An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM 4.5)

Brett Raczka¹, Henrique F. Duarte², Charles D. Koven³, Daniel Ricciuto⁴, Peter E. Thornton⁴, John C. Lin², David R. Bowling¹

[1]{Dept. of Biology, University of Utah, Salt Lake City, Utah}
[2]{Dept. of Atmospheric Sciences, University of Utah, Salt Lake City, Utah}
[3]{Lawrence Berkeley National Laboratory, Berkeley, California}
[4]{Oak Ridge National Laboratory, Oak Ridge, Tennessee}

Correspondence to: B. Raczka (brett.raczka@utah.edu)

Abstract

Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO₂ offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model’s capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ¹³C within atmospheric CO₂ (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO₂ and δ¹³C of CO₂ time series. We implemented a seasonally-varying Vcmax model calibration that best matched site observations of net CO₂ carbon exchange, latent heat exchange and biomass. The model accurately simulated observed δ¹³C of needle and stem tissue, but underestimated the δ¹³C of bulk soil carbon by 1-2 ‰. The model overestimated the multi-year (2006-2012) average Δcanopy relative to prior data-based estimates by 5-6 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e. higher in spring/fall as compared to summer) was correctly modeled but only with an alternative nitrogen limitation formulation for the model. The model
attributed most of the seasonal variation in discrimination to the net assimilation rate (A_n), whereas inter-annual variation in simulated Δ_{canopy} during the summer months was driven by stomatal response to vapor pressure deficit. Soil moisture did not influence modeled Δ_{canopy}.

The model simulated a 10% increase in both photosynthetic discrimination and water use efficiency (WUE) since 1850 as a result of CO$_2$ fertilization, forced by constant climate conditions. This increasing trend in discrimination is counter to well-established relationships between discrimination and WUE. The isotope observations used here to constrain CLM suggest 1) the model overestimated stomatal conductance and 2) the default CLM approach to representing nitrogen limitation (post-photosynthetic limitation) was not capable of reproducing observed trends in discrimination. These findings demonstrate that isotope observations can provide important information related to stomatal function driven by environmental stress from VPD and nitrogen limitation.

Introduction

The net uptake of carbon by the terrestrial biosphere currently mitigates the rate of atmospheric CO$_2$ rise and thus the rate of climate change. Approximately 25% of anthropogenic CO$_2$ emissions are absorbed by the global land surface (Le Quéré et al., 2015), but it is unclear how projected changes in temperature and precipitation will influence the future of this land carbon sink (Arora et al., 2013; Friedlingstein et al., 2006). A major source of uncertainty in climate model projections results from the disagreement in projected strength of the land carbon sink (Arora et al., 2013). Thus, it is critical to reduce this uncertainty to improve climate predictions, and to better inform mitigation strategies (Yohe et al., 2007).

An effective approach to reduce uncertainties in terrestrial carbon models is to constrain a broad range of processes using distinct and complementary observations. Traditionally, terrestrial carbon models have relied primarily upon observations of land-surface fluxes of carbon, water and energy derived from eddy-covariance flux towers to calibrate model parameters and evaluate model skill. Flux measurements best constrain processes that occur at diurnal and seasonal time scales (Braswell et al., 2005; Ricciuto et al., 2008). Traditional ecological metrics of carbon pools (e.g. leaf area index, biomass) are also commonly used to provide independent and complementary constraints upon ecosystem processes at longer time scales (Ricciuto et al., 2011; Richardson et al., 2010). However, neither flux nor carbon pool
observations provide suitable constraints for the model formulation of plant stomatal function and the related link between the carbon and water cycles.

Stable carbon isotopes of CO₂ are influenced by stomatal activity in C3 plants (e.g. evergreen trees, deciduous trees), and thus provide a valuable but under-utilized constraint on terrestrial carbon models. Plants assimilate more of the lighter of the two major isotopes of atmospheric carbon (¹²C vs. ¹³C). This preference, termed photosynthetic discrimination (Δ_canopy), is primarily a function of two processes, CO₂ diffusion rate through the leaf boundary layer and into the stomata, and the carboxylation of CO₂. The magnitude of Δ_canopy is controlled by CO₂ supply (atmospheric CO₂ concentration, stomatal conductance) and demand (photosynthetic rate; Flanagan et al., 2012). In general, environmental conditions favorable to plant productivity result in higher Δ_canopy during carbon assimilation compared to unfavorable conditions. Plants respond to unfavorable conditions by closing their stomata and reducing the stomatal conductance which reduces Δ_canopy. Most relevant here, Δ_canopy responds to atmospheric moisture deficit (Andrews et al., 2012; Wingate et al., 2010), soil water content (McDowell et al., 2010), precipitation (Roden and Ehleringer, 2007) and nutrient availability. After carbon is assimilated, additional post-photosynthetic isotopic changes occur (Bowling et al., 2008; Brüggemann et al., 2011), but these impose a small influence on land-atmosphere isotopic exchange relative to photosynthetic discrimination.

The Niwot Ridge Ameriflux site, located in a sub-alpine conifer forest in the Rocky Mountains of Colorado, U.S.A., has a long legacy of yielding valuable datasets to test carbon and water functionality of land surface models using stable isotopes. Niwot Ridge has a 17-year record of eddy covariance fluxes of carbon, water, and energy, as well as environmental data (Hu et al., 2010; Monson et al., 2002) and a 10-year record of δ¹³C of CO₂ in forest air (Schaeffer et al., 2008). From a carbon balance perspective, Niwot Ridge is representative of subalpine forests in Western North America that, in general, act as a carbon sink to the atmosphere (Desai et al., 2011). Western forests, make up a significant portion of the carbon sink in the United States (Schimel et al., 2002), yet this carbon sink is projected to weaken with projected changes in temperature and precipitation (Boisvenue and Running, 2010).

The Community Land Model (CLM), the land sub-component of the Community Earth System Model (CESM) has a comprehensive representation of biogeochemical cycling (Oleson et al., 2013) that can be applied across a range of temporal (hours to centuries) and spatial scales (site to global). A mechanistic representation of photosynthetic discrimination based
upon diffusion and enzymatic fractionation (Farquhar et al., 1989) was included in the latest release of CLM 4.5 (Oleson et al., 2013). An early version of CLM simulated carbon (but not carbon isotope) dynamics at Niwot Ridge with reasonable skill (Thornton et al., 2002). To date, we are not aware of any CLM-based studies that have used CO$_2$ isotopes at natural abundance to quantify the accuracy of the photosynthetic discrimination sub-model, or to evaluate the utility of CO$_2$ isotopes to constrain carbon and water cycle coupling.

Here, we evaluate the performance of the 13C/12C isotope discrimination sub-model within CLM 4.5 against a range of isotopic observations at Niwot Ridge, to examine what new insights an isotope-enabled model can bring upon ecosystem function. Specifically, we test whether CLM simulates the expected isotopic response to environmental drivers of CO$_2$ fertilization, soil moisture and atmospheric vapor pressure deficit (VPD). A previous analysis at Niwot Ridge showed a seasonal correlation between vapor pressure deficit (VPD) and photosynthetic discrimination (Bowling et al., 2014) which may suggest that leaf stomata are responding to changes in VPD, and influencing discrimination. We use CLM to test whether VPD is the primary environmental driver of isotopic discrimination, as compared to soil moisture and net assimilation rate. Next we determine whether including site-specific δ^{13}C of atmospheric CO$_2$ within the model simulation combined with simulated long term (multi-decadal to century) photosynthetic discrimination and simulated carbon pool turnover, accurately reproduces the measured δ^{13}C in leaf tissue, roots and soil carbon. We then use CLM to determine if the increase in atmospheric CO$_2$ since 1850 has led to an increase in WUE, and whether net assimilation or stomatal conductance is the primary driver of such a change. Finally, we ask what distinct insights site level isotope observations bring in terms of both model parameterization (i.e. stomatal conductance) and model structure as compared to the traditional observations (e.g. carbon fluxes, biomass).

2 Methods

We focus the description of CLM 4.5 (Section 2.1) upon photosynthesis, and its linkage to nitrogen, soil moisture and stomatal conductance (Section 2.1.1). Next we describe the model representation of carbon isotope discrimination by photosynthesis (Section 2.1.2). Because preliminary simulations demonstrated that model results were strongly influenced by nitrogen limitation, we used three separate nitrogen formulations (described in Section 2.1.2) to better diagnose model performance. Next, to provide context for subsequent descriptions of
site-specific model adjustments we describe the field site, Niwot Ridge, including the site level
observations (Section 2.2) used to constrain model behavior and test model skill.

Patterns in plant growth and δ¹³C of biomass are strongly influenced by atmospheric CO₂
and δ¹³C of atmospheric CO₂ (δ cocaine). Therefore we designed a site-specific synthetic
atmospheric CO₂ product (Section 2.3.1) and δ cocaine product (Section 2.3.2) for these simulations.
The model setup and initialization procedure, intended to bring the system into steady state, is
described in Section (2.3.3). This is followed by an explanation of the model calibration
procedure that provided a realistic simulation of carbon and water fluxes (Section 2.4).

