Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea

Matthias Egger¹, Peter Kraal¹, Tom Jilbert¹,², Fatimah Sulu-Gambari¹, Célia J. Sapart³,⁴, Thomas Röckmann³ and Caroline P. Slomp¹

¹Department of Earth Sciences – Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA, Utrecht, The Netherlands
²Now at: Department of Environmental Sciences, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65 (Vitikinkari 2a), 00014 Helsinki, Finland
³Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Princonplein 5, 3584 CC Utrecht, The Netherlands
⁴Laboratoire de Glaciologie, Université Libre de Bruxelles, Belgium

Correspondence to: Matthias Egger (m.j.egger@uu.nl)

Abstract. The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe) oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ.

Here we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P) and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. Our results show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g. vivianite) are converted to sulfide phases, leading to an enrichment in solid phase S and the release of phosphate to the pore water. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe²⁺) lead to sequestration of downward diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front.

Our model results further demonstrate that downward migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM (~ 1 – 100 pmol cm⁻³ d⁻¹) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe²⁺ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe²⁺ in the pore water at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate and AOM with Fe oxides may provide a deep source of dissolved Fe²⁺ that drives the sequestration of P in vivianite below the sulfidization front.
1 Introduction

Anaerobic oxidation of methane (AOM), a process initially regarded as a biogeochemical curiosity, functions as an important sink for oceanic methane (CH$_4$) by consuming > 90 % of all CH$_4$ produced in marine sediments (Knittel and Boetius, 2009; Reeburgh, 2007). Although recent studies indicate that the biological oxidation of CH$_4$ could be coupled to various additional electron acceptors such as nitrate and nitrite (Ettwig et al., 2010; Raghoebarsing et al., 2006) as well as metal oxides (Beal et al., 2009; Egger et al., 2015b; Riedinger et al., 2014; Scheller et al., 2016; Segarra et al., 2013; Sivan et al., 2011), sulfate (SO$_4^{2-}$) is commonly thought to be the dominant electron acceptor in anoxic marine systems (Knittel and Boetius, 2009; Reeburgh, 2007).

Nevertheless, a coupling between anaerobic CH$_4$ oxidation and iron (Fe) oxide reduction (Fe-AOM) could have a significant impact on sedimentary Fe cycling and related processes such as phosphorus (P) diagenesis, because of the 8:1 Fe-CH$_4$ stoichiometry of the reaction (Beal et al., 2009; Egger et al., 2015a; Rooze et al., 2016). Environmental conditions that favor Fe-AOM in marine systems are still poorly understood. The required co-occurrence of pore water CH$_4$ and abundant reducible Fe oxides suggests that Fe-AOM may occur in sediments that receive a relatively high input of Fe oxides compared to the in-situ production of sulfide, which could allow a portion of Fe oxides to escape the conversion to authigenic Fe sulfides and to remain preserved in the methanogenic sediments below the zone of SO$_4^{2-}$ reduction (Egger et al., 2015b; Riedinger et al., 2014; Rooze et al., 2016). In addition, perturbations inducing transient diagenesis such as anthropogenic eutrophication or climate change may also create diagenetic environments that are likely favorable for Fe-AOM, as they provide a mechanism for the burial of Fe oxide-rich deposits below sulfidic sediment layers (Egger et al., 2015b; Riedinger et al., 2014).

The Black Sea represents a good example of a sedimentary system in which transient diagenesis associated with postglacial sea-level rise has led to the accumulation of sulfidic sediments above Fe oxide-rich deposits. Here, the establishment of a connection to the Mediterranean Sea through the shallow Bosporus around 9000 years ago (Degens and Ross, 1974; Soulet et al., 2011) led to the inflow of marine waters into a freshwater basin, resulting in permanent salinity/density stratification and in the development of euxinic conditions (i.e. free dissolved sulfide present in the bottom water), making the current Black Sea the largest permanently anoxic basin on Earth.

In the absence of oxygen and metal oxides, SO$_4^{2-}$ reduction is the dominant benthic mineralization process of organic matter in Black Sea surface sediments below the chemocline (∼ 100 m depth) (Jørgensen et al., 2001; Thamdrup et al., 2000). At present, SO$_4^{2-}$ penetrates through the modern coccolith ooze (Unit I) and the marine sapropel (Unit II) sediments and a few meters into the Upper Pleistocene freshwater deposits (Unit III) (Arthur and Dean, 1998; Degens and Ross, 1974; Jørgensen et al., 2004). Below the SO$_4^{2-}$-bearing zone, methanogenesis takes over as the dominant process of organic matter degradation, resulting in the buildup of CH$_4$ in the pore water at depth.

Interactions between the cycles of sulfur (S) and CH$_4$ in Black Sea sediments have been extensively studied during recent years (Holmkvist et al., 2011b; Jørgensen et al., 2001, 2004; Knab et al., 2009; Leloup et al., 2007) and AOM coupled to SO$_4^{2-}$ reduction (SO$_4$-AOM) was found to account for an estimated 7-18 % of total SO$_4^{2-}$ reduction in these sediments (Jørgensen et al., 2001). The production of sulfide in the sulfate-methane transition zone (SMTZ) as a result of SO$_4$-AOM represents the main source of pore water sulfide at depth in the sediment. This intensified production of sulfide drives an enhanced downward diffusive flux of sulfide into the deep limnic deposits of Unit III,
forming a distinct diagenetic sulfidization front recognized as a black band or a series of bands owing to the conversion of Fe oxides to Fe sulfides (Jørgensen et al., 2004; Neretin et al., 2004).

At present, the impact of the downward-migrating sulfidization front on sedimentary P, a key nutrient for marine phytoplankton, and the potential role of Fe-mediated AOM in the deep limnic deposits remain largely unknown. A buildup of ferrous Fe (Fe\(^{2+}\)) in the pore water at depth as found in previous studies (Holmkvist et al., 2011b; Jørgensen et al., 2004; Knab et al., 2009), could indicate ongoing Fe reduction in the CH\(_4\)-bearing deep limnic sediments and thus a potential coupling between AOM and Fe oxide reduction. The sediment records investigated up to now, however, do not extend deep enough to allow the sedimentary cycling of Fe and related biogeochemical processes below the sulfidization front to be investigated. In particular, the presence of abundant dissolved Fe\(^{2+}\) combined with a potential release of pore water phosphate (HPO\(_4^{2-}\)) during reductive dissolution of Fe oxides may be conducive to the formation of reduced Fe(II)-P minerals such as vivianite (Fe\(_5\)(PO\(_4\))\(_8\)H\(_2\)O) below the sulfidization front (Egger et al., 2015a; Hsu et al., 2014; März et al., 2008). Post-depositional diagenetic alterations as a result of downward sulfidization could therefore overprint burial records of P in the Upper Pleistocene deposits.

In this study, we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the lake-marine transition at two sites in the western Black Sea. Focusing on the dynamics of S, Fe and P, we demonstrate that AOM coupled to SO\(_4^{2-}\) reduction enhances the downward sulfidization and associated dissolution of Fe oxides, Fe carbonates and vivianite. Below the sulfidization front, downward diffusing HPO\(_4^{2-}\) precipitates as vivianite by reaction with the abundant dissolved Fe\(^{2+}\).

We propose that organoclastic Fe oxide reduction and/or AOM coupled to the reduction of Fe oxides are the key processes explaining the high concentrations of dissolved Fe\(^{2+}\) at depth in the sediment. Trends in total S and P with depth are significantly altered by the above-mentioned reactions, highlighting that diagenesis may strongly overprint burial records of these elements below a lake-marine transition.

2 Materials and methods

2.1 Sample collection

2.1.1 Gravity core sampling

Sediment samples were taken at two slope sites in the western Black Sea during a cruise in June 2013 with R/V Pelagia. Gravity cores containing ~ 7 m of sediment were collected at sites 4 (43°40.6’ N, 30°7.5’ E; 377 meters below sea surface (mbss)) and 5 (43°42.6’ N, 30°6.1’ E; 178 mbss) (Fig. 1), both situated below the current chemocline (~ 100 m water depth). The core liners were pre-drilled with 2 cm diameter holes in two rows of 10 cm resolution on opposing sides of the tube, offset by 5 cm and taped prior to coring. Upon recovery, the liners were cut into 1 m sections, transferred to a temperature-controlled container set at in-situ bottom water temperature (11 °C) and secured vertically. Subsequently, the taped holes were cut open and a cut-off syringe was inserted horizontally directly after opening each hole.

From one series of holes, 10 mL of wet sediment was extracted at 20 cm resolution and immediately transferred into a 65 mL glass bottle filled with saturated NaCl solution for CH\(_4\) analysis. The NaCl solution was topped up after
addition of the sample, ensuring that no air bubbles remained. Each bottle was sealed with a black rubber stopper and a screw cap and was subsequently stored upside-down at room temperature. From the second series of holes, 20 mL sediment was extracted at 20 cm resolution, sealed with parafilm that was tightly closed with an elastic band, and directly inserted into a nitrogen (N₂)-purged glove box. Subsequently, the sediment was transferred into a 50 mL centrifuge tube and centrifuged (4500 rpm; 30 min). The supernatant from each centrifuged sample was filtered through 0.45 µm pore size disposable filters via 20 mL plastic syringes in the glove box and collected in 15 mL centrifuge tubes. The sediment fraction was stored frozen (-20 °C) for solid phase analysis. Filtered pore water samples were sub-sampled under N₂ for analysis of dissolved HPO₄²⁻, ammonium (NH₄⁺), dissolved inorganic carbon (DIC), Fe, manganese (Mn), SO₄²⁻ and sulfide (ΣH₂S = H₂S + HS⁻) (see section 2.2) Additional samples of 10 mL of sediment were collected at approximately 50 cm resolution and transferred into pre-weighted 15 mL glass vials to determine porosity from gravimetric water loss.

2.1.2 Multicore sampling
To sample the surface sediment, sediment cores (30-60 cm of sediment and at least 10 cm of overlying water) were recovered using an octopus multicorer (core diameter 10 cm). After recovery, the cores were stoppered at the base and at the top and immediately transported to a temperature-controlled container (11 °C). One multicore from each cast was pre-drilled with 2 cm diameter holes in two rows at 10 cm resolution on opposing sides of the tube, offset by 5 cm, and taped prior to coring. These holes were sampled for CH₄ as described for the gravity cores. Another core was directly inserted into a N₂-purged glove box through an airtight hole in the base. A bottom water sample was collected using a 20 mL plastic syringe and the remaining bottom water was removed with a Tygon tube. Subsequently, the core was sliced anoxically with decreasing resolution at depth, i.e. 0.5 cm resolution for the first 0-2 cm, 1 cm resolution between 2-10 cm, 2 cm resolution between 10-20 cm and 4 cm resolution for the rest of the core (>20 cm). For each slice a sub-sample was placed in a pre-weighted 15 mL glass vial for water content and solid phase analysis and stored under N₂ in airtight jars at -20 °C. A second sub-sample was transferred to a 50 mL centrifuge tube and centrifuged (4500 rpm; 30 min). Both the supernatant water from each centrifuged sample and the bottom water sample were subsequently processed as described for the gravity cores.

