Interactive comment on “Glycerol dialkyl glycerol tetraether variations in the northern Chukchi Sea, Arctic Ocean, during the Holocene” by Yu-Hyeon Park et al.

Anonymous Referee #1

Received and published: 23 January 2017

I have completed the review of the manuscript “Glycerol dialkyl glycerol tetraether variations in the northern Chukchi Sea, Arctic Ocean, during the Holocene”, by Yu-Hyeon Park et al. The manuscript is written in sufficiently good English, with only a few technical errors (typo’s). Taking the amplification of global change in Arctic settings into account, there is merit in exploring downcore variability of GDGTs in the proposed setting. The results have been reported in a clear manner. However, the discussion is not complete yet, and needs to be expanded significantly before publication. Rewriting the discussion will be necessary mainly to include a number of studies that have discussed the production and preservation mechanism of GDGTs in marine shelf sediments. At this moment, the authors have based their entire discussion on one manuscript, i.e., Park et al. 2014. Although this manuscript is well-chosen, as it discusses the same study area, the authors discuss mechanisms that have been shown before in Arctic shelf seas, but also in shelf seas globally. Also, previous papers that discuss the problematic T-dependence of iGDGTs in Arctic shelf seas have been ignored. I have included several references to important studies below. I suggest major revisions before this manuscript can be accepted for publication. A number of technical remarks is also made below.

Remarks: L 77-104. This part of ‘material and methods’ should be expanded and placed within the introduction. The introduction contains almost no information of the production and environmental drivers on iGDGT and brGDGTs.

L 78. Specify here that this concerns brGDGTs from marine sediments, specifically river fan sediments.

L. 92. Rephrase and replace ‘Measured’ by ‘determined the concentration’.

L. 114. The description of core 01AGC and 08JPC as shelf cores does not mention the very different distance to the continent, or differences in the source of OM delivered to the surface sediments at these sites from previous studies.

L. 177. Here, the internal standard has to be mentioned. Also, was the concentration standardized against TOC? Or against g sediment? This has to be made clear.

L. 102. A proxy for soil OM contribution in river fan sediments (as brGDGTs in more distal marine sediments can be dominantly in-situ produced).

L 191-192. Rephrase, this sentence is not correct.

L. 194. Replace ‘show a variability’ with ‘change’.

L 200. Only two cores have values for sediments older than 9ka.

L 201 and further: it’s very useful for the reader if you could refer to the cores as ‘shelf cores’ and ‘slope cores’, to refresh the reader memory in-text. Further in the text, I
recommend to distinguish between core 01A and core 08JPC, by referring for instance to distant shelf and near shelf. This is much more informative than using only the core names.

L 203-204. This decrease is not clear to me, based on the Fig. 5.

L 209. All GDGT are ‘cyclic’ compounds. What you mean to say is the GDGTs that don’t contain a cyclopentane moiety. Here you could also mention that the compounds IIa, IIB, IIc and IIIa, IIb, IIC are measured co-eluting with their 6Me counterparts (IIa’, IIb’, IIc’, IIIa’, IIb’, IIC’). Be consistent and refer to 1a, IIa and IIIa as such (and not suddenly as I, II, III).

L 212. With fractional values?

L 217. Mention what the concentration was normalized against (g of dry sediment?)

L 250. In my opinion it is biased and not correct to explain the observed results in the discussion using only one manuscript (i.e., Park et al., 2014). I urge the authors to expand the number of manuscripts consulted for this discussion. It would be more logical to start the discussion with the novel data presented in this study and to move the references to the conclusion from Park et al. (at L. 250-252 and L. 284-292) further back.