2.1 Community Land Model, Version 4.5

We used the Community Land Model, CLM 4.5 (Oleson et al., 2013), which is the land
component of the Community Earth System Model (CESM) version 1.2
(https://www2.cesm.ucar.edu/models/current). Details regarding the Community Land Model
can be found in (Mao et al., 2016; Oleson et al., 2013). Here, we emphasize the mechanistic
formulation that controls photosynthetic discrimination (Δ canopy) and factors that influence
Δ canopy including photosynthesis, stomatal conductance, water stress and nitrogen limitation. A
list of symbols is provided in Table (1).

2.1.1 Net Photosynthetic Assimilation

The net carbon assimilation of photosynthesis, A_n is based on Farquhar et al., (1980) as,

\[A_n = \min(A_c, A_f, A_p) - Resp_d, \]

where A_c, A_f and A_p are the enzyme (Rubisco)-limited, light-limited, and product-limited rates
of carboxylation respectively, and Resp_d the leaf-level dark respiration. The enzyme limited
rate is defined as

\[A_c = \frac{V_{c max}(c_i - \Gamma_c)}{c_i + K_c(1 + \frac{\Gamma_c}{K_o})}, \]

where c_i is the internal leaf partial pressure of CO₂, o_t = 0.209 P_atm, where P_atm is atmospheric
pressure, and K_c, K_o and \Gamma_c are constants. The maximum rate of carboxylation at 25°C, V_{c max25},
is defined as

\[V_{c max25} = N_a F_{LNR} F_{NR} a_{R25}, \]
where N_a is the nitrogen concentration per leaf area, F_{LNR} the fraction of leaf nitrogen within the Rubisco enzyme, F_{NR} the ratio of total Rubisco molecular mass to nitrogen mass within Rubisco, and a_{R25} is the specific activity of Rubisco at 25°C. The V_{cmax25} is adjusted for leaf temperature to provide V_{cmax} in Eq. 2, used in the final photosynthetic calculation.

The carbon and water balance are linked through c_i by the stomatal conductance, g_s, following the Ball-Berry model as defined by Collatz et al., (1991),

$$g_s = m \frac{A_n}{c_s/P_{atm}} h_s + b \beta_t, \quad (4)$$

where m is the stomatal slope, c_s the partial pressure of CO$_2$ at the leaf surface and b the minimum stomatal conductance when the leaf stomata are closed. The variable $h_s = e_t/e_s$ is the leaf surface specific humidity with e_t the vapor pressure at the leaf surface and e_s the saturation vapor pressure inside the leaf. The variable β_t represents the level of soil moisture availability, which influences stomatal conductance directly, but also indirectly through A_n by multiplying V_{cmax} by β_t (Sellers et al., 1996). CLM calculates β_t as a factor (0-1, high to low stress) by combining soil moisture, the rooting depth profile, and a plant-dependent response to soil water stress as

$$\beta_t = \sum_i w_i r_i, \quad (5)$$

where w_i is a plant wilting factor for soil layer i and r_i is the fraction of roots in layer i. The plant wilting factor is scaled according to soil moisture and water potential, depending on plant functional type (PFT). Soil moisture is predicted based upon prescribed precipitation and vertical soil moisture dynamics (Zeng and Decker, 2009). The root fraction in each soil layer depends upon a vertical exponential profile controlled by PFT dependent root distribution parameters adopted from Zeng (2001).

The version of CLM used here has a 2-layer (shaded, sunlit) representation of the tree canopy. Photosynthesis and stomatal conductance are calculated separately for the shaded and sunlit portion and the total canopy photosynthesis is the potential gross primary productivity (GPP), $CF_{GPP_{pot}}$. The total carbon available for new growth allocation ($CF_{avail_{alloc}}$) is defined as

$$CF_{avail_{alloc}} = CF_{GPP_{pot}} - CF_{GPP_{mr}} - CF_{GPP_{xs}}, \quad (6)$$

where $CF_{GPP_{mr}}$ is the carbon costs for maintenance respiration and $CF_{GPP_{xs}}$ is the carbon allocated to a pool responsible for meeting maintenance respiration demand during periods with...
low or zero photosynthesis. In contrast, $C_{F_{alloc}}$, is the actual carbon allocated to growth calculated from the available nitrogen and fixed C:N ratios for new growth (e.g. stem, roots, leaves). The downregulation of photosynthesis from nitrogen limitation, f_{dreg}, is given by

$$f_{dreg} = \frac{C_{F_{ alloc, avail}} - C_{F_{alloc}}}{C_{F_{GPP, pot}}}.$$

(7)

2.1.2 Photosynthetic Carbon Isotope Discrimination

The canopy-level fractionation factor α_{psn} is defined as the ratio of ¹³C/¹²C within atmospheric CO₂ (R_a) and the products of photosynthesis (R_{GPP}) as $\alpha_{psn} = \frac{R_a}{R_{GPP}}$. The preference of C₃ vegetation to assimilate the lighter CO₂ molecule during photosynthesis is simulated in CLM with two steps: diffusion of CO₂ across the leaf boundary layer and into the stomata, followed by enzymatic fixation to give the leaf-level fractionation factor:

$$\alpha_{psn} = 1 + \frac{4.4 + 22.6 \frac{c_i'}{c_a}}{1000}.$$

(8)

where c_i' and c_a are the intracellular and atmospheric CO₂ partial pressure respectively. The variable c_i' is marked with an asterisk to indicate the inclusion of nitrogen downregulation as defined as,

$$c_i' = c_a - A_n (1 - f_{dreg}) P_{atm} \frac{(1.4 g_b) + (1.6 g_b)}{g_b g_s}$$

(9)

where g_b is the leaf boundary layer conductance. The inclusion of the nitrogen downregulation factor f_{dreg} in the above expression reflects the two-stage process in which the potential photosynthesis and the actual photosynthesis are calculated within CLM and prevents a mismatch between the actual photosynthesis and the intracellular CO₂.

The sensitivity of preliminary model results to nitrogen limitation led us to test three distinct discrimination formulations (Table 2). The limited nitrogen formulation, was based on the default version of CLM 4.5 and included both nitrogen limitation and the nitrogen downregulation factor within the calculation of c_i' as given in equation (9). In the second, unlimited nitrogen formulation, we allowed vegetation to have unlimited access to nitrogen ($C_{F_{GPP, pot}} = C_{F_{GPP}}$, $f_{dreg} = 0$). Finally, in the no downregulation discrimination formulation, we included nitrogen limitation, but removed the downregulation factor f_{dreg} from equation (9).
In the unlimited nitrogen formulation, we use a different modifier on V_{cmax25} (described in section 2.4 and Fig. S1, S2) in the calibrated runs to give similar carbon flux, water flux and biomass as in the other two formulations, such that all three formulations have fluxes and biomass that are similar to what is observed at the site, and which presumably reflect nitrogen limitation. Thus the distinction between these three formulations can be viewed entirely of when nitrogen limitation is imposed in relation to photosynthesis: (1) after photosynthesis via a downregulation between potential and actual GPP (equation 7) that feeds back on the c_i/c_a used for isotopic discrimination but not on the stomatal conductance in the limited nitrogen formulation; (2) before photosynthesis via V_{cmax} which limits photosynthetic capacity affecting both c_i/c_a and stomatal conductance in the unlimited nitrogen formulation; and (3) after photosynthesis with no effect on either the c_i/c_a for isotopic discrimination or the stomatal conductance in the no downregulation discrimination formulation.

Carbon isotope ratios are expressed by standard delta notation,

$$\delta^{13}C_X = \left(\frac{R_X}{R_{VPDB}} - 1 \right) \times 1000,$$ \hspace{1cm} (10)

where R_X is the isotopic ratio of the sample of interest, and R_{VPDB} is the isotopic ratio of the Vienna Pee Dee Belemnite standard. The delta notation is dimensionless but expressed in parts per thousand (‰) where a positive (negative) value refers to a sample that is enriched (depleted) in 13C/12C relative to the standard. Because this is the only carbon isotope ratio we are concerned with in this paper, the ‘13’ superscript is omitted for brevity in subsequent definitions using the delta notation. The canopy-integrated photosynthetic discrimination, Δ_{canopy}, is defined as the difference between the δ^{13}C of the atmospheric and assimilated carbon,

$$\Delta_{canopy} = \delta_{atm} - \delta_{GPP}.$$ \hspace{1cm} (11)

The difference between δ^{13}C of the total ecosystem respiration (ER) and GPP fluxes, called the isotope disequilibrium (Bowling et al., 2014), is defined as,

$$disequilibrium = \delta_{ER} - \delta_{GPP}.$$ \hspace{1cm} (12)

The ecosystem-level water use efficiency (WUE) is defined as carbon assimilated (GPP) per unit water transpired (E_T) per unit land surface area,

$$WUE = \frac{GPP}{E_T}.$$ \hspace{1cm} (13)

The intrinsic water use efficiency ($iWUE$) from leaf-level physiological ecology is defined as,
\[iWUE = \frac{A}{g_s}, \quad (14) \]

where \(A \) is the carbon assimilated per unit leaf area and \(g_s \) is the stomatal conductance. CLM calculates \(g_s \) (Equation 4) for shaded and sunlit portions of the canopy separately, therefore an overall conductance was calculated by weighting the conductance by sunlit and shaded leaf areas and is used in this manuscript.