Visual alignment of the pore water profiles from the multicores with those of the gravity cores showed that the first ~20 to 30 cm of sediment was lost during long coring. At site 5, the sediment in the multicore consisted of a gray and homogeneous turbidite below 1.5 cm depth. The depth for the gravity core at site 5 was thus corrected for the loss of the marine deposits, which were previously reported to be about 50 cm thick at a site in close proximity to site 5 (43°42.63’ N, 30°6.12’ E; 181 mbss) (Jorgensen et al., 2004)

2.2 Pore water subsampling
A sub-sample of 0.5 mL was immediately transferred into a glass vial containing 1.5 mL of 8 M NaOH solution for analysis of dissolved sulfide. Sub-samples for total dissolved Fe and Mn, which are assumed to represent Fe(II) and Mn(II), were acidified with 10 µL 35 % suprapur HCl per mL of sub-sample. Another 1 mL of pore water for HPO₄²⁻ analysis was acidified with 4 µL 5 M HCl. Pore water SO₄²⁻ was analyzed with ion chromatography (IC) in a 10-fold
diluted sample (0.15 mL of pore water with 1.35 mL of de-oxygenated UHQ water). Sub-samples for DIC analysis (0.5 mL) were collected in glass vials (4.9 mL) to which 4.4 mL of 25 g/L NaCl solution was added, making sure that no headspace remained. Aliquots of the remaining pore water were used for the measurement of alkalinity (determined onboard by titrating 1 mL of untreated sub-sample with 0.01 M HCl; results presented in the Supplementary Information only) and NH₄⁺. All sub-samples were stored at 4 °C and brought to room temperature just before analysis. Subsampling for sulfide was performed immediately after filtration and all other subsampling was performed within 4 hours of core recovery.

Pore water sub-samples for sulfide, HPO₄²⁻ and DIC were directly analyzed onboard using an auto analyzer. Sub-samples for dissolved Fe and Mn were analyzed onshore by ICP-OES (Perkin Elmer Optima 3000 Inductively Coupled Plasma - Optimal Emission Spectroscopy). For the analysis of pore water CH₄, a volume of 10 mL N₂ was injected into the CH₄ serum flasks (while a needle inserted through the septum allowed 10 mL of water to escape) to create a headspace from which a subsample was collected with a gas-tight syringe. Subsequently, CH₄ concentrations were determined in the home laboratory after injection into a Thermo Finnigan Trace GC gas chromatograph (Flame Ionization Detector). δ¹³C-CH₄ and δD-CH₄ (D, deuterium) were analyzed by Continuous Flow Isotope Ratio Mass Spectrometry (CF-IRMS) as described in detail in (Brass and Röckmann, 2010) and (Sapart et al., 2011).

2.3 Bulk sediment analysis

Sediment samples were freeze-dried, powdered and ground in an agate mortar in an argon (Ar)-filled glove box and split into oxic and anoxic fractions. Samples from the oxic fraction were used for total elemental and organic carbon (C_organic) analyses under normal atmospheric conditions, whereas anoxic splits for sediment P and Fe speciation were kept under an inert, oxygen-free Ar or N₂ atmosphere at all times to avoid oxidation artefacts (Kraal and Slomp, 2014; Kraal et al., 2009).

2.3.1 Total elemental composition and organic carbon

A split of ~ 125 mg of freeze-dried sediment was dissolved overnight in 2.5 mL HF (40 %) and 2.5 mL of HClO₄/HNO₃ mixture, in a closed Teflon bomb at 90 °C. The acids were then evaporated at 160 °C and the resulting gel was dissolved overnight in 1 M HNO₃ at 90 °C. Total elemental concentrations in the 1 M HNO₃ solutions were determined by ICP-OES. A second split of 0.3 g freeze-dried sediment was used to determine the C_organic content using an elemental analyzer (Fison Instruments model NA 1500 NCS) after carbonate removal from the sediment with two washes with 1 M HCl (4 h and 12 h) followed by two washes with UHQ water and subsequent drying of the samples (Van Santvoort et al., 2002).

2.3.2 Sediment P fractionation

To determine the solid phase partitioning of P, aliquots of 0.1 g dried sediment were subjected to the SEDEX sequential extraction procedure after Ruttenberg (1992), as modified by Slomp et al. (1996b), but including the first MgCl₂ step (Table 1). Sediment P was fractionated as follows: i) exchangeable-P ("P_{exch}"), extracted by 1 M MgCl₂, pH 8, 0.5 h), ii) Fe-associated P ("P_{Fe}"), extracted by citrate-bicarbonate-dithionite (CDB), buffered to pH 7.5 with Na
citrate/Na bicarbonate, 8 h, followed by 1 M MgCl\(_2\), pH 8, 0.5 h), iii) authigenic Ca-P ("P\(_{\text{authi}}\) Ca-P", including carbonate fluorapatite, biogenic hydroxyapatite and CaCO\(_3\)-bound P, extracted by 1 M Na acetate solution, buffered to pH 4 with acetic acid, 6 h, followed by 1 M MgCl\(_2\), pH 8, 0.5 h), iv) detrital Ca-P ("P\(_{\text{deti}}\) Ca-P", extracted by 1 M HCl, 24 h) and v) organic P ("P\(_{\text{orgi}}\)", after ashing at 550 °C for 2 h, extracted by 1 M HCl, 24 h). The MgCl\(_2\) washes in steps ii and iii were to ensure that any HPO\(_4^{2-}\) re-adsorbed during CDB or acetate extraction was removed and included in the pools of Fe-associated P and authigenic Ca-P, respectively. Sediments were shielded from oxygen inside an Ar-filled glovebox until step 3 of the SEDEX procedure to eliminate the potential conversion of Ca-P to Fe-bound P due to pyrite oxidation upon oxygen exposure (Kraal and Slomp, 2014; Kraal et al., 2009). Dissolved HPO\(_4^{2-}\) in the CDB solution was analyzed by ICP-OES. For all other solutions, HPO\(_4^{2-}\) was determined colorimetrically (Strickland and Parsons, 1972) on a Shimadzu spectrophotometer using the ammonium heptamolybdate – ascorbic acid method.

2.3.3 Sediment Fe fractionation

Sediment Fe was fractionated into i) carbonate associated Fe ("Fe\(_{\text{carb}}\)", including siderite and ankerite, extracted by 1 M Na-acetate brought to pH 4.5 with acetic acid, 24 h), ii) easily reducible (amorphous) oxides ("Fe\(_{\text{oxi}}\)", including ferrihydrite and lepidocrocite, extracted by 1 M hydroxylamine-HCl, 24 h), iii) reducible (crystalline) oxides ("Fe\(_{\text{oxr}}\)", including goethite, hematite and akagenéite, extracted by Na-dithionite buffer, pH 4.8, 2 h) and iv) Fe in recalcitrant oxides (mostly magnetite, "Fe\(_{\text{magi}}\)", extracted by 0.2 M ammonium oxalate / 0.17 M oxalic acid solution, 2 h), according to Poulton and Canfield (2005), using a 50 mg aliquot of dried sediment (Table 1). An additional aliquot of 50 mg was subjected to an adapted sequential extraction procedure after Claff et al. (2010), separating labile Fe(II) ("Fe(II)\(_{\text{HCl}}\)") and Fe(III) ("Fe(III)\(_{\text{HCl}}\)") using 1 M HCl (4 h) from crystalline Fe oxide minerals ("Fe(II)\(_{\text{CRS}}\)", Na-dithionite buffer, pH 4.8, 4 h) and from pyrite ("Fe\(_{\text{pyr}}\)"), concentrated nitric acid, 2 h), for all multicores as well as for the long core at site 4 (Table 1).

At site 4 (multicore only) and 5 (multicore and gravity core), aliquots of 0.5 g dried sediment were used to sequentially determine the amount of FeS (acid volatile sulfur, “AVS”, using 6 M HCl) and FeS\(_2\) (chromium reducible sulfur, “CRS”, using acidic chromous chloride solution) via the passive diffusion method described by Burton et al., 2008) using iodometric titration of the ZnS formed in the alkaline Zn acetate traps to quantify AVS and CRS (Table 1).

2.4 Diagenetic model

2.4.1 General form

A multicomponent transient diagenetic model was developed for site 4 based on existing diagenetic models (Reed et al., 2011a, 2011b; Rooze et al., 2016) to gain a better understanding of the transient diagenesis in Black Sea sediments and to investigate the potential for Fe-AOM as a source of pore water Fe\(^{2+}\) at depth. The model describes the cycling of dissolved and particulate chemical species in a 1D sediment column (Berner, 1980) and its domain is represented by 2000 grid cells that capture the upper 2000 cm of the sediment (i.e. vertical resolution of 1 cm). A total of 25 different chemical species (Table 2) were subjected to a suite of biogeochemical reactions (Table 3) and
vertical transport through burial, as well as molecular diffusion for dissolved species (Boudreau, 1997; Soetaert et al., 1996; Wang and Van Cappellen, 1996). The general diagenetic equations for solid (Eq. (1)) and dissolved species (Eq. (2)) are, respectively,

\[
\frac{dC_s}{dt} = (1 - \phi) v \frac{dC_s}{dx} + \sum R_s
\]

\[
\phi \frac{dC_{aq}}{dt} = \phi D' \frac{d^2C_{aq}}{dx^2} - \phi u \frac{dC_{aq}}{dx} + \sum R_{aq}
\]

where \(C_s\) is the concentration of the solid species (mol L\(^{-1}\); mass per unit volume of solids), \(C_{aq}\) the concentration of the dissolved species (mol L\(^{-1}\); mass per unit volume of pore water), \(t\) is time (yr), \(\phi\) the sediment porosity, \(x\) the distance from the sediment-water interface (cm), \(D'\) the diffusion coefficients of dissolved species in the sediment (cm\(^2\) yr\(^{-1}\)) adjusted for the considered setting (Supplementary Table S1) (Boudreau, 1997) and corrected for the tortuosity in the porous medium (Boudreau, 1996) (see Supplementary Information). \(\Sigma R_s\) and \(\Sigma R_{aq}\) are the net reaction rates of the solid and dissolved species from the chemical reactions they participate in (Table 3), and \(v\) and \(u\) the advective velocities (cm yr\(^{-1}\)) of the solid and the dissolved species, respectively. Porosity and advective velocities were described by depth-dependent functions to account for sediment compaction (Meysman et al., 2005; Reed et al., 2011a) (see Supplementary Information and Supplementary Fig. S1).