L 288-292. There are a number of studies that have shown the in-situ production of cyclopentane-containing brGDGTs in Arctic sediments (i.e. De Jonge, C., Stadnitskaia, A., Cherkashov, G., Sinninghe Damstê, J.S., 2016. Branched glycerol dialkyl glycerol tetraethers and crenarchaeol record post-glacial sea level rise and shift in source of terrigenous brGDGTs in the Kara Sea (Arctic Ocean). Organic Geochemistry 92, 42–54; Peterse, F., Kim, J.-H., Schouten, S., Kristensen, D.K., Koç, N., Sinninghe Damstê, J.S., 2009. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry 40, 692–699) and globally (Sinninghe Damstê, J.S., 2016. Spatial heterogeneity of sources of branched tetraethers in shelf systems: The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia). Geochimica et Cosmochimica Acta 186, 13–31 and references herein). This list is non-exhaustive, and ALL relevant studies have to be read and referenced to in a valid discussion. The discussion also refers to a separate mechanism, the preferred conservation of soil OM compared to marine OM, which has recently been discussed in De Jonge, C., Stadnitskaia, A., Hopmans, E.C., Cherkashov, G., Fedotov, A., Streletskaia, I.D., Vasiliev, A.A., Sinninghe Damstê, J.S., 2015. Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): Implications for the use of brGDGT-based proxies in coastal marine sediments. Geochimica et Cosmochimica Acta 165, 200–225.

The discussion also lacks a part where the absolute CBT values are compared to...
those of other studies in Arctic sediments, comparing a typical terrigenous and marine signal, and evaluating whether the observed distribution fits an Arctic signal, or whether a significant is derived from the Bering Strait inflow (for instance Park et al., 2014, references above, Hanna, A.J.M., Shanahan, T.M., Allison, M.A., 2016. Distribution of branched GDGTs in surface sediments from the Colville River, Alaska: Implications for the MBTÅs/CBT paleothermometer in Arctic marine sediments. J. Geophys. Res. Biogeosci. 121, 2015JG003266).

The results section introduces an increased amount of brGDGT IIb, but this is not discussed further. The references provided above will help including this observation in the discussion.

The MBT values are also not compared with other studies from Arctic shelf seas with/without terrigenous impact. Here, an apparent weakness in this manuscript becomes obvious, as brGDGT Illa as represented here, includes both brGDGT Illa', a pH-sensitive compound that is produced in the marine environment, and brGDGT IIIa, that is generally not associated with marine in-situ production (see De Jonge et al., 2014). This should be mentioned when expanding on the current discussion on MBT values.

The authors postulate that the brGDGT signal is possibly dominated by a terrigenous signal in sediments formed under ice-covered conditions. Does the GDGT signature fit with a terrigenous source (i.e., is the reconstructed MAT and pH realistic?)

L 323. There have been a number of studies that have concluded that the TEX86 does not correlate with temperature in Arctic regions (for instance Ho, S. L. et al. Appraisal of TEX86 and thermometries in subpolar and polar regions. Geochimica et Cosmochimica Acta 131, 213–226 (2014), Tierney, J. E. & Tingley, M. P. A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochimica et Cosmochimica Acta 127, 83–106 (2014)). These should be mentioned in the conclusions. Perhaps it makes more sense to discuss the iGDGTs separately (i.e., GDGT0 and crenarchaeol), when discussing the observed variability in ‘low sea-ice low terrigenous input’ strata?

Fig. 2. Indicate in caption and figure what the amount of GDGTs is standardized against (ng/g of what?). All panels in this Fig are very close reproduction from Park et al. (2014). In my opinion, it should be sufficient to simply refer to the study itself, without including this data in a separate Fig.

Fig. 5. Here, the Fig. caption should be extended to include all the panels. Based on the location in the Chuckchi Sea (near shelf, distant shelf, slope), perhaps it would make more sense to plot the cores in the order 08JPC, 05JPC, 01A-GC?

Fig. 6 is a fairly complex Fig. that is only referred to once in the manuscript. Perhaps it makes sense to leave it out?

Supp Fig. 1 is identical to a Fig. in Park et al. (2014)??

Technical comments: L 48: From instead of on L 92. Employed instead of employed. L 112. Situated instead of sited. L 115. Sampled from instead of raised. L 258. Fig. 5 instead of Fig. 6? L 289. Characterize. L 580: Coastal instead of costal. L 583: Indicate which color corresponds to which glacial boundary extent. Fig. 4. Typo: Terrestrial instead of terrestrial. Fig. 5. I would rescale the BIT graph for those cores that have only low BIT values (between 0 and 0.5 fi).