2.2 Niwot Ridge and site-level observations

Site-level observations and modeling were focused on the Niwot Ridge Ameriflux tower, a sub-alpine conifer forest located in the Rocky Mountains of Colorado, U.S.A. The forest is approximately 110 years old and consists of lodgepole pine, Engelmann spruce, and subalpine fir. The site is located at an elevation of 3050 m above sea level, with mean annual temperature of 1.5°C and precipitation of 800 mm, in which approximately 60% is snow. More site details are available elsewhere (Hu et al., 2010; Monson et al., 2002). Flux and meteorological data were obtained from the Ameriflux archive (http://ameriflux.lbl.gov/).

Net carbon exchange (NEE) observations from the flux towers were partitioned into component fluxes of GPP and ER according to methods described by Reichstein et al., (2005) and Lasslop et al., (2010) using an online tool provided by the Max Planck Institute (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/). Seasonal patterns in \(\delta_{\text{GPP}} \) and \(\delta_{\text{ER}} \) were derived from measurements as described by (Bowling et al., 2014). Observations of \(\delta^{13}\text{C} \) of biomass (Schaeffer et al., 2008) and carbon stocks (Bradford et al., 2008; Scott-Denton et al., 2003) were compared to model simulations. Schaeffer et al., (2008) reported soil, leaf and root observations specific to each conifer species, however, the observed mean and standard error for all species were used for comparison because CLM treated all conifer species as a single PFT.

2.3 Atmospheric CO\(_2\), isotope forcing and initial vegetation state

2.3.1 Site-specific atmospheric CO\(_2\) concentration time series

Global average atmospheric CO\(_2\) concentrations increased roughly 40% from 1850 to 2013 (from 280 to 395 ppm). The standard version of CLM 4.5 includes an annually and globally averaged time series of this CO\(_2\) increase, however, this does not capture the observed seasonal variation of ~10 ppm at Niwot Ridge (Trollier et al., 1996). Therefore we created a
site-specific atmospheric CO2 time series (Figure 1) to provide a seasonally realistic atmosphere
at Niwot Ridge. Observations were used to create the synthetic product from 1968-2013 by
binning flask observations into 20 evenly spaced points each year. These flask observations
were taken weekly from Niwot Ridge (Dlugokencky et al., 2015). Prior to 1968, a polynomial
fit of the annualized CLM product was created and then adjusted by 1.5 ppm to account for the
average difference between the CLM product and the Niwot Ridge observations during those
years. Next, the average multi-year seasonal cycle based on the de-trended flask data after 1968
was added to every year of this annualized polynomial before 1968. Finally, the synthetic
atmospheric CO2 time series (pre 1968) was populated with 20 evenly spaced points in time
each year.

2.3.2 Customized δ¹³C atmospheric CO2 time series

As atmospheric CO2 has increased, the δ¹³C of atmospheric CO2 (δatm) has become
more depleted (Francey et al., 1999), and this change has occurred at Niwot Ridge at -0.25‰
per decade (Bowling et al., 2014). The δatm also varies seasonally, and depends on latitude
(Trolier et al., 1996). However, CLM 4.5 as released assigned a constant δ¹³C of -6‰. We
therefore created a synthetic time series of δatm from 1850-2013 (Figure 1). From 1990-2013
this was based upon the flask observations (White et al., 2015) as described in Section 2.3.1. A
similar approach to the atmospheric CO2 synthetic time series (Section 2.3.1) was applied here
to create the synthetic δatm. After 1990 the flask data were binned into 20 evenly spaced points
each year. Prior to 1990 the inter-annual variation was based upon a polynomial fit to ice core
data from Law Dome (Francey et al., 1999; see also Rubino et al., 2013). The polynomial was
adjusted by 0.20‰ to account for the inter-hemispheric difference identified during the
common years (1990-1996) between the ice core and flask data. Next the average seasonal
cycle (1990-2013) of δatm was added to the adjusted polynomial prior to 1990. The synthetic
time series was populated from 1850-1989 with 20 evenly spaced points each year based upon
the adjusted polynomial with seasonal cycle included. As released, CLM 4.5 was not
compatible with time varying δatm, therefore we modified the source code by following the
model procedure for reading in time-varying ¹⁴C. The modified code was designed to
temporally interpolate the δatm time series for each time step of the model. This interpolated
value was then passed into the photosynthetic discrimination calculation to represent the time-varying δ_{atm}.

2.3.3 Model Initialization

We performed an initialization to transition the model from near bare-ground conditions to present day carbon stocks and LAI that allowed for proper evaluation of isotopic performance. This was implemented in 4 stages: 1) accelerated decomposition (1000 model years) 2) normal decomposition (1000 model years) 3) parameter calibration (1000 model years) and 4) transient simulation period (1850-2013). The first two stages were pre-set options within CLM with the first stage used to accelerate the equilibration of the soil carbon pools, which require a long period to reach steady state (Thornton and Rosenbloom, 2005). The parameter calibration stage was not a pre-set option but designed specifically for our analysis. For this we introduced a seasonally varying V_{cmax} that scaled the simulated GPP and ecosystem respiration fluxes to present day observations (Section 2.4). In the transient phase, we introduced time-varying atmospheric conditions from 1850-2013 including nitrogen deposition (CLM provided), atmospheric CO$_2$, and δ_{atm} (site-specific as described above). Environmental conditions of temperature, precipitation, relative humidity, radiation, and wind speed were taken from the Niwot Ridge flux tower observations from 1998-2013 and then cycled continuously for the entirety of the initialization process. We used a scripting framework (PTCLM) that automated much of the workflow required to implement several of these stages in a site level simulation (Mao et al., 2016; Oleson et al., 2013).

2.4 Specific model details and model calibration

We used PTCLM (e.g. Mao et al., 2016) to create site specific weather conditions and initial conditions for CLM 4.5. This version of CLM included a fully prognostic representation of carbon and nitrogen within its vegetation, litter and soil biogeochemistry. We used the Century model representation for soil (3 litter and 3 soil organic matter pools) with 15 vertically resolved soil layers. Nitrification and prognostic fire were turned off. Our initial simulations used prognostic fire, but we found that simulated fire was overactive leading to low simulated biomass compared to observations. Although Niwot Ridge has been subject to disturbance from
fire and harvest in the past, ultimately our final simulations did not include either fire or harvest disturbance because the last disturbance occurred over 100 years ago (early 20th century logging; Monson et al., 2005).

Ecosystem parameter values (Table 3) used here were based upon the temperate evergreen needleleaf plant functional type (PFT) within CLM. These values were based upon observations reported by White et al., (2000) intended for a wide range of temperate evergreen forests, and by Thornton et al., (2002) for Niwot Ridge. For this analysis two site-specific parameter changes were made. First, the e-folding soil decomposition parameter was increased from 5 to 20 meters. This parameter is a length-scale for attenuation of decomposition rate for the resolved soil depth from 0 to 5 meters where an increased value effectively increases decomposition at depth, thus reducing total soil carbon and more closely matching observations. Second, we performed an empirical photosynthesis scaling (equation 15, below) that reduced the simulated photosynthetic flux, as guided by eddy covariance observations. Consequently, all downstream carbon pools and fluxes including ecosystem respiration, aboveground biomass, and leaf area index which provided a better match to present day observations. This approach also removed a systematic overestimation of winter photosynthesis. The model simulations without the photosynthetic scaling are referred to within the text and figures as the uncalibrated model, whereas model simulations that include the photosynthetic scaling are referred to as the calibrated model. The source code was modified for this scaling approach by reducing $V_{c_{max}}$ at 25°C

$$V_{c_{max}25} = \frac{N_a F_{LNR} F_{NR} a_{R25}}{f_{df}}, \quad (15)$$

where f_{df} is the photosynthetic scaling factor, and all other parameters are identical to equation (3). These parameters were constant for the entirety of the simulations except for f_{df}, an empirically derived time dependent parameter ranging from 0-1. The value was set to zero to force photosynthesis to zero between November 13th and March 23rd, consistent with flux tower observations where outside of this range GPP > 0 was never observed. During the growing season period (GPP>0) within days of year 83-316, f_{df} was calculated as

$$f_{df} = \frac{\text{observed GPP(day of year)}}{\text{simulated GPP(day of year)}}, \quad 82 < \text{day of year} < 317 \quad (16)$$

where the observed GPP was the daily average calculated from the partitioned flux tower observations (Reichstein et al., 2005) from 2006-2013, and the simulated GPP was the daily average of the unscaled value during the same time. A polynomial was fit to equation (16) that
represented f_{df} for 1) both the limited nitrogen and no downregulation discrimination formulation and 2) the unlimited nitrogen formulation (Figure S1). Note that CLM already includes a daylength factor that also adjusts the magnitude of $V_{c_{max}}$ according to time of year, however, that default parameterization alone was not sufficient to match the observations.