Reactions considered by the model and corresponding reaction equations are given in Tables 3 and 4, respectively, and are divided into primary redox reactions and other biogeochemical reactions, including various mineral formation and dissolution reactions (Reed et al., 2011a, 2011b; Rooze et al., 2016). Corresponding reaction parameters were mostly taken from the literature or, if these were not available or no fit to the data could be obtained with existing parameter ranges, constrained using the extensive geochemical dataset for site 4 (Table 5). To account for differences in reactivity and crystallinity between different species, organic matter and Fe oxides are divided into three different pools, representing highly reactive (\(\alpha\)), less reactive (\(\beta\)) and non-reactive (i.e. inert) (\(\gamma\)) phases. For the Fe oxides, only the \(\alpha\) phase is used by organoclastic Fe reduction (Table 3), while both the \(\alpha\) and \(\beta\) phase are used by Fe-AOM (Rooze et al., 2016).

The succession of oxidants during organic matter decomposition (Froelich et al., 1979) is described by means of Monod kinetics (Table 4), inhibiting degradation pathways in the presence of oxidants with higher metabolic free energy yields and switching off pathways when an oxidant is exhausted (Berg et al., 2003; Boudreau, 1996; Reed et al., 2011b; Rooze et al., 2016; Wang and Van Cappellen, 1996). Corresponding limiting concentrations for the oxidants are taken from (Reed et al., 2011a) (Table 5). In addition, an attenuation factor, \(\Psi\), is used to slow down organic matter degradation through SO\(_4^{2-}\) reduction and methanogenesis, thus allowing for better preservation of organic matter under anoxic bottom water conditions (Moodley et al., 2005; Reed et al., 2011a, 2011b).

Cycling of S is simulated using five different chemical species, i.e. Fe monosulfides (FeS), pyrite (FeS\(_2\)), elemental S (S\(_0\)), dissolved sulfide and pore water SO\(_4^{2-}\) (Table 2), combined in a network of various biogeochemical reactions (Table 3). The CH\(_4\) cycle includes CH\(_4\) production from organic matter and from CO\(_2\), as well as CH\(_4\) oxidation coupled to the reduction of O\(_2\), SO\(_4^{2-}\) and Fe(OH)\(_3\) (Table 3). Although Mn-oxides have also been suggested to be a thermodynamically favorable electron acceptor for AOM (Beal et al., 2009), they were not included in the model because of the relatively low Mn concentrations (~15 µmol g\(^{-1}\) for total sedimentary Mn and < 30 µM for dissolved Mn).
Mn$^{2+}$; Supplementary Fig. S2 and S3) when compared to Fe and the likely presence of most of the Mn in the form of Mn-carbonates. The P forms included in the model are pore water HPO$_4^{2-}$, authigenic Ca-P, organic P and detrital P, as well as Fe-bound P, i.e. P associated with Fe oxides and P in vivianite (Table 2). The removal of dissolved Fe$^{2+}$ through formation of the Fe minerals FeS, siderite (FeCO$_3$) and vivianite is also included in the model (Table 3).

The boundary conditions at the sediment surface were specified as time-dependent depositional fluxes for the particulate components and as fixed bottom water concentrations for the dissolved species, while a zero gradient boundary condition was set for all chemical species at the base of the model domain (Fig. 2 and Supplementary Table S2). To avoid potential interferences of the lower boundary conditions with the model results in the upper sediments, the model depth was set to 2000 cm (see Supplementary Fig. S4). In this paper, only the upper 800 cm are shown. However, all profiles extending over the full depth range are provided in the Supplementary Information file (Supplementary Fig. S3 and Fig. S5).

The model applied in this study simulates the sediment deposition during the last 25000 years. A constant mass accumulation rate of 0.06 g cm$^{-2}$ yr$^{-1}$ over the Holocene was assumed. In order to reduce the computing time for the freshwater period, a higher mass accumulation rate of 1 g cm$^{-2}$ yr$^{-1}$ was used between 25000 and 10000 years before present (B.P.) and all fluxes were corrected accordingly (i.e. multiplied with a factor of 16.67). The best fit to the chloride (Cl$^{-}$) profile, which can be used to estimate the timing of the Mediterranean saltwater inflow into the Black Sea basin, was obtained assuming an initial salinity of 1 for the freshwater lake and a linear increase to a salinity of 22 starting around 9000 years ago (Fig. 2). Such a salinization scenario compares well to a previous salinity reconstruction by Soulet et al. (2010). However, a constant salinity over the last 2000 years, as suggested by these authors, resulted in a pore water gradient that was too shallow when compared to the measured pore water Cl$^{-}$ profile (Supplementary Fig. S4). Therefore, the period with constant salinity of 22 was adjusted to 100 years to fit the data.

A shift from oxic towards euxinic conditions around 7600 years B.P., with a peak in organic matter loading around 5300 years B.P. and constant elevated organic matter fluxes after 2700 years B.P. was assumed, following a recent study comprising data from seven sediment cores collected from the Black Sea (Eckert et al., 2013) (Fig. 2). In addition, the input of organic matter was assumed to increase again in the last century, reflecting anthropogenic eutrophication of waters on the adjacent continental shelf as previously reported (Capet et al., 2013; Kemp et al., 2009). With the development of anoxic and sulfidic bottom-water conditions, depositional fluxes of reactive Fe oxides were assumed to be zero (Fig. 2). In contrast, fluxes of Fe sulfides are high under euxinic conditions and dominated by FeS$_2$.

2.4.2 Transient scenario

The model code was written in R using the marelac geochemical dataset package (Soetaert et al., 2010) and the ReaTran package (Soetaert and Meysman, 2012) to calculate the transport in porous media. The set of ordinary differential equations was subsequently solved numerically with the lsoda integrator algorithm (Hindmarsh, 1983; Petzoldt, 1983).
3 Results

3.1 Pore water profiles

Pore water profiles of SO$_4^{2-}$ show a linear decrease from ~ 17 mM at the sediment water interface to a depth of ~ 230 cm at both sites, below which CH$_4$ starts to accumulate in the pore water (Fig. 3). Bubble formation and degassing of CH$_4$ during gravity coring could not be avoided because of the high concentrations of CH$_4$ in the limnic deposits (above the saturation of ca 1.3 mM CH$_4$ at atmospheric pressure; Jørgensen et al., 2001; Yamamoto et al., 1976). Higher concentrations measured at site 5 are indicative of less CH$_4$ degassing. Observations of increased bubble formation with depth during coring suggest that decreasing CH$_4$ concentrations below 300 cm reflect enhanced outgassing with increasing levels of CH$_4$ in the deeper sediments. Pore water profiles of NH$_4^+$ at both sites are similar and concentrations increase to ~ 3 mM at depth, suggesting that actual CH$_4$ concentrations at both sites could be comparable. Most of the CH$_4$ values thus only indicate the presence or absence of CH$_4$ and thus are not a quantitative measure. Modeled pore water concentrations of CH$_4$ on the other hand, show a steep increase below the SMTZ, comparable to the gradient observed at site 5, and build up to concentrations of ~ 20 mM at depth (Supplementary Fig. S3).

The removal of both SO$_4^{2-}$ and CH$_4$ around 230 cm depth marks the SMTZ, where SO$_4$-AOM drives the production of dissolved sulfide, DIC and alkalinity (Supplementary Fig. S3) and diffusion of these pore water constituents away from the SMTZ (Fig. 3). Below the sulfide diffusion front, Fe$^{3+}$ accumulates in the pore water. Dissolved HPO$_4^{2-}$ reaches a maximum around the depth where sulfide levels drop below the detection limit of 1 µmol L$^{-1}$, followed by a steep decrease with depth. Concentrations of pore water Mn$^{2+}$ are more than an order of magnitude lower than those of dissolved Fe$^{2+}$, and decrease from the sediment surface until ~ 200 cm depth, below which they slightly increase again (Supplementary Fig. S3).

The isotopic composition of pore water CH$_4$ (available for site 5 only) seems not affected by the CH$_4$ loss and reveals a biological origin in the limnic deposits, with hydrogenotrophic carbonate reduction, i.e. microbial reduction of CO$_2$ to CH$_4$ as the main methanogenic pathway for the range of CH$_4$ isotope ratios observed in these sediments (Fig. 4) (Whiticar, 1999). Upward diffusing CH$_4$ shows a gradual depletion in δ^{13}C-CH$_4$ from ~ -74 ‰ at depth to ~ -96 ‰ around the SMTZ, followed by subsequent progressive 13C enrichment towards the sediment surface. 18O-CH$_4$ shows a small enrichment from -226 ‰ at depth to ~ -208 ‰ at the SMTZ and a strong shift towards high 18O-CH$_4$ values of up to ~ 113 ‰.

3.2 Solid phase profiles

A pronounced excursion in sedimentary C$_{org}$ at site 4 in combination with a shift from gray clay deposits to micro-laminated black sediments indicates that the lake-marine transition, i.e. the transition between the marine sapropel Unit II and the deep limnic sediments of Unit III (Arthur and Dean, 1998; Degens and Ross, 1974), is located around a sediment depth of ~ 90 cm at site 4 (Fig. 5). At site 5, Unit I and Unit II were lost due to a turbidite, explaining the low concentrations of C$_{org}$ in the upper sediments.

Concentrations of solid S increase with decreasing depth from 20 µmol g$^{-1}$ below 300 cm (sulfidization front) to ~ 400 µmol g$^{-1}$ in the upper 100 cm at both sites and are dominated by FeS$_2$ (Fig. 5). Iron oxides show a decrease from
~ 100 µmol g⁻¹ at depth to ~ 50 µmol g⁻¹ in the sediments between 100 – 300 cm and a further decrease to ~ 10 µmol g⁻¹ closer to the sediment surface. Amorphous Fe oxides (Feₐm1) and more crystalline oxides (Feₐm2) both account for half the total amount of Fe oxides, with a small contribution of recalcitrant oxides (Feₐm3) (Supplementary Fig. S2).

The results from the two different Fe extractions applied in this study (Table 1) generally compare well (Supplementary Fig. S2). Note, however, that the Fe oxides in Fig. 5 represent the results from the extraction after Poulton and Canfield (2005). Results from the Fe extractions modified from Claff et al. (2010) are provided in the Supplementary Information only. Sedimentary Mn content is relatively low at all three sites, ranging from ~ 5-10 µmol g⁻¹ in the marine sediments to ~ 15 µmol g⁻¹ in the deep limnic deposits of Unit III (Supplementary Fig. S2).

Sediments below the sulfidization front are characterized by high Fe carbonate contents of ~ 100 µmol g⁻¹. The sharp depletion in Fe carbonate around the sulfidization front could only be reproduced in the model by assuming Fe carbonate dissolution by dissolved sulfide (Table 3). These results suggest a conversion of reactive Fe from carbonate toward sulfide phases in the presence of abundant dissolved sulfide.

Units I and II show high concentrations of organic P, which accounts for ~ 30 % of total P in these sediments (Fig. 5). Low organic P and high concentrations of detrital P in the upper sediments at site 5 are due to the turbidite. The limnic deposits of Unit III are generally depleted in organic P (< 6 % of total P) and enriched in detrital P.

Authigenic Ca-P shows little variation in the sediments of Unit III, accounting for ~ 20 to 30 % of total P at the two sites. The contribution of Fe-associated P, on the other hand, is reduced in the limnic deposits of Unit III exposed to the downward diffusing sulfide (~ 20 %) when compared to the sediments below the sulfidization front (~ 30 %).

