes with and without the f_{WD} (black and grey dots, respectively).
Fig. 4. Eight-day averaged values of ET (a) and GPP (b) from EC (dots), RS-Met (black) and MODIS (green) at Yatir. The R of the correlation for EC vs. RS-Met is 0.78 and 0.80 for ET and GPP, respectively (slope = 0.90 and 0.70; intercept = 0.19 and 0.66 for ET and GPP, respectively). The R of the correlation for EC vs. MODIS is 0.47 and 0.60 for ET and GPP, respectively (slope = 0.21 and 0.27; intercept = 0.56 and 1.47 for ET and GPP, respectively).
Fig. 5. Annual ET (mm y$^{-1}$) summed from daily RS-Met (with f_{WD}; black), MODIS (green) and EC (red) at Yatir forest site for 2003-2014 (a). Linear regressions of the EC vs. RS-Met (b) and EC vs. MODIS (c). Daily estimates from RS-Met in dry summer (June-August; d) and rainy (October-May; e) seasons. The R’s of the linear fits for EC vs. RS-Met (b) and MODIS (c) are 0.78 ($P<0.05$; N=10) and 0.10 ($P>0.1$; N=11), respectively. The R’s of the linear fits for the daily data in (d) and (e) are 0.05 ($P>0.1$; N=876) and 0.80 ($P<0.0001$; N=1570), respectively. The interannual trends in ET/P from EC, RS-Met and MODIS are presented in the upper panel of (a). Note that the annual sums of ET from EC and RS-Met in 2012 and 2013, respectively, are not displayed due to the scarcity of available data during these years (>50% missing data).
Fig. 6. Annual GPP sums (g C m\(^{-2}\) y\(^{-1}\)) from EC, RS-Met (with \(f_{WD}\)) and the 8-day MOD16 product (MODIS) at Yatir (a); and the linear regressions of EC vs. RS-Met (b) and MODIS (c). The R of the linear fits is 0.91 (\(P<0.05; N=10\)) and 0.58 (\(P=0.08; N=10\)) for RS-Met and MODIS, respectively. Annual EC GPP for 2009 and 2011 were not calculated due to missing data.
Fig. 7. ET (a) and GPP (b) from EC, RS-Met (with f_{WD}) and MODIS (MOD16A2 and MOD17A2 products, respectively) at the six forest and non-forested sites.
Fig. 8. Cross-site EC vs. model correlations of ET (a, c) and GPP (b, d). In (a) and (b) are the EC vs. RS-Met (with f_wd) using all EC data from the six sites (each dot representing a single date), with linear fits of \(\text{ET}_{\text{RS-Met}} = 0.936 \text{ET}_{\text{EC}} + 0.281 \) (\(R = 0.82; P<0.0001; N = 243 \)) and \(\text{GPP}_{\text{RS-Met}} = 0.990 \text{GPP}_{\text{EC}} + 0.515 \) (\(R = 0.86; P<0.0001; N = 252 \)) for ET and GPP, respectively. In (c) and (d) are the same cross-site correlations but with data averaged over 8-day periods for comparisons with MODIS ET and GPP products (8-day averaged values). Linear fits for EC vs. RS-Met and MODIS in (c) are \(\text{ET}_{\text{RS-Met}} = 1.16 \text{ET}_{\text{EC}} - 0.11 \) (\(R = 0.88; P<0.0001; N = 36 \)) and \(\text{ET}_{\text{MODIS}} = 0.38 \text{ET}_{\text{EC}} + 0.33 \) (\(R = 0.65; P<0.0001; N = 33 \)), respectively. In (d), linear fits are \(\text{GPP}_{\text{RS-Met}} = 1.09 \text{GPP}_{\text{EC}} + 0.21 \) (\(R = 0.92; P<0.0001; N = 36 \)) and \(\text{GPP}_{\text{MODIS}} = 0.43 \text{GPP}_{\text{EC}} + 1.31 \) (\(R = 0.77; P<0.0001; N = 33 \)) for EC vs. RS-Met and MODIS, respectively.
Fig. 9. Mean annual (2003-2013) estimates of ET (a) and GPP (b) from RS-Met (black), MODIS (green) and PaVI-E (grey; only for ET in a; Helman et al., 2015a) at the seven sites. Uppercase letters indicate significant differences at $P<0.05$ between sites from Tukey HSD separation procedure following two-way ANOVA for the interaction of site \times model (using PaVI-E and RS-Met in a and MODIS and RS-Met in b). Asterisks indicate significant different values from other models for the specific site, as indicated by Tukey HSD. The EC annual sums at Yatir are also shown (red).
Fig. 10. The change in GPP, ET and water use efficiency (WUE; as indicated by the direction of the arrow) attributed to the afforestation (closed symbols) of shrubland areas (open symbols) across a rainfall gradient in Israel (279-766 mm y\(^{-1}\)). The three-paired forest and non-forest sites of Yatir-Wady Attir, Eshtaol-Modiin and Birya-Kadita are indicated with yellow, green and blue colors, respectively. The rainfall level at each paired site is indicated near the arrow (in mm y\(^{-1}\)). Note the changing slope of the change in ET and GPP, indicating that the gain in WUE due to afforestation decreases from dry to humid areas.
Supplement of

A remote sensing-based biophysical model for daily estimations of evapotranspiration and CO₂ uptake in high-energy water-limited environments

D. Helman et al.

Correspondence to: D. Helman (davidhelman.biu@gmail.com)
Figures

Fig. S1. Views of the seven study sites along the climatic gradient (a – g) and the newly mobile flux measurement system used in this study (h). This figure is the same as Fig. 1 in main article.
Fig. S2. Original (black line) and smoothed (green line) time series of NDVI (MOD13Q1) in the seven sites (see sites in Fig. S1 and respective locations in Table 1 in the main article). Smoothing and interpolation of the 16-day data to daily values was achieved using local weighted scatterplot smoothing technique (LOESS). The elimination of outliers by LOESS is clearly seen in the time series of all sites.
Fig. S3. Annual ET (mm y\(^{-1}\)) summed from daily RS-Met estimates (with \(f_{WD}\)) and EC, and annual rainfall amounts (P) at Yatir pine forest site for 2003-2014 (a). Linear EC vs. RS-Met ET regressions of the annual (b) and daily estimates during dry summer (June-August; c) and rainy (October-May; d) seasons. The R’s of the linear fits are 0.78 (\(P<0.05; N=10\)) in (b), 0.05 (\(P>0.1; N=876\)) in (c) and 0.80 (\(P<0.0001; N=1570\)) in (d). The interannual trends in ET/P from EC and RS-Met are presented in upper panel of (a). Note that annual sums of ET from EC and RS-Met in 2012 and 2013, respectively, are not displayed due to the scarcity of available data during these years (>50% missing data).
Fig. S4. Same as Fig. 7 in main article with the addition of RS-Met without the f_{WD} (grey line).
Fig. S5. Cross-site correlations between eddy ET and GPP from EC (red) and RS-Met (black). The RS-Met with the water deficit factor (f_{WD}) is shown. The slopes of the linear fits in are 2.32 g C kg\(^{-1}\) H\(_2\)O and 1.76 g C kg\(^{-1}\) H\(_2\)O for RS-Met and EC, with $R = 0.87$ and 0.65 ($P<0.0001$; $N = 243$ for both), respectively.