3 Results & Discussion

This section is organized into four parts. First the calibrated model performance is evaluated against observed bulk carbon pool and bulk carbon flux behavior (Section 3.1.1), and against the observed $\delta^{13}C$ within carbon pools (Section 3.1.2). Second, the simulated photosynthetic discrimination is evaluated for multi-decadal trends (Section 3.2.1), magnitude (Section 3.2.2) and seasonal patterns (Section 3.2.3), including the environmental factors that were most responsible for driving the seasonal discrimination (Section 3.2.4). Third, we discuss how isotope observations can be used to guide model development related to nitrogen limitation (Section 3.3). Finally, we evaluate the capability of the model to reproduce the magnitude and trends of disequilibrium (Section 3.4).

3.1 Calibrated model performance

3.1.1 Fluxes & carbon pools

The CLM model was successful at simulating GPP, ER, and latent heat fluxes (Fig. 2), leaf area index (LAI), and aboveground biomass (Fig. 3), but only following site-specific calibration. The uncalibrated simulation (limited nitrogen formulation) overestimated LAI (39%), aboveground biomass (48%), average peak warm season GPP (15%), and average peak warm season ER (40%) and overestimated cold-season GPP by 200 gC m$^{-2}$ yr$^{-1}$. The calibrated simulation was much closer to the observations for LAI and aboveground biomass (Figure 3). The calibrated peak warm and cold season GPP, and warm season ER matched observations. The simulated latent heat fluxes were relatively insensitive to the calibration. Overall the simulated latent heat during the warm season overestimated the observations by 10% and underestimated by 10% during the cold season. Similar improvement was observed after calibration for the unlimited nitrogen run (not shown).
The calibration also eliminated erroneous winter GPP. In general, terrestrial carbon models tend to overestimate photosynthesis during cold periods for temperate/boreal conifer forests (Kolari et al., 2007), including Niwot Ridge (Thornton et al., 2002). One approach to correct for this is to include an acclimatization temperature (e.g. Flanagan et al., 2012) that reduces photosynthetic capacity during the spring and fall. The CLM 4.5 model includes functionality to adjust the photosynthetic capacity, including both a temperature acclimatization and a day length factor that reduces V_{cmax} (Bauerle et al., 2012; Oleson et al., 2013). However, this alone was not sufficient to match the observed fluxes. Although our calibration approach forced V_{cmax} to zero during the winter, it did not solve the underlying mechanistic shortcoming. A more fundamental approach should address either cold inhibition (Zarter et al., 2006) of photosynthesis or root access to soil moisture (Monson et al., 2005) to achieve the photosynthetic reduction. Nevertheless, within the confines of our study area, our calibration approach was sufficient to provide a skillful representation of photosynthesis and provided a sufficient testbed for evaluating carbon isotope behavior.

3.1.2 $\delta^{13}C$ of carbon pools

The model performed better simulating $\delta^{13}C$ biomass of bulk needle tissue, roots and soil carbon (Figure 4) for the unlimited nitrogen and no downregulation discrimination cases as compared to the limited nitrogen case. When nitrogen limitation was included the model underestimated $\delta^{13}C$ of sunlit needle tissue (1.8 ‰), bulk roots (1.0 ‰), and organic soil carbon (0.7‰). All simulations fell within the observed range of $\delta^{13}C$ in needles that span from -28.7 ‰ (shaded) to -26.7 (sunlit). This vertical pattern in $\delta^{13}C$ of leaves is common (Martinelli et al., 1998) and results from vertical differences in nitrogen allocation and photosynthetic capacity. The model results integrated the entire canopy and ideally should be closer to sun leaves (as in Figure 4) given that the majority of photosynthesis occurs near the top of the canopy.

Model simulations of $\delta^{13}C$ of living roots were ~1 ‰ more negative as compared to the structural roots. This range in $\delta^{13}C$ results from decreasing δ_{atm} with time (Suess effect, Figure 1). The living roots had a relatively fast turnover time of carbon within the model, whereas the structural roots had a slower turnover time and reflected an older (more enriched δ_{atm}) atmosphere. The limited nitrogen simulation was a poor match to observations relative to the others (Figure 4, middle panel).
There was an observed vertical gradient in δ^{13}C of soil carbon (-24.9 to -26 ‰) with more enriched values at greater depth (Figure 4, right panel). This vertical gradient is commonly observed (Ehleringer et al., 2000). Simulated δ^{13}C of soil carbon was most consistent with the organic horizon observations. There are a wide variety of post-photosynthetic fractionation processes in the soil system (Bowling et al., 2008; Brüggemann et al., 2011) that are not considered in the CLM 4.5 model, so the match with observations is perhaps fortuitous.

3.2 Photosynthetic discrimination

3.2.1 Decadal changes in photosynthetic discrimination and driving factors

All modeled carbon pools showed steady depletion in δ^{13}C since 1850 (coinciding with the start of the transient phase of simulations, Figure 4). For the limited nitrogen run, there was a decrease in δ^{13}C of 2.3 ‰ for needles, 2.3 ‰ for living roots, and 0.1 ‰ for soil carbon. This occurred because of 1) decreased δ_{atm} (Suess effect, Figure 1) and 2) increased photosynthetic discrimination. We quantified the contribution of the Suess effect by performing a control run with constant δ_{atm}, and kept other factors the same (Figure 5). Approximately 70% of the reduction in δ^{13}C of needles occurred due to the Suess effect, and the remaining 30% was caused by increased photosynthetic discrimination. This occurred as plants responded to CO2 fertilization as illustrated in Figure (6). The model indicated that plants responded to increased atmospheric CO2 (~40% increase) by decreasing stomatal conductance (Equation 4) by 20% for the limited nitrogen run and 30% for the unlimited nitrogen run (Figure 6B) with associated change in c_i/c_a (Figure 6A). Other influences upon stomatal conductance were less significant, including A_n (+ 10% limited nitrogen, -10% unlimited nitrogen, Figure 6D), soil moisture availability (2-3%, Figure 6E), and negligible changes in relative humidity (potential climate change effects are neglected due to methodological cycling of weather data). This finding that stomatal conductance responded to atmospheric CO2 is consistent with both tree ring studies (Saurer et al., 2014) and flux tower measurements (Keenan et al., 2013).

The effect of CO2 fertilization, and associated response of stomatal conductance and net assimilation led to a multi-decadal increase in c_i/c_a for all model formulations (Figure 6A). The c_i/c_a increased from 0.71 to 0.76, 0.67 to 0.71 and 0.66 to 0.68 for the limited nitrogen, unlimited nitrogen and no downregulation discrimination formulations respectively from 1850-2013. All simulations therefore suggested an increase in photosynthetic discrimination. This increase in discrimination falls in between two hypotheses posed by Saurer et al., (2004) regarding stomatal
response to increased CO2: 1) reduction in stomatal conductance causes c_i to proportionally increase with c_a keeping c_i/c_a constant and 2) minimal stomatal conductance response where c_i increases at the same rate as c_a (constant $c_a - c_i$) causing c_i/c_a to increase. Our simulation generally agrees with the observed trend in c_i/c_a as estimated from tree ring isotope measurements from a network of European forests (Frank et al., 2015). When controlled for trends in climate, Frank et al. (2015) found that c_i/c_a was approximately constant during the last century. If the Niwot Ridge multi-decadal warming trends in temperature and humidity (Mitton and Ferrenberg, 2012) were included in the CLM simulations the stomatal response may have been stronger thereby holding c_i/c_a constant.

The simulated stomatal closure in response to CO2 fertilization led to an increase in iWUE and WUE of approximately 10-15% (Figure 6F). This is consistent with model and observation-based studies (Ainsworth and Long, 2005; Franks et al., 2013; Peñuelas et al., 2011) which indicate a 15-20% increase in iWUE for forests. This suggested that the vegetation at Niwot Ridge has some ability to maintain net ecosystem productivity when confronted with low soil moisture, low humidity conditions. Ultimately, whether Niwot Ridge maintains the current magnitude of carbon sink (Figure 2) will depend upon the severity of drought conditions, as improvements in WUE, in general, are only likely to negate weak to moderate levels of drought (Frank et al., 2013).