Concentrations of exchangeable P are < 2 µmol g⁻¹ for sediments above the SMTZ and < 1 µmol g⁻¹ for sediments at depth (data not shown).

Modeled SO₄²⁻ reduction rates show two distinct peaks of ~ 2 nmol cm⁻³ d⁻¹ in the sediments of Unit I and II, as well as an additional peak in the sediments around the SMTZ (Fig. 6). Rates of methanogenesis are highest in the organic-rich marine deposits (~ 0.2 - 0.3 nmol cm⁻³ d⁻¹) and generally around ~ 50 pmol cm⁻³ d⁻¹ in the limnic deposits. The sediments around the SMTZ are further characterized by high rates of SO₄-AOM (~ 0.3 nmol cm⁻³ d⁻¹), whereas sediments directly below the sulfidization front show enhanced rates of S₀ disproportionation (~ 60 pmol cm⁻³ d⁻¹).

Organoclastic SO₄²⁻ reduction provides the main source for pore water sulfide in the organic-rich marine deposits, while SO₄-AOM and S₀ disproportionation are the dominant sources of dissolved sulfide in sediments around the SMTZ and directly below the sulfidization front, respectively. Rates of Fe-AOM are generally low (~ 0.1 pmol cm⁻³ d⁻¹) and restricted to the limnic deposits only.

The temporal evolution in pore water and solid phase constituents illustrates the impact of the lake-marine transition on the sediment geochemistry (Fig. 7). Concentrations of pore water Cl⁻ and SO₄²⁻ increase with the intrusion of marine Mediterranean Sea waters ca. 9000 years ago, accompanied by a decrease in dissolved CH₄ and accumulation of pore water sulfide in the shallower sediments. Dissolved Fe²⁺ becomes restricted to non-sulfidic pore waters at depth, while HPO₄²⁻ and solid S start to accumulate in the presence of dissolved sulfide. Iron oxides decrease in the surface sediments as well as in the sediments at depth. Vivianite, on the other hand, becomes increasingly enriched in sediments below the downward diffusing sulfide front.
4. Discussion

4.1 Coupled S, CH₄ and Fe dynamics

4.1.1 Organoclastic SO₄²⁻ reduction

Model-derived areal rates of SO₄²⁻ reduction of ~ 0.72 mmol m⁻² d⁻¹ (Table 6), i.e. the total amount of SO₄²⁻ reduced per square meter of sea floor, are in good agreement with previous estimates of 0.65-1.43 mmol m⁻² d⁻¹ for sediments of the Black Sea (Jørgensen et al., 2001). SO₄²⁻ reduction accounts for > 90 % of total organic matter degradation in the model (Table 6), supporting previous conclusions that SO₄²⁻ reduction represents the dominant mineralization process of organic matter in sediments below the chemocline (Jørgensen et al., 2001; Thamdrup et al., 2000).

The depth-dependent rate profile of SO₄²⁻ reduction shows two distinct peaks of ~ 2 nmol cm⁻³ d⁻¹ associated with organoclastic SO₄²⁻ reduction in the organic matter rich marine deposits of Unit I and Unit II. These high rates compare well with literature values of 0.1 - 20 nmol cm⁻³ d⁻¹ (Holmkvist et al., 2011b; Jørgensen et al., 2001, 2004; Knab et al., 2009; Leloup et al., 2007). Thus, like previous modeling approaches based on hybrid modeling with experimentally measured SO₄²⁻ reduction rates (SRR) in the uppermost sediment layers (Jørgensen et al., 2001), the transient diagenetic model developed in this study is capable of reproducing the high rates of SO₄²⁻ reduction near the sediment surface. Our model further demonstrates that the two SRR peaks in the sediments of Unit I and Unit II are not reflected in the pore water profile of SO₄²⁻, indicating that SRR estimates based on pore water profiles of SO₄²⁻ alone may underestimate the actual rate of SO₄²⁻ reduction in marine sediments.

4.1.2 SO₄⁻-AOM

Pore water profiles of SO₄²⁻, CH₄, sulfide and DIC reveal a distinct SMTZ around 230 cm depth at both sites, where SO₄⁻-AOM with upward diffusing CH₄ results in the concomitant removal of pore water SO₄²⁻ and CH₄ and in the accumulation of dissolved sulfide and DIC in the pore waters of these sediments (Fig. 3). The depth of the SMTZ and the steep increase in CH₄ to > 3 mM below the SMTZ found in this study are consistent with earlier observations in sediments of the western Black Sea (Holmkvist et al., 2011b; Jørgensen et al., 2001, 2004; Knab et al., 2009; Leloup et al., 2007). The location of the SMTZ, however, has progressed downwards in the last 9000 years, following the inflow of SO₄²⁻-rich salt water into the Black Sea basin (Fig. 7).

In the model, SO₄⁻-AOM results in enhanced rates of SO₄²⁻ reduction at the SMTZ of ~ 0.3 nmol cm⁻³ d⁻¹ (Fig. 8). Calculated areal rates of SO₄⁻-AOM of ~ 0.17 mmol m⁻² d⁻¹ suggest that AOM accounts for ~ 19 % of the total SO₂⁻ reduction in these sediments (Table 6). Such a high contribution of AOM is close to the range of previous estimates of 7-18 % (Jørgensen et al., 2001, 2004). Around the SMTZ, SO₄⁻-AOM is responsible for ~ 90 % of the total SO₄²⁻ reduction (Fig. 6 and Table 6), thus enhancing the downward diffusive flux of sulfide into the deep limnic deposits of Unit III. Our model suggests that without this additional source of sulfide through SO₄⁻-AOM, the sulfidization front would currently be located around 150 cm depth in the sediment (Fig. 8).

The consumption of upward diffusing CH₄ by SO₄²⁻-driven AOM leads to a progressive enrichment of ¹³C and D in the residual CH₄ above the SMTZ (Fig. 4) due to the preferential oxidation of isotopically light CH₄ during SO₄⁻-AOM (Alperin et al., 1988; Martens et al., 1999; Whiticar, 1999). Modeled concentrations of CH₄ indicate that the
measurements above the sulfidization front at site 5 are likely less affected by outgassing during core recovery (Fig. 4) and can thus be used to derive kinetic isotope fractionation factors for carbon (εC) and hydrogen (εH) associated with SO42−-AOM at the SMTZ using the Rayleigh distillation function (Crowe et al., 2011; Egger et al., 2015b; Rayleigh, 1896; Whiticar, 1999). Corresponding estimates for εC of ~ 8 ‰ (R^2 = 0.972) and εH of ~ 58 ‰ (R^2 = 0.982) are at the lower end of previously documented values in marine and brackish-marine environments (8-38 ‰ for εC and 100-324 ‰ for εH) (Alperin et al., 1988; Egger et al., 2015b; Holler et al., 2009; Martens et al., 1999; Reeburgh, 2007). At the base of the SMTZ, however, upward diffusing CH4 reveals an initial depletion in δ13C-CH4 (Fig. 4). Such a shift to 13C-depleted CH4 together with a decrease in its concentration could indicate an enzyme-mediated equilibrium C isotope exchange during SO42−-AOM at low SO42− concentrations (< 0.5 mM) (Holler et al., 2012; Yoshinaga et al., 2014). The effect of such mechanisms on deuterated CH4 is likely limited.

4.1.3 Cryptic S cycling

Earlier studies postulated ongoing SO42− reduction (< 1 nmol cm⁻³ d⁻¹) within the SO42−-depleted (< 0.5 mM) limnic deposits below the SMTZ in sediments of the Black Sea (Holmkvist et al., 2011b; Knab et al., 2009; Leloup et al., 2007), Baltic Sea (Holmkvist et al., 2011a, 2014; Leloup et al., 2009) and Alaskan Beaufort Sea (Treude et al., 2014) likely driven by SO42− production from re-oxidation of dissolved sulfide with oxidized Fe minerals. In this mechanism, Fe oxides enhance the recycling of sulfide to SO42− in a cryptic S cycle (Holmkvist et al., 2011a; Treude et al., 2014) thereby fueling SO42−-driven AOM in Fe oxide-rich sediments. In this cryptic S cycle, dissolved sulfide is oxidized to zero-valent sulfur (S₀), a key intermediate in AOM, which is subsequently disproportionated to SO2− and sulfide by associated Deltaproteobacteria (Holmkvist et al., 2011a; Milucka et al., 2012; Sivan et al., 2014; Treude et al., 2014). The additional SO2−, produced during S₀ disproportionation, may then be re-used by the methanotrophic archaea as an electron acceptor for SO42−-AOM (Milucka et al., 2012).

Our model results suggest slow rates of ongoing SO42− reduction of < 0.2 nmol cm⁻³ d⁻¹ (Fig. 6) within the limnic deposits exposed to dissolved sulfide (Table 6), in line with estimated SRR based on 35SΟ42− incubation experiments with Black Sea sediments from below the SMTZ of ~ 0.1-0.5 nmol cm⁻³ d⁻¹ (Knab et al., 2009; Leloup et al., 2007). Below the sulfidization front, SRR drop to ~ 2 pmol cm⁻³ d⁻¹, but remain above zero. Active SO42− reduction in these SO42−-depleted sediments requires deep SO42− formation to maintain low net rates of SO42− reduction. In the model, S₀ disproportionation is the only potential source of pore water SO42− at depth (Table 3). Formation of S₀ in turn, occurs exclusively by oxidation of dissolved sulfide during the reductive dissolution of Fe oxides, explaining the distinct S₀ disproportionation peak of ~ 60 pmol cm⁻³ d⁻¹ around the sulfidization front (Fig. 6). Thus, based on the model assumptions, we conclude that Fe oxides increase the transformation of sulfide to SO42− via formation and subsequent disproportionation of S₀ in these sediments, as suggested previously (Holmkvist et al., 2011b; Knab et al., 2009; Leloup et al., 2007). Such recycling of SO42− stimulates slow rates of SO42−-AOM in the sediments below the SMTZ, explaining the low background rates of SO42− reduction throughout the limnic deposits at depth (~ 2 pmol cm⁻³ d⁻¹).

These results support recent findings of indirect Fe stimulated SO42− driven AOM in laboratory experiments (Sivan et al., 2014), and highlight that Fe oxides could play a significant role as stimulators of AOM and S recycling in natural environments.
4.2 Fe reduction below the sulfidization front

Below the sulfidization front, Fe\(^{2+}\) starts to accumulate in the pore water (Fig. 3). Although previous studies have also reported an increase of dissolved Fe\(^{2+}\) around the depth where sulfide levels drop below the detection limit (Holmkvist et al., 2011b; Jørgensen et al., 2004; Knab et al., 2009), the source of this pore water Fe\(^{2+}\) has remained unknown. One possible explanation could be that the elevated Fe\(^{2+}\) concentrations at depth represent remnant Fe\(^{2+}\) accumulated during the Black Sea “Lake” phase (Knab et al., 2009). In our model, Fe\(^{2+}\) shows a broad peak of ~ 300 µM until ~ 300 cm depth in the sediment during the initial Lake phase, assuming organoclastic Fe reduction as the only Fe reduction pathway (data not shown). The removal of Fe\(^{2+}\) through authigenic formation of reduced Fe(II) minerals, however, prevents the accumulation of substantial amounts of Fe\(^{2+}\) in the pore water below ~ 300 cm sediment depth during the Lake phase (Fig. 8). We therefore conclude that the high concentrations of dissolved Fe\(^{2+}\) below the sulfidization front are most likely indicative of active Fe reduction in these sediments.