The simultaneous increase in both simulated photosynthetic discrimination and iWUE conflicts with observations where increases in iWUE are typically linked with weakening discrimination (e.g. Saurer et al., 2004). However, under certain conditions iWUE and discrimination can vary independently because of variation in leaf evaporative demand (VPD) and atmospheric CO2 (Seibt et al., 2008). In general, an increase in atmospheric CO2 alone tends to increase iWUE because of reduced stomatal conductance, however, the impact upon discrimination is close to neutral because the increased supply of CO2 external to the leaf is offset by reduced stomatal conductance (Saurer et al., 2004) The VPD likely plays an important role in determining the final trends for iWUE and discrimination, where an increasing VPD should further reduce stomatal conductance thereby promoting the well-established relationship (increasing iWUE, decreasing discrimination). In contrast, a weak or decreasing trend in VPD should promote the opposite relationship (increasing iWUE, increasing discrimination). For example, simultaneous increase in iWUE and discrimination were identified at Harvard Forest (Belmecheri et al., 2014). Here, we do not consider multi-decadal trends in climate, therefore
increasing atmospheric CO2 must be the primary driver for the simulated simultaneous increase
in discrimination and iWUE at Niwot Ridge (Figure 6). These trends in WUE and
discrimination simulated at Niwot Ridge have also been found in a fully-coupled, isotope
enabled, global CESM simulation (Figure S2). Specifically, a random sample of land model
grid cells representing conifer species in British Columbia (lat: 52.3°N, lon: -122.5° W) and
Quebec (lat: 49.5°N, lon: -70.0° W) all showed an increase in photosynthetic discrimination
and a 10% increase in WUE from 1850-2005. These randomly chosen grid cells are likely
better analogs to the site-level simulations described here because they represent boreal conifer
forests, whereas the grid cells that are in the Niwot Ridge area were heterogeneous in land cover
(e.g. tundra, grassland, forest) and a poor representation of conifer forest.

The trends in the global simulation suggest that the site level trends are not isolated to
the specific conditions of Niwot Ridge, but are a function of the model formulation. There is a
relationship between iWUE and \(\frac{c^i}{c_a}\) (discrimination) as derived from equation (9) within the
CLM model,

\[
\frac{c^i}{c_a} \cong 1 - \frac{1.6}{iWUE}.
\] (17)

The full derivation is provided in the supplement. Note that increasing iWUE is consistent with
decreasing \(c^i/c_a\) (\(\alpha_{psm}\)) and therefore consistent with established understanding between trends
in iWUE and discrimination. However, this trend imposed by iWUE can be neutralized by
increasing \(c_a\). During the course of the Niwot Ridge simulation iWUE increased between 10-
20% (Figure 6), however, \(c_a\) increased by 40% during that same time (1850-2013).

3.2.2 Magnitude of photosynthetic discrimination

The simulated photosynthetic discrimination (Fig. 7) was significantly larger than an
estimate derived from observations and an isotopic mixing model (Bowling et al., 2014). For
brevity we refer to the estimates based on the Bowling et al. (2014) method as ‘observed’
discrimination but highlight that they are derived from observations and not directly measured.
On average, the simulated monthly growing season mean canopy discrimination was greater
than observed values by 6.3, 6.1, and 5.1% for the limited nitrogen, unlimited nitrogen, and no
downregulation discrimination formulations respectively. The model-observation mismatch in
discrimination, despite model-observation agreement to biomass, carbon and latent heat flux
tower observations (Figure 2) highlight the independent, and useful constraint isotopic observations provide for evaluating model performance. Specifically, the overestimation of discrimination may suggest the stomatal slope in the Ball-Berry model (m=9 in Eq. 4) used for these simulations was too high. This is supported by Mao et al., (2016), who found a reduced stomatal slope (m=5.6) was necessary for CLM 4.0 to match observed δ13C in an isotope labeling study of loblolly pine forest in Tennessee. The stomatal slope was also found to be important to match discrimination behavior in the ISOLSM model (Aranibar et al., 2006), a predecessor to CLM.

The mixing model approach estimate of Δ_{canopy} (17 ‰), combined with δ_{atm} (-8.25 ‰) implies a δ13C of biomass between -26 to -25 ‰. This range of values is only slightly more enriched than the observed ranges of δ13C of needle and root biomass (-27 to -26 ‰). The fact that the different approaches to measure discrimination differ by only 1 ‰, whereas CLM simulates a Δ_{canopy} that is 5-6 ‰ greater than the mixing model discrimination, strongly suggests that the model has overestimated discrimination from 2006-2012. Therefore what appeared to be a successful match between the simulated and observed δ13C biomass, may in fact have been fortuitously reached through compensating during the simulation. A multi-decadal time series of discrimination estimates inferred from δ13C of tree rings (Saurer et al., 2014; Frank et al., 2015) would be useful to investigate this mismatch as a function of time, but these data are not presently available.

It is likely that the overestimation of modeled discrimination originates from a lack of response of stomatal conductance to environmental conditions. This could be a result of one or several of the following within the model: 1) parameter calibration issue - the stomatal slope value is too high, 2) boundary condition issue - the multi-decadal trends in climate (e.g. VPD) have not been included in the simulation or 3) model structural issue - the Ball-Berry representation of stomatal conductance is not sensitive enough to changes in environmental conditions (e.g. VPD, soil moisture). It has been shown that VPD may be an improved predictor of g_s (Katul et al., 2000; Leuning, 1995) and discrimination (Ballantyne et al., 2010, 2011) as compared to relative humidity, currently used in CLM 4.5. It would be worthwhile to clearly identify in future work which of the three scenarios is responsible for overestimation of the discrimination.
3.2.3 Seasonal pattern of photosynthetic discrimination

The model formulations that did not explicitly consider the influence of nitrogen limitation upon discrimination (unlimited nitrogen, no downregulation discrimination) were most successful at reproducing the seasonality of discrimination (Figure 7; Figure S3). In general, the observed discrimination was stronger during the spring and fall and weaker during summer. This observed Δ_{canopy} seasonal range (excluding November) varied from 16.5 to 18 ‰ using Reichstein partitioning (Figure 7), and was more pronounced using Lasslop partitioning (16.5 to 23 ‰) (Figure S3). The nitrogen limited simulated Δ_{canopy} had no seasonal trend whereas the unlimited nitrogen and no downregulation discrimination simulations both ranged from 21 to 23 ‰.

The main driver of the seasonality of discrimination was the net assimilation (A_n) for the unlimited nitrogen formulation (Figure 8). This was evident given the inversely proportional relationship between the simulated fractionation factor (α_{psn}) and A_n, consistent with equation (9). Stomatal conductance (g_s) also influenced the seasonal pattern. The most direct evidence for this was during the period between days 175-200 (Figure 8), where A_n descended from its highest value (favoring higher α_{psn}), and g_s abruptly ascended to its highest value (favoring higher α_{psn}). The α_{psn} responded to this increase in g_s with an abrupt increase by approximately 0.003 (3 ‰). Similarly, the limited nitrogen simulation seasonal discrimination pattern was shaped by both A_n and g_s, although the magnitude for both was approximately 30% higher during the summer months as compared to the unlimited nitrogen simulation. This was because the calibrated V_{cmax} value for the limited nitrogen simulation was much higher than for the unlimited nitrogen simulation (section 3.3). The difference in α_{psn} between the two model formulations coincided with the sharp increase in f_{reg} between days 125 and 275, providing strong evidence that the downregulation mechanism within the limited nitrogen formulation led to increased discrimination during the summer. Therefore, it follows that the nitrogen downregulation mechanism was the root cause of the small range in simulated seasonal cycle discrimination for the limited nitrogen formulation, which was inconsistent with the observations.

3.2.4 Environmental factors influencing seasonality of discrimination

The simulated Δ_{canopy} was driven primarily by net assimilation (A_n), followed by vapor pressure deficit (VPD) (Fig. 9). The correlation between VPD and Δ_{canopy} was strongest for
the *unlimited nitrogen* simulation, where the range in monthly average Δ_{canopy} spanned values from 22 to 18 ‰ (Figure 9, middle row). This resembled the observed range in response based upon a fitted relationship from Bowling et al., (2014) that spanned from roughly 16 to 19 ‰ (left panels of Fig. 9), although with a consistent discrimination bias. The correlation between VPD and Δ_{canopy}, however, does not demonstrate causality. If that were the case, given that g_s is a function of VPD (h_s term in Eq. 4) and discrimination is a function of g_s (Eq. 8), a similar relationship should have existed between g_s and Δ_{canopy}. This, in fact, was not the case.