4.2.1 Fe reduction through cryptic S cycling

In theory, a cryptic S cycle, as described in section 4.1.3, could result in net accumulation of dissolved Fe\(^{2+}\) if the sulfide consumption from reaction with ferric Fe outweighs the production of sulfide from SO\(_4^{2-}\) reduction. Modeled Fe\(^{2+}\) indeed shows a peak of < 100 µM directly below the sulfidization front, assuming no active Fe reduction in the limnic deposits (Fig. 8). However, concentrations of dissolved Fe\(^{2+}\) are too low compared to the measurements and confined to sediments between 300 – 400 cm depths only. The diagenetic model developed in this study therefore suggests that cryptic S cycling cannot explain the high concentrations of dissolved Fe\(^{2+}\) in the deep limnic deposits.

4.2.2 Organoclastic Fe reduction

In the model, the reduction of Fe oxides coupled to organic matter degradation only occurs with the easily reducible α phase in order to allow for the burial of the more crystalline β phase at depth (Table 3) (Rooze et al., 2016). Since the α phase is efficiently reduced in the upper few centimeters during organoclastic Fe reduction, no easily reducible Fe oxides are being buried into the deep sediments in the diagenetic model. Organoclastic Fe reduction therefore does not occur within the modeled deep limnic deposits that exclusively contain more crystalline (β) and refractory (γ) Fe oxides (Fig. 5). Instead, we assume that CH\(_4\) represents a plausible electron donor for the reduction of more crystalline Fe oxides in the organic-poor deep sediments with relatively refractory old organic matter (< 0.8 wt %). This assumption is supported by an increasing body of geochemical evidence and laboratory incubation experiments showing that Fe-AOM might be occurring in a variety of different aquatic environments (Amos et al., 2012; Beal et al., 2009; Crowe et al., 2011; Egger et al., 2015b; Riedinger et al., 2014; Scheller et al., 2016; Segarra et al., 2013; Sivan et al., 2011; Wankel et al., 2012).

In addition, several studies have shown that Fe-reducing microorganisms are able to outcompete methanogens for common substrates (e.g. acetate and H\(_2\)), thus reducing the concentrations of these common primary electron donors to levels that are too low for methanogens to grow (Achnich et al., 1995; Lovley and Phillips, 1987; Lovley et al., 1989). These results, together with the observed capability of methanogens to switch from CH\(_4\) production to Fe reduction (Bodegom et al., 2004; Bond and Lovley, 2002; Liu et al., 2011; Reiche et al., 2008; Sivan et al., 2016;
Vargas et al., 1998) led to the common conclusion that Fe oxides exert a suppressive effect on methanogenesis. Ongoing CH$_4$ production in the Fe oxide-rich limnic deposits, as deduced from the isotopic composition of pore water CH$_4$ (Fig. 4) could then indicate limited organoclastic Fe reduction in these sediments. However, there is increasing evidence that (semi)conductive crystalline Fe oxides (e.g. hematite and magnetite) can, in fact, stimulate concurrent methanogenesis and organoclastic Fe reduction through direct interspecies electron transfer (DIET), by serving as electron conduits among syntrophic CH$_4$-producing organisms at rates that are substantially higher than those for interspecies electron transfer by H$_2$ (Cruz Viggi et al., 2014; Kato et al., 2012; Li et al., 2014; Zhou et al., 2014; Zhuang et al., 2015). The inhibitory effect of Fe reduction on methanogenesis thus appears to be lower for crystalline Fe oxides such as hematite and magnetite, which are less bioavailable to Fe-reducing organisms than poorly crystalline (amorphous) Fe oxides (e.g. ferrihydrite and lepidocrocite) (Lovley, 1991; Qu et al., 2004; Zhuang et al., 2015). These findings indicate that the crystallinity and conductivity of Fe oxides may play a key role in determining whether methanogenesis is stimulated or suppressed in Fe oxide-rich environments.

The presence of methanogens that are able to rapidly switch between methanogenesis and reduction of Fe oxides could also result in a reactivation of less reactive Fe oxides that were not reduced during initial organoclastic Fe reduction in the deep methanogenic zone as suggested by Sivan et al. (2016). Thus, the deep limnic sediments may be characterized by a complex interplay of concurrent methanogenesis, Fe oxide reduction and methanotrophy, i.e. AOM.

4.2.3 Fe-AOM

Our model results indicate that Fe-AOM could also be a possible mechanism explaining the buildup of pore water Fe$^{3+}$ below the sulfidization front. Previous studies have shown that in systems where production and oxidation of CH$_4$ take place concurrently, methanogenesis might conceal the isotopic signature of AOM (Egger et al., 2015b; Seifert et al., 2006; Whiticar, 1999). Thus, unlike SO$_4$-AOM, Fe-dependent AOM likely only has little effect on the isotopic composition of pore water CH$_4$ due to the removal of small amounts of CH$_4$ in sediments with ongoing methanogenesis. This might explain why pore water CH$_4$ does not show enrichment in both heavy isotopes below the sulfidization front as would be expected if Fe-AOM would occur, but rather indicates antipathetic changes, i.e. depletion in 13C-CH$_4$ and enrichment in D-CH$_4$, usually attributed to CH$_4$ production from carbonate reduction (Chanton et al., 2005; Whiticar, 1999).

Model derived rates for Fe-AOM of ~ 0.1 pmol cm$^{-3}$ d$^{-1}$ (Fig. 6) are significantly lower than potential Fe-AOM rates of ~ 4 nmol cm$^{-3}$ d$^{-1}$ estimated from laboratory incubation studies (Egger et al., 2015b; Segarra et al., 2013; Sivan et al., 2011) with brackish and limnic sediment samples. This large deviation is likely due to an overestimation of Fe-AOM rates derived from stimulated microbial communities under laboratory conditions using freshly synthesized and thus easily bioavailable Fe oxides when compared to in-situ conditions.

In the upper 800 cm of sediment, Fe-AOM accounts for < 0.1 % of total CH$_4$ oxidation, with the remaining > 99.9 % attributed to SO$_4$-AOM (Table 6). Below the sulfidization front, Fe-AOM contributes to ~ 10 % of total CH$_4$ removal. However, while high rates of SO$_4$-AOM are mainly restricted to the SMTZ, Fe-AOM might occur over a
deep methanogenic zone, reaching far down into the sediment. To accurately assess the contribution of Fe-AOM to the total CH$_4$ consumption in Black Sea sediments, additional knowledge about the vertical expansion of the Fe oxide-rich limnic sediments deposited during the Blake Sea “Lake” phase would be required.

4.3 Impact of S-Fe-CH$_4$ dynamics on sedimentary P diagenesis

Degradation of organic matter and the subsequent release of HPO$_4^{2-}$ to the pore water during early diagenesis typically results in a sink-switching from organic P to authigenic P-bearing phases such as Ca phosphates (Filippelli, 1997; Ruttenberg and Berner, 1993; Slomp et al., 1996a), Mn-Ca carbonates (Jilbert and Slomp, 2013; Mort et al., 2010; Suess, 1979) or reduced Fe phosphates (Burns, 1997; Jilbert and Slomp, 2013; Martens et al., 1978; März et al., 2008). Reductive dissolution of Fe oxides by dissolved sulfide and the following liberation of HPO$_4^{2-}$ may also contribute to the buildup of pore water HPO$_4^{2-}$ (Burns, 1997; Egger et al., 2015a; März et al., 2008; Schulz et al., 1994). Thus, the downward sulfidization ultimately results in the accumulation of dissolved HPO$_4^{2-}$ in the pore water as the sulfidization front moves downward into the limnic deposits (Fig. 7).

The pore water profile of HPO$_4^{2-}$ (Fig. 3) indicates the presence of a sink for HPO$_4^{2-}$ below the sulfidization front and, to a lesser extent, in the sulfidic sediments around the SMTZ, likely unrelated to Ca-P authigenesis (Fig. 5). Such a sink for HPO$_4^{2-}$ below sulfidic sediments has been observed previously (Burns, 1997; Egger et al., 2015a; März et al., 2008; Schulz et al., 1994) and shown to be most likely the result of vivianite formation (Egger et al., 2015a; Hsu et al., 2014; März et al., 2008). Abundant dissolved Fe$^{2+}$ and a peak in Fe-associated P below the sulfidization front observed in this study (Fig. 3 and Fig. 5) suggest that vivianite authigenesis might also be occurring in the limnic deposits below the sulfidization front in Black Sea sediments.

Assuming that vivianite formation represents the only sink for pore water HPO$_4^{2-}$ results in a good fit between the modeled and measured pore water profile of HPO$_4^{2-}$ below the sulfidization front (Fig. 3). Modeled vivianite formation accounts for up to 70% of total Fe-associated P directly below the sulfidization front. However, the model underestimates the sharp peak in Fe-associated P directly below the sulfidization front, suggesting that modeled vivianite formation likely underestimates the actual contribution of vivianite in these sediments. In the limnic deposits not yet impacted by the downward sulfidization, modeled vivianite accounts for ~ 20 – 30% of total Fe-associated P. From this, we estimate that vivianite may be responsible for > 20% of total P burial directly below the sulfidization front and for ~ 10% of total P burial in the deep limnic deposits at depth.

Running the model without Fe-AOM and thus without a source of dissolved Fe$^{2+}$ at depth results in a modeled vertical HPO$_4^{2-}$ pore water profile of ~ 300 µM at depth in the sediment (Fig. 8). This suggests that Fe-AOM can promote conditions that allow sequestration of a significant proportion of P as vivianite in the limnic deposits below the sulfidization front. Consistent with earlier findings, Fe-AOM likely only accounts for a small fraction of total CH$_4$ oxidation, but may substantially impact the biogeochemical cycling of sedimentary P (Egger et al., 2015a, 2015b; Rooze et al., 2016).

The deviation between the modeled and measured profiles of HPO$_4^{2-}$ and Fe-associated P around the SMTZ (Fig. 3 and Fig. 5) could indicate the formation of vivianite in microenvironments as previously suggested for sulfidic sediments (Dijkstra et al., 2014; Jilbert and Slomp, 2013). For example, *Deltaproteobacteria*, known to be involved...
in SO\textsubscript{4}-AOM, have been shown to accumulate Fe- and P-rich inclusions in their cells (Milucka et al., 2012). They may therefore provide a potential explanation for the occurrence of Fe-associated P in sulfidic sediments (Dijkstra et al., 2014; Jilbert and Slomp, 2013). However, such microenvironments are not captured in our model.

In the diagenetic model, vivianite undergoes dissolution if sulfide is present in the pore waters (Table 3). Sulfide-induced vivianite dissolution significantly improved the model fit to the measured HPO\textsubscript{4}2- and sulfide data. With the downward migration of dissolved sulfide, modeled vivianite becomes increasingly enriched below the sulfidization front (Fig. 7). Thus, similar to the sulfidization front, a downward diffusive vivianite front may exist in sedimentary systems experiencing downward sulfidization.

In summary, the enhanced downward sulfidization driven by SO\textsubscript{4}-AOM leads to dissolution of Fe oxide-bound P in the lake deposits. Below the sulfidization front, downward diffusing HPO\textsubscript{4}2- is bound again in authigenic vivianite due to high concentrations of dissolved Fe2+ at depth in the sediment generated by ongoing Fe oxide reduction. As a result, trends in total P with depth are significantly altered, showing an accumulation in total P below the sulfidization front unrelated to changes in organic matter deposition and enhanced sedimentary P burial during deposition.

5. Conclusions

In the Black Sea, the shift from a freshwater lake to a marine system and subsequent downward diffusion of marine SO\textsubscript{4}2- into the CH\textsubscript{4}-bearing lake sediments results in a multitude of diagenetic reactions around the SMTZ (Fig. 9).

The diagenetic model developed in this study shows that SO\textsubscript{4}-AOM within the SMTZ significantly enhances the downward diffusive flux of sulfide into the deep limnic deposits, forming a distinct diagenetic sulfidization front around 300 cm depth in the sediment. Our results indicate that without this additional source of dissolved sulfide in the SMTZ, the current sulfidization front would be located around a depth of 150 cm. During the downward sulfidization, Fe oxides, Fe carbonates and vivianite are converted to Fe sulfide phases, leading to an enrichment in solid phase S contents and the release of HPO\textsubscript{4}2- to the pore water. Our results further support the hypothesis that part of the downward migrating sulfide is re-oxidized to SO\textsubscript{4}2- upon reaction with ferric Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates (~2 pmol cm-3 d-1) of SO\textsubscript{4}-AOM in the SO\textsubscript{4}2--depleted limnic deposits below the SMTZ (Holmkvist et al., 2011a, 2011b; Knab et al., 2009; Leloup et al., 2007).

We propose that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also be a possible mechanism explaining the high concentrations of Fe2+ in the pore water below the sulfidization front. The buildup of dissolved Fe2+ at depth creates conditions that allow sequestration of the downward diffusing HPO\textsubscript{4}2- as authigenic vivianite, resulting in an accumulation of total P in these sediments.

The diagenetic processes described here reveal that AOM may strongly overprint burial records of Fe, S and P in depositional marine systems subject to changes in organic matter loading or water column salinity such as coastal environments (Egger et al., 2015a; Rooze et al., 2016), deep-sea fan sediments (März et al., 2008; Schulz et al., 1994) and many high-latitude seas (Holmkvist et al., 2014; Treude et al., 2014). Interpreting these diagenetic patterns as primary sedimentary signals may lead to incorrect reconstructions of environmental conditions during sediment deposition.
Acknowledgments

We thank the captain, crew and shipboard party of the PHOXY cruise aboard R/V Pelagia to the Black Sea in June 2013. We also thank NIOZ Marine Research Facilities for their support and K. Bakker and S. Ossebaar for their contribution to the pore water analysis. D. van de Meent, T. Claessen, T. Zalm, A. van Dijk, E. Dekker and G. Megens are acknowledged for technical and analytical assistance in Utrecht. We further thank C. van der Veen for the methane isotope analysis. This research was funded by ERC Starting Grant 278364, NWO Open Competition Grant 822.01013 and NWO-Vici Grant 865.13.005 (to C. P. Slomp). This work was carried out under the program of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture and Science (OCW).

References

Table 1. Overview of the sequential P, Fe and S fractionation methods used in this study.

<table>
<thead>
<tr>
<th>Step and code</th>
<th>Extractant, extraction time</th>
<th>Target phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>P fractionation (modified from Ruttenberg (1992); done for site 4 (MC & GC) and site 5 (MC & GC))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 P\textsubscript{exch}</td>
<td>1 M MgCl\textsubscript{2}, pH 8, 0.5 h</td>
<td>Exchangeable P</td>
</tr>
<tr>
<td>2a P\textsubscript{Fe}</td>
<td>25 g L-1 Na dithionite, pH 7.5, 8 h</td>
<td>Fe-associated P</td>
</tr>
<tr>
<td>3a P\textsubscript{authi Ca-P}</td>
<td>Na acetate buffer, pH 4, 6 h</td>
<td>P in authigenic and biogenic Ca-P minerals and CaCO\textsubscript{3}</td>
</tr>
<tr>
<td>4 P\textsubscript{detr}</td>
<td>1 M HCl, 24 h</td>
<td>Detrital P</td>
</tr>
<tr>
<td>5 P\textsubscript{org}</td>
<td>Ashing at 550 °C (2h), then 1 M HCl, 24 h</td>
<td>Organic P</td>
</tr>
<tr>
<td>Fe fractionation (after Poulton and Canfield (2005); done for site 4 (MC & GC) and site 5 (MC))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Fe\textsubscript{carb}</td>
<td>1 M Na acetate, pH 4.5, 24 h</td>
<td>Carbonate-associated Fe</td>
</tr>
<tr>
<td>2 Fe\textsubscript{ox1}</td>
<td>1 M hydroxylamine-HCl, 24 h</td>
<td>Amorphous Fe oxides (ferrihydrite)</td>
</tr>
<tr>
<td>3 Fe\textsubscript{ox2}</td>
<td>50 g L-1 Na dithionite, pH 4.8, 2 h</td>
<td>Crystalline Fe oxides (goethite, hematite)</td>
</tr>
<tr>
<td>4 Fe\textsubscript{mag}</td>
<td>0.2 M ammonium oxalate/ 0.17 M oxalic acid, 2 h</td>
<td>Recalcitrant Fe oxides (mostly magnetite)</td>
</tr>
<tr>
<td>Fe fractionation (modified from Claff et al. (2010); done for site 4 (MC & GC) and site 5 (MC))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Fe(II)\textsubscript{HCl}</td>
<td>1 M HCl, 4 h</td>
<td>Labile Fe (carbonates, poorly ordered sulfides)</td>
</tr>
<tr>
<td>2 Fe(III)\textsubscript{HCl}</td>
<td>1 M HCl, 4 h</td>
<td>Labile Fe (easily reducible oxides)</td>
</tr>
<tr>
<td>3 Fe(III)\textsubscript{CDB}</td>
<td>50 g L-1 Na dithionite, pH 4.8, 4 h</td>
<td>Crystalline Fe oxides</td>
</tr>
<tr>
<td>4 Fe\textsubscript{pyrite}</td>
<td>Concentrated HNO\textsubscript{3}, 2 h</td>
<td>Pyrite (FeS\textsubscript{2})</td>
</tr>
<tr>
<td>S fractionation (after Burton et al. (2008); done for site 4 (MC) and site 5 (MC & GC))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 AVS</td>
<td>6 M HCl, 24 h</td>
<td>S in Fe monosulfides (FeS)</td>
</tr>
<tr>
<td>2 CRS</td>
<td>Acidic chromous chloride solution, 48 h</td>
<td>S in pyrite (FeS\textsubscript{2})</td>
</tr>
</tbody>
</table>

aThese steps were followed by a wash step with 1 M MgCl\textsubscript{2}, which was added to the corresponding step. MC = multicore and GC = gravity core.
Table 2. Chemical species included in the diagenetic model.

<table>
<thead>
<tr>
<th>Species</th>
<th>Notation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter(^a)</td>
<td>(OM^{\alpha,\beta,\gamma})</td>
<td>Solid</td>
</tr>
<tr>
<td>Iron oxides(^a)</td>
<td>(Fe(OH)_3^{\alpha,\beta,\gamma})</td>
<td>Solid</td>
</tr>
<tr>
<td>Iron monosulfide</td>
<td>(FeS)</td>
<td>Solid</td>
</tr>
<tr>
<td>Pyrite</td>
<td>(FeS_2)</td>
<td>Solid</td>
</tr>
<tr>
<td>Siderite</td>
<td>(FeCO_3)</td>
<td>Solid</td>
</tr>
<tr>
<td>Elemental sulfur</td>
<td>(S_0)</td>
<td>Solid</td>
</tr>
<tr>
<td>Iron oxide-bound phosphorus</td>
<td>(Fe_{ox}P)</td>
<td>Solid</td>
</tr>
<tr>
<td>Vivianite</td>
<td>(Fe_3(PO_4)_2)</td>
<td>Solid</td>
</tr>
<tr>
<td>Organic phosphorus</td>
<td>(P_{org})</td>
<td>Solid</td>
</tr>
<tr>
<td>Authigenic (Ca) phosphorus</td>
<td>(CaP)</td>
<td>Solid</td>
</tr>
<tr>
<td>Detrital phosphorus</td>
<td>(DetrP)</td>
<td>Solid</td>
</tr>
<tr>
<td>Chloride</td>
<td>(Cl^-)</td>
<td>Solute</td>
</tr>
<tr>
<td>Oxygen</td>
<td>(O_2)</td>
<td>Solute</td>
</tr>
<tr>
<td>Sulfate</td>
<td>(SO_4^{2-})</td>
<td>Solute</td>
</tr>
<tr>
<td>Iron</td>
<td>(Fe^{2+})</td>
<td>Solute</td>
</tr>
<tr>
<td>Hydrogen sulfide(^b)</td>
<td>(\Sigma H_2S)</td>
<td>Solute</td>
</tr>
<tr>
<td>Methane</td>
<td>(CH_4)</td>
<td>Solute</td>
</tr>
<tr>
<td>Ammonium(^b)</td>
<td>(\Sigma NH_4^+)</td>
<td>Solute</td>
</tr>
<tr>
<td>Nitrate</td>
<td>(NO_3^-)</td>
<td>Solute</td>
</tr>
<tr>
<td>Phosphate</td>
<td>(\Sigma HPO_4^{2-})</td>
<td>Solute</td>
</tr>
<tr>
<td>Dissolved inorganic carbon</td>
<td>(DIC)</td>
<td>Solute</td>
</tr>
</tbody>
</table>

\(^a\) There are three types of species: reactive (\(\alpha\)), less reactive (\(\beta\)) and refractory (\(\gamma\))

\(^b\) \(\Sigma\) denotes that all species of an acid are included.
Table 3. Reaction pathways and stoichiometries implemented in the diagenetic model.