Overall, the influence of g_s (responding to VPD) (R-value = -0.50) was secondary to A_n (R-value = -0.77) in driving changes in discrimination (Figure 9). The model suggested that the range in seasonal discrimination (intra-annual variation) was driven by the magnitude of A_n based on the inverse relationship between A_n and Δ_{canopy} (equation 9) illustrated by the separation between months of low photosynthesis (October, May) vs. high photosynthesis (June, July, August). During times of relatively low photosynthesis A_n also drove the inter-annual variation in Δ_{canopy}. On the other hand, g_s (VPD) was most influential in driving the inter-annual variation of discrimination during the summer months only, judging by the directly proportional relationship during the months of June, July and August. Strictly speaking, g_s is a function of h_s (leaf specific humidity) and not atmospheric VPD in CLM. However, the two are closely related and the relationship between either variable (atmospheric VPD or simulated leaf humidity) to Δ_{canopy} was similar (Figure S4).

The *limited nitrogen* formulation did not produce as wide a range in discrimination as compared to the observations (Figure 9, top row). Part of this result was attributed to the lack of response between A_n and Δ_{canopy}. In this case, the discrimination did not decrease with increasing A_n because the signal was muted by the countering effect of f_{avg}. The *limited nitrogen* formulation was, however, able to reproduce the same discrimination response to g_s as compared to the other model formulations. The tendency for the limited nitrogen model to simulate discrimination response to g_s and not to A_n may negatively impact its ability to simulate multi-decadal trends in discrimination. This may not be a major detriment to sites such as Niwot Ridge which have maintained a consistent level of carbon uptake during the last decade, and is likely more susceptible to environmental impact upon stomatal conductance. However, sites that have shown a significant increase in assimilation rate (e.g. Harvard Forest; (Keenan et al., 2013)) are less likely to be well represented by this model formulation.
Given the dependence of forest productivity at Niwot Ridge on snowmelt (Hu et al., 2010), it was surprising that the model simulated minimal soil moisture stress (Fig. 8e) and therefore minimal discrimination response to soil moisture. However, this finding was consistent with Bowling et al., (2014), who did not find an isotopic response to soil moisture. In addition, lack of response to change in soil moisture may not be indicative of poor performance of the isotopic sub-model performance, but rather an effect of the hydrology sub-model (Duarte et al. (in prep)). However, a comparison of observed soil moisture at various depths at Niwot Ridge generally agrees with the CLM simulated soil moisture (not shown), suggesting the lack of model response to soil moisture was not from biases in the hydrology model.

3.3 Discrimination formulations: implications for model development

The limited and unlimited model formulations tested in this study represented two approaches to account for nitrogen limitation within ecosystem models. The limited nitrogen formulation reduced photosynthesis, after the main photosynthesis calculation, so that the carbon allocated to growth was accommodated by available nitrogen. This allocation downscaling approach is common to a subset of models, for example, CLM (Thornton et al., 2007), DAYCENT (Parton et al., 2010) and ED2.1 (Medvigy et al., 2009). Another class of models limits photosynthesis based upon foliar nitrogen content and adjusts the photosynthetic capacity through nitrogen availability in the leaf though V_{cmax} (e.g. CABLE, GDAY, LPJ-GUESS, OCN, SDVGM, TECO, see Zaehle et al., 2014). These foliar nitrogen models are similar to the unlimited nitrogen formulation of CLM because the scaling of photosynthesis was taken into account in the V_{cmax} scaling methodology (see discussion in section 2.1.2 and 2.4), prior to the photosynthesis calculation. In general, there were no categorical differences in behavior between these two classes of models during CO2 manipulation experiments held at Duke forest and ORNL (Zaehle et al., 2014). CLM 4.0 was one of the few models in that study to consistently underestimate the NPP response to an increase of atmospheric CO2 due to nitrogen limitation, however this finding was attributed to a lower initial supply of nitrogen.

The unlimited nitrogen formulation described in our study is a simplified foliar nitrogen model, in that, all of the information about nitrogen limitation is incorporated within the V_{cmax} downscaling approach. A more versatile approach would link a dynamic nitrogen cycle directly with the calculation of V_{cmax}. This capability is currently being developed within CLM (Ghimire et al., in review) and future work should test its functionality.
The performance of the unlimited nitrogen formulation was nearly identical to the no downregulation discrimination formulation in terms of isotopic behavior despite the mechanistic differences. The no downregulation discrimination formulation included nitrogen limitation within the bulk carbon behavior but ignored the impact of \(f_{\text{dreg}} \) upon discrimination behavior. The relative high simulation skill with this formulation implied that the ‘potential’ GPP linked to \(A_{\text{nc}} \) was a more effective predictor of discrimination behavior than the ‘downscaled’ GPP, which is linked to \(A_{\text{s}} \times (1-f_{\text{dreg}}) \) (equation 9). There are several potential explanations for an unrealistically large value of \(f_{\text{dreg}} \). First this could indicate that the \(V_{\text{cmax}} \) parameter was too large, thereby requiring a large \(f_{\text{dreg}} \) to compensate. As noted in Section 3.1 the default temperate evergreen \(V_{\text{cmax25}} \) was \(\sim 62 \, \mu\text{mol m}^{-2} \text{s}^{-1} \), much larger than what was found based on literature reviews (Monson et al., 2005; Tomaszewski and Sievering, 2007). We found to match the observed GPP we had to impose \(f_{\text{dreg}} \) that had the same effect as reducing \(V_{\text{cmax}} \) (Figure S1) to values of 51 and 34 \(\mu\text{mol m}^{-2} \text{s}^{-1} \) for the limited nitrogen and unlimited nitrogen formulations respectively. Alternatively, it could be that there are physiological processes that are acting to reduce nitrogen limitation (e.g. nitrogen storage pools or transient carbon storage as non-structural carbohydrates), or that the current measurement techniques are underestimating GPP due to biases within the flux partitioning methods.

3.4 Disequilibrium, possible explanations of mismatch

Carbon cycle models (e.g. Fung et al., 1997) indicate that the steady decrease of \(\delta_{\text{atm}} \) (Suess effect, Fig. 1) should lead to a positive disequilibrium between land surface processes (\(\delta^{13}\text{C} \) difference between GPP and ER, Eq. 12). This is because the \(\delta_{\text{GPP}} \) reflects the most recent (\(\delta^{13}\text{C} \) depleted) state of the atmosphere, whereas the \(\delta_{\text{ER}} \) reflects carbon (e.g. soil carbon) assimilated from an older (\(\delta^{13}\text{C} \) enriched) atmosphere. This positive disequilibrium pattern promoted by the Suess effect was consistent with all CLM formulations for this study with an annual average disequilibrium of 0.8 ‰. In contrast, a negative disequilibrium (-0.6 ‰) was identified at Niwot Ridge based upon observations (Bowling et al. 2014) as well as in other forests (Flanagan et al., 2012; Wehr and Saleska, 2015; Wingate et al., 2010). Bowling et al. (2014) hypothesized several reasons for this: 1) a strong seasonal stomatal response to atmospheric humidity, 2) decreased photosynthetic discrimination associated with CO\(_2\) fertilization, 3) decreased photosynthetic discrimination associated with multi-decadal warming and increased VPD, and 4) post-photosynthetic discrimination. We evaluated the first three hypotheses within the context of the CLM simulations.
The model results suggest a seasonal variation of discrimination that is a function of both VPD and A_n. The simulated seasonal range in discrimination (Figure 7; Figure S3) varied by approximately 2 ‰, and this range in seasonal discrimination could contribute to a negative disequilibrium provided specific timing of assimilation, assimilate storage and respiration not currently considered in the model. For example, if a significant portion of photosynthetic assimilation was stored during the spring with relatively high discrimination, and then respired during the summer, the net effect would deplete the δ_{ER} and thereby promote negative disequilibrium during the summer months when discrimination is lower. Theoretically, this could be achieved by explicitly including carbohydrate storage pools within CLM. Isotopic tracer studies have shown assimilated carbon can exist for weeks to months within the vegetation and soil before it is finally respired (Epron et al., 2012; Hogberg et al., 2008). Although carbon storage pools are included in CLM, their allocation is almost always instantaneous for evergreen systems and could not provide the isotopic effect described above.

The CO$_2$ fertilization effect tends to favor photosynthesis in plants and has been shown to simultaneously increase WUE and decrease stomatal conductance as inferred from δ^{13}C in tree rings (Frank et al., 2015; Flanagan et al., 2012; Wingate et al., 2010). In general a decrease in stomatal conductance and increase in WUE is associated with a decrease in C3 discrimination (Farquhar et al., 1982), which opposes the disequilibrium trend imposed by the Suess effect. The model simulation agrees with both these trends in WUE and stomatal conductance, yet simulates an increase in discrimination (Figure 5; Figure 6), which reinforces the Suess effect pattern upon disequilibrium. Although this appears to be a mismatch between forest processes and model performance the model is operating within the limits of the discrimination parameterization (Eq. 17) in which the magnitude of photosynthetic discrimination is inversely proportional to the iWUE, but is also proportional to atmospheric CO$_2$ (see section 3.2.1).