<table>
<thead>
<tr>
<th>Primary redox reactions*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{OM}^{\text{a}} + a\text{O}_2 \rightarrow a\text{CO}_2 + b\text{NH}_4^+ + c\text{H}_2\text{PO}_4 + a\text{H}_2\text{O}$</td>
<td>R1</td>
</tr>
<tr>
<td>$\text{OM}^{\text{a}} + \frac{4a}{3}\text{NO}_3^- + \frac{4a}{3}\text{H}^+ \rightarrow a\text{CO}_2 + b\text{NH}_4^+ + c\text{H}_2\text{PO}_4 + \frac{7a}{3}\text{N}_2 + \frac{7a}{3}\text{H}_2\text{O}$</td>
<td>R2</td>
</tr>
<tr>
<td>$\text{OM}^{\text{a}} + 4a\text{Fe(OH)}3 + 4a\text{x}^\text{Fe}{ax}\text{P} + 12a\text{H}^+ \rightarrow a\text{CO}_2 + b\text{NH}4^+ + (c + 4a\text{x}^\text{Fe}{ax})\text{H}_2\text{PO}_4 + 4a\text{Fe}^{2+} + 13a\text{H}_2\text{O}$</td>
<td>R3</td>
</tr>
<tr>
<td>$\text{OM}^{\text{a}} + \frac{8a}{3}\text{SO}_4^{2-} + a\text{H}^+ \rightarrow a\text{CO}_2 + b\text{NH}_4^+ + c\text{H}_2\text{PO}_4 + \frac{8a}{3}\text{H}_2\text{S} + a\text{H}_2\text{O}$</td>
<td>R4</td>
</tr>
<tr>
<td>$\text{OM}^{\text{a}} \rightarrow \frac{2}{3}\text{CO}_2 + b\text{NH}_4^+ + c\text{H}_2\text{PO}_4 + \frac{2}{3}\text{CH}_4$</td>
<td>R5</td>
</tr>
<tr>
<td>$\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}$</td>
<td>R6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary redox and other reaction equations†</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\text{O}_2 + \text{NH}_4 + 2\text{HCO}_3^- \rightarrow \text{NO}_3^- + 2\text{CO}_2 + 3\text{H}_2\text{O}$</td>
<td>R7</td>
</tr>
<tr>
<td>$\text{O}_2 + 4\text{Fe}^{2+} + 8\text{HCO}_3^- + 2\text{H}_2\text{O} + 4\text{Fe}^{2+} \rightarrow 4\text{Fe(OH)}_3 + 4\text{Fe}^{2+} \rightarrow 8\text{Fe}^{2+} + 8\text{CHO}_3$</td>
<td>R8</td>
</tr>
<tr>
<td>$2\text{O}_2 + \text{FeS} \rightarrow \text{SO}_4^{2-} + \text{Fe}^{2+}$</td>
<td>R9</td>
</tr>
<tr>
<td>$7\text{O}_2 + 2\text{FeS}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{SO}_4^{2-} + 2\text{Fe}^{2+} + 4\text{H}^+$</td>
<td>R10</td>
</tr>
<tr>
<td>$2\text{O}_2 + \text{H}_2\text{S} + 2\text{HCO}_3^- \rightarrow \text{SO}_4^{2-} + 2\text{CO}_2 + 2\text{H}_2\text{O}$</td>
<td>R11</td>
</tr>
<tr>
<td>$2\text{O}_2 + \text{CH}_4 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$</td>
<td>R12</td>
</tr>
<tr>
<td>$2\text{Fe(OH)}_3 + 2\text{Fe}^{2+} + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}^{2+} + 2\text{Fe}^{2+} + 2\text{H}_2\text{O}$</td>
<td>R13</td>
</tr>
<tr>
<td>$2\text{Fe(OH)}_3 + 2\text{Fe}^{2+} + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}^{2+} + 2\text{Fe}^{2+} + 2\text{H}_2\text{O}$</td>
<td>R14</td>
</tr>
<tr>
<td>$2\text{Fe}^{2+} + 2\text{Fe}^{2+} \rightarrow 2\text{Fe}^{2+} + 2\text{Fe}^{2+} + 2\text{H}_2\text{O}$</td>
<td>R15</td>
</tr>
<tr>
<td>$\text{FeS} + \text{H}_2\text{S} \rightarrow \text{FeS}_2 + \text{H}_2$</td>
<td>R16</td>
</tr>
<tr>
<td>$4\text{SO}_4^{2-} + 4\text{H}_2\text{O} \rightarrow 3\text{H}_2\text{S} + \text{SO}_4^{2-} + 2\text{H}^+$</td>
<td>R17</td>
</tr>
<tr>
<td>$\text{FeS} + 2\text{SO}_4^{2-} \rightarrow \text{FeS}_2$</td>
<td>R18</td>
</tr>
<tr>
<td>$\text{SO}_4^{2-} + \text{CH}_4 + 2\text{CO}_2 \rightarrow 2\text{HCO}_3^- + \text{H}_2\text{S}$</td>
<td>R19</td>
</tr>
<tr>
<td>$\text{CH}_4 + 8\text{Fe(OH)}_3 + 8\text{Fe}^{2+} + 15\text{H}^+ \rightarrow \text{HCO}_3^- + 8\text{Fe}^{2+} + 8\text{Fe}^{2+} + 21\text{H}_2\text{O}$</td>
<td>R20</td>
</tr>
<tr>
<td>$\text{Fe(OH)}3 + (\text{x}^- - \text{x})\text{Fe}{ax}\text{P} \rightarrow \text{Fe(OH)}3 + (\text{x}^- - \text{x})\text{Fe}{ax}\text{PO}_4$</td>
<td>R21</td>
</tr>
<tr>
<td>$\text{Fe(OH)}3 + (\text{x}^- - \text{x})\text{Fe}{ax}\text{P} \rightarrow \text{Fe(OH)}3 + (\text{x}^- - \text{x})\text{Fe}{ax}\text{PO}_4$</td>
<td>R22</td>
</tr>
<tr>
<td>$3\text{Fe}^{2+} + 2\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{PO}_4 + 2\text{H}^+$</td>
<td>R23</td>
</tr>
<tr>
<td>$\text{Fe}^{2+} + \text{CO}_3^- \rightarrow \text{FeCO}_3$</td>
<td>R24</td>
</tr>
<tr>
<td>$\text{FeCO}_3 + \text{H}_2\text{S} \rightarrow \text{FeS} + \text{H}_2\text{PO}_4 + \text{H}^+$</td>
<td>R25</td>
</tr>
<tr>
<td>$\text{Fe}_{3}\text{PO}_4 + 3\text{H}_2\text{S} \rightarrow 3\text{FeS} + 2\text{H}_2\text{PO}_4 + 4\text{H}^+$</td>
<td>R26</td>
</tr>
</tbody>
</table>

* Organic matter (OM) is of the form $(\text{CH}_3\text{O})_a(\text{NH}_4)_b(\text{H}_2\text{PO}_4)_c$, with ‘a’=1, ‘b’=1/16 and ‘c’=1/106. Under anoxic bottom water conditions, ‘c’ reduces to 0.25. $\frac{\text{x}^{\text{Fe}_{ax}}}{\text{y}^{\text{Fe}_{ax}}}$ is Fe ratio of Fe(OM)$^{\text{a}}$ (see Supplementary Table S1). $\text{R} = \text{CO}_2$ reduction; $\text{R7} = \text{nitrification}$; $\text{R8} = \text{Fe(OH)}_3$ formation; $\text{R9} = \text{FeS}$ oxidation; $\text{R10} = \text{FeS}_2$ oxidation; $\text{R11} = \text{H}_2\text{S}$ oxidation; $\text{R12} = \text{FeS}_2$ oxidation; $\text{R13} = \text{S}_0$ disproportionation; $\text{R18} = \text{pyrite formation}$ (polysulfide pathway); $\text{R19} = \text{SO}_2$-AOM; $\text{R20} = \text{Fe-AOM}$; $\text{R21} = \text{conversion}$ (i.e. crystallization) from α to β phase; $\text{R22} = \text{crystallization}$ from β to γ phase; $\text{R23} = \text{vivianite}$ formation; $\text{R24} = \text{siderite}$ precipitation; $\text{R25} = \text{conversion}$ from siderite to FeS; $\text{R26} = \text{vivianite}$ dissolution by dissolved sulfide.
Table 4. Reaction equations implemented in the model.

Primary redox reaction equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1 = k_{\text{OM}} \frac{[O_2]}{[O_2]^2})</td>
<td>(E1)</td>
</tr>
<tr>
<td>(R_2 = k_{\text{OM}} \frac{[NO_2]}{[O_2]^2})</td>
<td>(E2)</td>
</tr>
<tr>
<td>(R_3 = k_{\text{OM}} \frac{[Fe(OH){2}^{2-}]}{[Fe(OH){2}^{2-} + [Fe(OH)_{2}^{3+}]]})</td>
<td>(E3)</td>
</tr>
<tr>
<td>(R_4 = \Psi k_{\text{OM}} \frac{[SO_4^{2-}]}{[SO_4^{2-} + [SO_4^{3-}] + [SO_4^{4-}] + [SO_4^{6-}]]})</td>
<td>(E4)</td>
</tr>
<tr>
<td>(R_5 = \Psi k_{\text{OM}} \frac{[KHCO_3]}{[KHCO_3 + [KCO_3^+] + [KCO_3^{2-}]]})</td>
<td>(E5)</td>
</tr>
<tr>
<td>(R_6 = k_1 \frac{DIC}{[O_2]})</td>
<td>(E6)</td>
</tr>
</tbody>
</table>

Secondary redox and other reaction equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_7 = k_2 [O_2][NH_4^+])</td>
<td>(E7)</td>
</tr>
<tr>
<td>(R_8 = k_3 [O_2][Fe^{2+}])</td>
<td>(E8)</td>
</tr>
<tr>
<td>(R_9 = k_4 [FeS])</td>
<td>(E9)</td>
</tr>
<tr>
<td>(R_{10} = k_5 [O_2][FeS_2])</td>
<td>(E10)</td>
</tr>
<tr>
<td>(R_{11} = k_6 [O_2][\Sigma H_2S])</td>
<td>(E11)</td>
</tr>
<tr>
<td>(R_{12} = k_7 [O_2][CH_4])</td>
<td>(E12)</td>
</tr>
<tr>
<td>(R_{13} = k_8 [Fe(OH)_{2}^{2-}][\Sigma H_2S])</td>
<td>(E13)</td>
</tr>
<tr>
<td>(R_{14} = k_9 [Fe(OH)_{2}^{2-}][\Sigma H_2S])</td>
<td>(E14)</td>
</tr>
<tr>
<td>(R_{15} = k_{10} [Fe^{2+}][\Sigma H_2S])</td>
<td>(E15)</td>
</tr>
<tr>
<td>(R_{16} = k_{11} [FeS][\Sigma H_2S])</td>
<td>(E16)</td>
</tr>
<tr>
<td>(R_{17} = k_{12} [SO_4^{2-}])</td>
<td>(E17)</td>
</tr>
<tr>
<td>(R_{18} = k_{13} [FeS][SO_4^{2-}])</td>
<td>(E18)</td>
</tr>
<tr>
<td>(R_{19} = k_{14} [SO_4^{2-}][CH_4])</td>
<td>(E19)</td>
</tr>
<tr>
<td>(R_{20} = k_{15} [Fe(OH)_{2}^{2-}][CH_4])</td>
<td>(E20)</td>
</tr>
<tr>
<td>(R_{21} = k_{16} [Fe(OH)_{2}^{2-}][CH_4])</td>
<td>(E21)</td>
</tr>
<tr>
<td>(R_{22} = k_{17} [Fe(OH)_{2}^{2-}][CH_4])</td>
<td>(E22)</td>
</tr>
<tr>
<td>(R_{23} = k_{18} [Fe^{2+}][\Sigma H_2S])</td>
<td>(E23)</td>
</tr>
<tr>
<td>(R_{24} = k_{19} [Fe^{2+}][DIC])</td>
<td>(E24)</td>
</tr>
<tr>
<td>(R_{25} = k_{20} [FeCO_3][\Sigma H_2S])</td>
<td>(E25)</td>
</tr>
<tr>
<td>(R_{26} = k_{21} [FeS][PO_4]_{2}^{2-}[\Sigma H_2S])</td>
<td>(E26)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Decay constant for C\textsubscript{org}^\alpha</td>
<td>(k_\alpha)</td>
</tr>
<tr>
<td>Decay constant for C\textsubscript{org}^\beta</td>
<td>(k_\beta)</td>
</tr>
<tr>
<td>Limiting concentration of O\textsubscript{2}</td>
<td>(K_{O2})</td>
</tr>
<tr>
<td>Limiting concentration of NO\textsubscript{3}-</td>
<td>(K_{NO3})</td>
</tr>
<tr>
<td>Limiting concentration of Fe(OH)\textsubscript{3}</td>
<td>(K_{Fe(OH)3})</td>
</tr>
<tr>
<td>Limiting concentration of SO\textsubscript{4}2-</td>
<td>(K_{SO42})</td>
</tr>
<tr>
<td>Attenuation factor for SO\textsubscript{4}2- and methanogenesis</td>
<td>(\Psi)</td>
</tr>
<tr>
<td>Rate constant for reaction E6</td>
<td>(k_1)</td>
</tr>
<tr>
<td>Rate constant for reaction E7</td>
<td>(k_2)</td>
</tr>
<tr>
<td>Rate constant for reaction E8</td>
<td>(k_3)</td>
</tr>
<tr>
<td>Rate constant for reaction E9</td>
<td>(k_4)</td>
</tr>
<tr>
<td>Rate constant for reaction E10</td>
<td>(k_5)</td>
</tr>
<tr>
<td>Rate constant for reaction E11</td>
<td>(k_6)</td>
</tr>
<tr>
<td>Rate constant for reaction E12</td>
<td>(k_7)</td>
</tr>
<tr>
<td>Rate constant for reaction E13</td>
<td>(k_8)</td>
</tr>
<tr>
<td>Rate constant for reaction E14</td>
<td>(k_9)</td>
</tr>
<tr>
<td>Rate constant for reaction E15</td>
<td>(k_{10})</td>
</tr>
<tr>
<td>Rate constant for reaction E16</td>
<td>(k_{11})</td>
</tr>
<tr>
<td>Rate constant for reaction E17</td>
<td>(k_{12})</td>
</tr>
<tr>
<td>Rate constant for reaction E18</td>
<td>(k_{13})</td>
</tr>
<tr>
<td>Rate constant for reaction E19</td>
<td>(k_{14})</td>
</tr>
<tr>
<td>Rate constant for reaction E20</td>
<td>(k_{15})</td>
</tr>
<tr>
<td>Rate constant for reaction E21</td>
<td>(k_{16})</td>
</tr>
<tr>
<td>Rate constant for reaction E22</td>
<td>(k_{17})</td>
</tr>
<tr>
<td>Rate constant for reaction E23</td>
<td>(k_{18})</td>
</tr>
<tr>
<td>Rate constant for reaction E24</td>
<td>(k_{19})</td>
</tr>
<tr>
<td>Rate constant for reaction E25</td>
<td>(k_{20})</td>
</tr>
<tr>
<td>Rate constant for reaction E26</td>
<td>(k_{21})</td>
</tr>
</tbody>
</table>

\(^{a}\) Moodley et al. (2005); \(^{b}\) Reed et al. (2011a); \(^{c}\) Wang and Van Cappellen (1996); \(^{d}\) Reed et al. (2011b); \(^{e}\) Rickard and Luther (1997); \(^{f}\) Berg et al. (2003); \(^{g}\) Rooze et al. (2016)
Table 6. Depth-integrated rates of key processes for selected depth intervals in µmol m$^{-2}$ d$^{-1}$.

<table>
<thead>
<tr>
<th>Process</th>
<th>0 – 90 cm2</th>
<th>90 - 300 cm2</th>
<th>300 – 800 cm2</th>
<th>0 – 800 cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organoclastic SO_4^{2-} reduction</td>
<td>698.12</td>
<td>22.20</td>
<td>0.012</td>
<td>720.34</td>
</tr>
<tr>
<td>Methanogenesis (OM)</td>
<td>18.81</td>
<td>12.02</td>
<td>46.24</td>
<td>77.07</td>
</tr>
<tr>
<td>Methanogenesis (DIC)</td>
<td>0.35</td>
<td>17.24</td>
<td>40.33</td>
<td>57.92</td>
</tr>
<tr>
<td>SO_4 - AOM</td>
<td>10.05</td>
<td>157.42</td>
<td>1.37</td>
<td>168.83</td>
</tr>
<tr>
<td>Fe – AOMd</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>S_0 disproportionation</td>
<td>0</td>
<td>0</td>
<td>1.13</td>
<td>1.13</td>
</tr>
</tbody>
</table>

a Marine deposits; b limnic sediments around the SMTZ with dissolved sulfide; c non-sulfidic limnic deposits; d per mol of CH$_4$.
Figure 1. Map showing the locations of site 4 (43°40.6' N, 30°7.5' E; 377 mbss) and site 5 (43°42.6' N, 30°6.1' E; 178 mbss), sampled in June 2013.
Figure 2. Transient evolution of salinity with a linear increase from 1 to 22 between 9000 and 100 years B.P. (a), fluxes of organic matter (J_{org}; b), Fe oxides ($J_{\text{Fe}(\text{OH})_3}$; c) and Fe sulfides ($J_{\text{FeS}_x}$; d) as implemented in the diagenetic model (site 4).
Figure 3. Pore water profiles of key components for site 4 (black dots) and site 5 (gray dots) and corresponding modeled profiles as calculated with the diagenetic model (black lines). Red dotted lines and roman numbers indicate the transitions between the lithological Unit I (modern coccolith ooze), Unit II (marine sapropel) and Unit III (limnic deposits). The orange bar represents the sulfate-methane transition zone (SMTZ) and the orange dashed line shows the current position of the downward migrating sulfidization front (S-front).
Figure 4. Pore water profiles of CH$_4$ for site 4 (black dots) and 5 (gray dots) and corresponding isotopic composition of dissolved CH$_4$ (available for site 5 only). δ^{13}C-CH$_4$ values are given in ‰ vs. VPDB (Vienna Pee Dee Belemnite) and δD-CH$_4$ values are given in ‰ vs. V-SMOW (Vienna Standard Mean Ocean Water). Red dotted lines and roman numbers indicate the transitions between the lithological Unit I (modern coccolith ooze), Unit II (marine sapropel) and Unit III (limnic deposits). The orange bar represents the sulfate-methane transition zone (SMTZ) and the orange dashed line shows the current position of the downward migrating sulfidization front (S-front).
Figure 5. Solid phase sediment profiles for site 4 (black dots) and 5 (gray dots). Fe oxides represent the sum of amorphous, crystalline and recalcitrant oxides, i.e. $\text{Fe}_{\text{ox1}}, \text{Fe}_{\text{ox2}}$ and Fe_{mag} (Table 1, Supplementary Fig. S2). Fe_{carb} was corrected for apparent AVS dissolution during the Na acetate extraction step (the uncorrected Fe_{carb} data is given in Supplementary Fig. S2). Black lines represent profiles derived from the diagenetic model. Red dotted lines and roman numbers indicate the transitions between the lithological Unit I (modern coccolith ooze), Unit II (marine sapropel) and Unit III (limnic deposits). The orange bar represents the sulfate-methane transition zone (SMTZ) and the orange dashed line shows the current position of the downward migrating sulfidization front (S-front).
Figure 6. Modeled rates of total SO$_4^{2-}$ reduction, methanogenesis, SO$_4$-AOM, S$_0$ disproportionation, sulfide production and Fe-AOM. Methanogenesis is divided into CH$_4$ production from organic matter fermentation (“OM”; black solid line) and CO$_2$ reduction (“CO$_2$”; green dashed line). Red dotted lines and roman numbers indicate the transitions between the lithological Unit I (modern coccolith ooze), Unit II (marine sapropel) and Unit III (limnic deposits). The orange bar represents the sulfate-methane transition zone (SMTZ) and the orange dashed line shows the current position of the downward migrating sulfidization front (S-front).
Figure 7. Transient evolution of selected pore water and sediment profiles with depth as calculated for site 4 using the diagenetic model.
Figure 8. Pore water profiles of dissolved sulfide, Fe²⁺ and HPO₄²⁻. The green dashed line represents the modeled sulfide profile without SO₄-AOM, indicating that latter significantly enhances the downward sulfidization. Blue dashed lines denote the modeled Fe²⁺ and HPO₄²⁻ profiles without ongoing Fe oxide reduction in the limnic deposits (i.e. no Fe-AOM). Note that concentrations of Fe²⁺ were multiplied 10 times in the model simulation without Fe oxide reduction to better visualize the potential release of Fe²⁺ through a cryptic S cycle (corresponding x axis at bottom). Red dotted lines and roman numbers indicate the transitions between the lithological Unit I (modern coccolith ooze), Unit II (marine sapropel) and Unit III (limnic deposits). The orange bar represents the sulfate-methane transition zone (SMTZ) and the orange dashed line shows the current position of the downward migrating sulfidization front (S-front).
Figure 9. Schematic of the main diagenetic processes discussed in this study and their imprint on the geochemical solid phase (left) and pore water profiles (right). Accumulation of marine sediments with time and the subsequent downward diffusion of SO_4^{2-} into the CH_4-bearing limnic sediment stimulate SO_4-AOM around the sulfate-methane transition zone (SMTZ), thus enhancing the downward sulfidization of the Fe oxide-rich lake deposits. Below the sulfidization front (S-front), HPO_4^{2-} released during reductive dissolution of Fe oxides is bound again in vivianite, leading to an enrichment in sedimentary P in these sediments. Numbers on the right indicate the key reactions occurring in the corresponding sediment layers as described in Table 3. Note that in this study, Fe-AOM (R20) represents the main source of pore water Fe$^{2+}$ below the S-front. However, based on the geochemical data, we cannot exclude a potential role for organoclastic Fe reduction (R3).