A multi-decadal decrease in photosynthetic discrimination may also result from change in climate. Meteorological measurements at Niwot Ridge during the last several decades generally support conditions of higher VPD based upon a warming trend from an average annual temperature of 1.1 °C in the 1980’s to 2.7 °C in the 2000’s (Mitton and Ferrenberg, 2012) and no overall trend in precipitation. It is possible that a multi-decadal trend in increasing VPD contributed to multi-decadal weakening in photosynthetic discrimination given the observed (Bowling et al., 2014) and modelled (Figure 9) correlation between Δ_{canopy} and VPD. The model meteorology only included the years 1998-2013 and did not include the rapid
warming after the 1980’s. It is unclear whether, if the full period of warming were to be included in the simulation, the simulated discrimination response to VPD would be enough to counter the Suess effect and lead to negative disequilibrium. Still, there is evidence that the model is overestimating contemporary discrimination (Section 3.4) and the exclusion of the full multi-decadal shift in VPD could be a significant reason why.

Finally, post-photosynthetic discrimination processes are likely to impact the magnitude and sign of the isotopic disequilibrium (Bowling et al., 2008; Brüggemann et al., 2011) at multiple temporal scales. None of these isotopic processes are currently modelled within CLM 4.5, so at present the model cannot be used to examine them.

4 Conclusions

This study provides a rigorous test of the representation of C isotope discrimination within the highly mechanistic terrestrial carbon model CLM. Special attention was paid to provide an accurate set of boundary conditions to isolate the isotopic performance including 1) customized atmospheric CO₂ and δatm time series, 2) customized model initialization procedure, and 3) empirical Vcmax calibration procedure. Once the model satisfactorily represented observed carbon exchange, water exchange, and biomass growth, it was successful at simulating several aspects of isotope behavior.

CLM was able to accurately simulate δ13C in leaf and stem biomass and the seasonal cycle in Δcanopy. This performance could only be achieved, however, if Vcmax were calibrated in such a way to mimic the functionality of a foliar nitrogen model by accounting for nitrogen limitation prior to photosynthesis. With the traditional nitrogen limited approach, in which the nitrogen limitation occurs after photosynthesis and the ci/ca is influenced by this limitation but the stomatal conductance is not, the model tended to overestimate the magnitude of photosynthetic discrimination, and eliminated the observed seasonal weakening of Δcanopy. Although the overestimation of photosynthetic discrimination could likely be corrected with adjustments to the stomatal conductance parameterization, the seasonal trend was inherent to the model. Thus our results suggest that shifting nitrogen controls either before photosynthesis through a reduction in Vcmax, or entirely after the photosynthetic process such that nitrogen constraints have no effect on discrimination, are more consistent with the isotopic observations than the current model formulation.

Although the unlimited nitrogen formulation was able to match observed δ13C of biomass and seasonal patterns in discrimination, it still overestimated the contemporary magnitude of
discrimination (2006-2012). Future work should identify whether this overestimation was a result of parameterization (stomatal slope), exclusion of multi-decadal shifts in VPD, or limitations in the representation of stomatal conductance (Ball-Berry model).

The model attributed most of the range in seasonal discrimination to variation in net assimilation rate (A_n) followed by variation in VPD, with little to no impact from soil moisture. The model suggested that A_n drove the seasonal range in discrimination (across-month variation) whereas VPD drove the inter-annual variation during the summer months. This finding suggests that to simulate multi-decadal trends in photosynthetic discrimination, response to assimilation rate and VPD must be well represented within the model.

The model simulated a positive disequilibrium that was driven by both the Suess effect, and increased photosynthetic discrimination from CO$_2$ fertilization. It is possible that the negative disequilibrium that was inferred from observations (Bowling et al., 2014) was driven from the impacts of climate change and/or post-photosynthetic discrimination – not considered in this version of the model. Future work should quantify the impact of this multi-decadal warming and post-photosynthetic discrimination processes upon disequilibrium.

The model simulated a consistent increase in water-use efficiency as a response to CO$_2$ fertilization and decrease in stomatal conductance. The model simulated an increase in WUE despite an increase in discrimination, however C3 plants typically express the opposite trends (increase in WUE, decrease in discrimination). Although CLM includes parameterization that promotes an increase in WUE with a decrease in discrimination, this trend was likely neutralized by other environmental variables (e.g. increase in c_a).

Initial indications are that $\delta^{13}C$ isotope data can bring additional constraint to model parameterization beyond what traditional flux tower measurements of carbon, water exchange, and biomass measurements. The isotope measurements suggested a stomatal conductance value generally lower than what was consistent with the flux tower measurements. Unexpectedly, the isotopes also provided guidance upon model formulation related to nitrogen limitation. The success of our empirical approach to account for nutrient limitation within the V_{cmax} parameterization, suggests that additional testing of foliar nitrogen models are worthwhile.
Acknowledgements

This research was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program under Award Number DE-SC0010625. Thank you to Sean Burns and Peter Blanken for sharing flux tower and meteorological data from Niwot Ridge. Thank you to those at NOAA who provided the atmospheric flask data from Niwot Ridge including Bruce Vaughn, Ed Dlugokencky, the INSTAAR Stable Isotope Lab and NOAA GMD. A special thanks to Keith Lindsay at NCAR for providing global CESM output to help improve the discussion of model behavior. The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged.
References

Table 1. List of symbols used.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit or Unit Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{psn}</td>
<td>Fractionation factor (R_a, R_{GPP})</td>
<td>dimensionless</td>
</tr>
<tr>
<td>β</td>
<td>Soil water stress parameter (BTRAN)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Δ_{canopy}</td>
<td>photosynthetic carbon isotope discrimination</td>
<td>%</td>
</tr>
<tr>
<td>δ^{13}C</td>
<td>13C/12C isotope composition (relative to VPDB)</td>
<td>%</td>
</tr>
<tr>
<td>δ_{atm}</td>
<td>13C of atmospheric CO$_2$</td>
<td>%</td>
</tr>
<tr>
<td>δ_{ER}</td>
<td>13C of ecosystem respiration</td>
<td>%</td>
</tr>
<tr>
<td>δ_{GPP}</td>
<td>13C of net photosynthetic assimilation</td>
<td>%</td>
</tr>
<tr>
<td>Γ</td>
<td>CO$_2$ compensation point</td>
<td>Pa</td>
</tr>
<tr>
<td>A_c</td>
<td>Enzyme-limiting rate of photosynthetic assimilation</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>A_l</td>
<td>Light-limiting rate of photosynthetic assimilation</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>A_p</td>
<td>Product-limiting rate of photosynthetic assimilation</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>A_o</td>
<td>net photosynthetic assimilation</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Resp$_d$</td>
<td>Leaf-level dark respiration</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>a_{R25}</td>
<td>Specific activity of Rubisco at 25°C</td>
<td>μmol g$^{-1}$ Rubisco s$^{-1}$</td>
</tr>
<tr>
<td>b</td>
<td>Minimum stomatal conductance</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>$C_{F_{alloc}}$</td>
<td>Actual carbon allocated to biomass (N-limited)</td>
<td>gC m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>$C_{F_{av,alloc}}$</td>
<td>Maximum carbon available for allocation to biomass</td>
<td>gC m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>$C_{GPP_{pot}}$</td>
<td>Potential gross primary production (non N-limited)</td>
<td>gC m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>c_s</td>
<td>Atmospheric CO$_2$ pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>c_i</td>
<td>Leaf intracellular CO$_2$ pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>c_{i}^*</td>
<td>Leaf intracellular CO$_2$ pressure, (N-limited)</td>
<td>Pa</td>
</tr>
<tr>
<td>c_s</td>
<td>Leaf surface CO$_2$ pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>e_l</td>
<td>Saturation vapor pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>e_s</td>
<td>Water vapor pressure at leaf surface</td>
<td>Pa</td>
</tr>
<tr>
<td>E_T</td>
<td>Leaf Transpiration</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>ER</td>
<td>Ecosystem respiration</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>GPP</td>
<td>Gross primary productivity (photosynthesis)</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>F_{LNR}</td>
<td>Fraction of leaf nitrogen within Rubisco</td>
<td>gN Rubisco g$^{-1}$ N</td>
</tr>
<tr>
<td>F_{NR}</td>
<td>Total Rubisco mass per nitrogen mass within Rubisco</td>
<td>g Rubisco g$^{-1}$ N</td>
</tr>
<tr>
<td>f_{af}</td>
<td>$V_{c_{max}}$ scaling factor</td>
<td>dimensionless</td>
</tr>
<tr>
<td>f_{areg}</td>
<td>Nitrogen photosynthetic downregulation factor</td>
<td>dimensionless</td>
</tr>
<tr>
<td>g_b</td>
<td>Leaf boundary layer conductance</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>g_s</td>
<td>Leaf stomatal conductance</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>h_s</td>
<td>Leaf surface humidity</td>
<td>Pa Pa$^{-1}$</td>
</tr>
<tr>
<td>K_c</td>
<td>Michaelis-Menten constant</td>
<td>Pa</td>
</tr>
<tr>
<td>K_o</td>
<td>Michaelis-Menten constant</td>
<td>Pa</td>
</tr>
<tr>
<td>LE</td>
<td>Latent heat flux</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>m</td>
<td>Stomatal slope (Ball Berry conductance model)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Na</td>
<td>Leaf nitrogen concentration</td>
<td>gN m$^{-2}$ leaf area</td>
</tr>
<tr>
<td>NEE</td>
<td>Net ecosystem exchange</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>NPP</td>
<td>Net primary production</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>o_l</td>
<td>O$_2$ atmospheric partial pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>PFT</td>
<td>Plant functional type</td>
<td>N/A</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>Atmospheric pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>R_a</td>
<td>Isotopic ratio of canopy air</td>
<td>13C/12C</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>R_{GPP}</td>
<td>Isotopic ratio of net photosynthetic assimilation</td>
<td>13C/12C</td>
</tr>
<tr>
<td>R_{VPDB}</td>
<td>Isotopic ratio of Vienna Pee Dee Belemnite standard</td>
<td>13C/12C</td>
</tr>
<tr>
<td>r</td>
<td>Fraction of roots (for β)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>$V_{c_{\text{max25}}}$</td>
<td>Maximum carboxylation rate at 25°C</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>$V_{c_{\text{max}}}$</td>
<td>Maximum carboxylation rate at leaf temperature</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>VPD</td>
<td>Vapor pressure deficit</td>
<td>Pa</td>
</tr>
<tr>
<td>w</td>
<td>Plant wilting factor (for β)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>WUE</td>
<td>Water use efficiency, ground area basis</td>
<td>gC gH$_2$O$^{-1}$</td>
</tr>
<tr>
<td>iWUE</td>
<td>Intrinsic water use efficiency, leaf area basis</td>
<td>gC gH$_2$O$^{-1}$</td>
</tr>
</tbody>
</table>
Table 2. CLM 4.5 model formulation description based upon timing of nitrogen limitation.

Pre-photosynthetic and post-photosynthetic nitrogen limitation are achieved through \(V_{\text{max25}} \) calibration (equation 15) and \(f_{\text{dreg}} \) (equation 7) respectively.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Pre-Photosynthetic Nitrogen Limitation</th>
<th>Post-Photosynthetic Nitrogen Limitation</th>
<th>Impact on (c_i/c_a) & discrimination</th>
<th>Impact on stomatal conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited nitrogen (default)</td>
<td>Yes (weak)</td>
<td>Yes, (f_{\text{dreg}} > 0)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Unlimited nitrogen</td>
<td>Yes (strong)</td>
<td>No, (f_{\text{dreg}} = 0)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No downregulation discrimination</td>
<td>Yes (weak)</td>
<td>Yes, (f_{\text{dreg}} > 0)</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 3. CLM 4.5 key parameter values for all model formulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>froot_leaf</td>
<td>new fine root C per new leaf C</td>
<td>0.5</td>
<td>gC gC⁻¹</td>
</tr>
<tr>
<td>froot_cn</td>
<td>fine root (C:N)</td>
<td>55</td>
<td>gC gN⁻¹</td>
</tr>
<tr>
<td>leaf_long</td>
<td>leaf longevity</td>
<td>5</td>
<td>years</td>
</tr>
<tr>
<td>leaf_cn</td>
<td>leaf (C:N)</td>
<td>50</td>
<td>gC gN⁻¹</td>
</tr>
<tr>
<td>flitcn</td>
<td>leaf litter (C:N)</td>
<td>100</td>
<td>gC gN⁻¹</td>
</tr>
<tr>
<td>slatop</td>
<td>specific leaf area (top canopy)</td>
<td>0.007</td>
<td>m² gC⁻¹</td>
</tr>
<tr>
<td>stem_leaf</td>
<td>new stem C per new leaf C</td>
<td>2</td>
<td>gC gC⁻¹</td>
</tr>
<tr>
<td>mp</td>
<td>stomatal slope</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>croot_stem</td>
<td>coarse root: stem allocation</td>
<td>0.3</td>
<td>gC gC⁻¹</td>
</tr>
<tr>
<td>deadwood_cn</td>
<td>dead wood (C:N)</td>
<td>500</td>
<td>gC gN⁻¹</td>
</tr>
<tr>
<td>livewood_cn</td>
<td>live wood (C:N)</td>
<td>50</td>
<td>gC gN⁻¹</td>
</tr>
<tr>
<td>flnr</td>
<td>fraction of leaf nitrogen within Rubisco enzyme</td>
<td>0.0509</td>
<td>gN gN⁻¹</td>
</tr>
<tr>
<td>decomp_depth_e_folding</td>
<td>controls soil decomposition rate with depth</td>
<td>20</td>
<td>m</td>
</tr>
</tbody>
</table>
Figure 1. Niwot Ridge synthetic data product for atmospheric CO$_2$ concentration (c_a) (top row) and δ^{13}C of CO$_2$ (δ_{atm}) (bottom row). The final time series (right column) was used as a boundary condition for CLM, and created by combining the annual trends reported by Francey et al. (1999) adjusted for Niwot Ridge (left column) with the mean seasonal cycles measured at Niwot Ridge (middle column).
Figure 2. Simulated and observed land-atmosphere fluxes of A) gross primary production (GPP) B) ecosystem respiration (ER) and C) latent heat (LE) for the limited nitrogen simulation. The ‘observations’ are taken from the Ameriflux L2 processed eddy covariance flux tower data, partitioned into GPP and ER using the method of Reichstein et al. (2005). The uncalibrated simulation represents the CLM simulation without V_{cmax} scaling and the calibrated simulation represents the CLM run using the V_{cmax} scaling approach.
Figure 3. Simulation of A) leaf area index and B) above ground biomass for both uncalibrated and calibrated (V_{cmax} downscaled, limited nitrogen) simulation. Observations are from Bradford et al. (2008) with uncertainty bars representing standard error. Uncertainty bars on simulated runs represent 95% confidence of biomass variation as a result of cycling the site level meteorology observations.
Figure 4. Simulation of $\delta^{13}C$ of bulk needle tissue, bulk roots and bulk soil carbon. A description of model formulations are provided in Table (2). Uncertainty bars for simulations represent 95% confidence intervals of $\delta^{13}C$ variation as a result of cycling the site level meteorology observations. The observed values are from Schaeffer et al. (2008) with uncertainty bars representing standard error. Solid lines and dashed lines in middle panel represent living roots and structural roots respectively.
Figure 5. Simulation of $\delta^{13}C$ of needle tissue using the limited nitrogen (default) CLM run. In the constant $\delta^{13}C$ of CO$_2$ (δ_{atm}) simulation, the model boundary condition was -6 ‰, whereas the transient δ_{atm} simulation varied over time (Figure 1).
Figure 6. Diagnostic model variables that explain the discrimination trends (Figure 4) for the three model formulations as described in Table (2) for A) c_t^*/c_a, B) g_s, C) f_{dreg}, D) A_n, E) β_e and F) the water use efficiency (WUE) and intrinsic water use efficiency (iWUE). Where the no downregulation discrimination simulation is not shown, it was identical to the limited nitrogen simulation. Uncertainty bars represent 95% confidence intervals of diagnostic variable variation as a result of cycling the site level meteorology observations. The dashed lines represent WUE and the solid lines represent iWUE in panel F.
Figure 7. The seasonal pattern of photosynthetic discrimination as shown through δ_{GPP} (top row) and Δ_{canopy} (bottom row). Uncertainty bars represent 95% confidence bounds of simulated monthly average values from 2006-2012. Gray-shaded observation bounds represent 95% confidence intervals of ‘observed’ monthly average values based upon isotopic mixing model using Reichstein et al. (2005) partitioning of net ecosystem exchange flux described by (Bowling et al. 2014). The horizontal lines at $\delta^{13}C$ of -26‰ (top row) and 17‰ (bottom row) are included for reference.
Figure 8. The seasonal pattern of discrimination (panel A) and diagnostic variables that explain the discrimination pattern in Figure (7). The individual tiles provide behavior from days 75-325 for A) a_{pm}, B) g_s, C) A_n, D) f_{dreg}, and E) β_t. Where the no downregulation discrimination model simulation is not shown, it is identical to the limited nitrogen simulation. Uncertainty bars represent 95% confidence intervals of inter-annual variation from 2006-2012.
Figure 9. Relationship between monthly average photosynthetic discrimination and monthly average vapor pressure deficit (1st column), A_n (2nd column) and g_s (3rd column) from 2006-2012. The rows represent the limited nitrogen (row 1), unlimited nitrogen (row 2), and no downregulation discrimination (row 3) simulations. The black line in the 1st column is based on exponential fitted line from observed relationship at Niwot Ridge (Bowling et al. 2014). The horizontal lines represent $\delta^{13}C$ of 17% and are included for reference.