Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrub land

Ben Wang1,2, TianShan Zha1, Xin Jia1,2, JinNan Gong2, Charles Bourque3, Wei Feng1, Yun Tian1, Bin Wu1, YuQing Zhang1, Heli Peltola2

1Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University. Beijing 100083, PR China.
2School of Forest Sciences, University of Eastern Finland. PO Box 111, FIN-80101 Joensuu, Finland.
3Faculty of Forestry and Environmental Management, University of New Brunswick, PO Box 4400, 28 Dineen Drive, Fredericton, New Brunswick, E3B 5A3, Canada

Correspondence to: TianShan Zha (tianshanzha@bjfu.edu.cn)

Abstract. No consensus has been reached on the causes of diel hysteresis between soil respiration (R_s) and temperature. Explanations for the occurrence of hysteresis have involved both biological and physical mechanisms. The specifics of these explanations, however, tend to vary with the particular ecosystem or biome being investigated. This study examined the seasonal variation in diel hysteresis and its controlling factors in a desert-shrub ecosystem in northwest (NW) China. The study was based on continuous measurements of R_s, air temperature (T_a), temperature at the soil surface and below (T_{surf} and T_s), volumetric soil water content (SWC), and photosynthesis over an entire year in 2013. Trends in diel R_s were observed to vary with SWC over the growing season. Diel variations in R_s were more closely associated with T_{surf} than with photosynthesis as SWC increased, leading to R_s being in phase with T_{surf} particularly when SWC > 0.08 m3 m$^{-3}$. However, as SWC decreased below 0.08 m3 m$^{-3}$ (ratio of SWC to soil porosity = 0.26), diel variations in R_s were more closely related to variations in photosynthesis, leading to a pronounced diel hysteresis and asynchronicity between R_s and T_{surf}. It was shown that SWC was responsible for regulating the relative control between photosynthesis and temperature on diel R_s, resulting in seasonal variation in hysteresis. Our findings highlight the importance of biological mechanisms and the role of SWC in regulating diel hysteresis between R_s and temperature. We recommend further studies to explore the actual mechanisms involved in explaining changes in the relative contribution of autotrophic and heterotrophic respiration to total R_s. These studies may help elucidate the role of SWC in affecting seasonal variation in diel hysteresis.
1 Introduction

Diel hysteresis (asynchronicity) between soil respiration (R_s) and soil temperature (T_s) is widely documented for forests (Tang et al., 2005; Gaumont-Guay et al., 2006; Riveros-Iregui et al., 2007; Stoy et al., 2007; Vargas and Allen, 2008; Jia et al., 2013), grasslands (Carbone et al., 2008; Barron-Gafford et al., 2011), and desert ecosystems (Wang et al., 2014; Feng et al., 2014). Diel hysteresis, which appears as an elliptical loop in the relationship between R_s and T_s, is difficult to model with theoretical functions, such as with the Q_{10}, Lloyd-Taylor, Arrhenius, or van’t Hoff functions (Lloyd and Taylor, 1994; Winkler et al., 1996; Davidson et al., 2006; Phillips et al., 2011; Oikawa et al., 2014). Diel hysteresis is also not currently addressed in the Q_{10} function for low soil water conditions, leading to an inadequate understanding of temperature sensitivity in R_s (Gaumont-Guay et al., 2008; Phillips et al., 2011; Darenova et al., 2014). Therefore, in order to accurately predict soil CO$_2$ fluxes and their responses to climate change, it is necessary to understand the biophysical mechanisms that play a role in controlling seasonal variation in diel hysteresis.

Over decades of research, two main lines of reasoning have been proposed to explain the causes of diel hysteresis between R_s and T_s. One line is based on the physical processes of heat and gas transport in soils (Vargas and Allen, 2008; Phillips et al., 2011; Zhang et al., 2015). Generally, soil CO$_2$ fluxes are measured at the soil surface and related to temperatures in the soil. Transport of CO$_2$ gas to the soil surface takes time to occur, which may cause delays to appear in observed respiration rates, causing hysteretic loops to form between R_s and T_s (Zhang et al., 2015). However, in recent years, a second line of reasoning has emerged, which puts more importance on the role of biological initiators associated with photosynthate supply (Tang et al., 2005; Kuzyakov and Gavrichkova, 2010; Vargas et al., 2011; Wang et al., 2014). Aboveground photosynthesis, which usually peaks at midday (e.g., 11:00-13:00), provides substrate for belowground roots and rhizosphere-microbe respiration but oscillates out of phase with T_s, which usually peaks in the afternoon (e.g., 14:00-16:00). These studies point out the need to take photosynthesis into consideration for a more accurate interpretation of R_s (Tang et al., 2005; Kuzyakov and Gavrichkova, 2010; Vargas et al., 2011). Physical and biological processes that relate to the production and transport of CO$_2$ gas in soils are not mutually exclusive and likely play important roles in affecting diel variation in R_s (Phillips et al., 2011; Zhang et al., 2015; Song et al., 2015). Currently, the causes of diel hysteresis between R_s and soil temperature remain largely unexplained.

Diel hysteresis between R_s and T_s has been shown to vary seasonally with soil water content (SWC; Tang et al., 2005; Riveros-Iregui et al., 2007; Carbone et al., 2008; Vargas and Allen, 2008; Ruehr et al., 2009; Wang et al., 2014). However, the influences of SWC on diel hysteresis are not consistent. Based on the Millington-Quirk model, high SWC block CO$_2$ gas and thermal diffusion (Millington and Quirk, 1961), resulting in large hysteresis loops (Riveros-Iregui et al., 2007; Zhang et al., 2015). In contrast, other studies have reported that low SWC and high vapor pressure deficits (VPD) can promote partial stomata closure, which leads to higher photosynthesis in the morning (e.g., 9:00-10:00) and suppressed photosynthesis in mid-afternoon, leading to pronounced hysteresis during dry periods (Tang et al., 2005; Vargas and Allen, 2008; Carbone et al., 2008; Wang et al., 2014). Clearly to understand the causes of hysteresis, the role of SWC needs to be studied.
Drylands cover a quarter of the earth’s land surface and play an important role in the global carbon (C) cycle (Safriel and Adeel, 2005; Austin, 2011; Poulter et al., 2014). Many studies in forest ecosystems are based on the application of physical soil CO$_2$ and heat transport models and evaluate the influences of SWC on CO$_2$ gas and thermal diffusion (Riveros-Iregui et al., 2007; Phillips et al., 2011; Zhang et al., 2015) and, in general, conclude that diel hysteresis can result from physical processes alone. In contrast, few studies have evaluated the causes of diel hysteresis in drylands. Currently, it is not clear whether physical or biological processes (or their combination) dominate the control of diel hysteresis in drylands.

Drylands are characterized with low productivity. As weak organic C storage pools (West et al., 1994; Lange, 2003), drylands are noted for their large contribution of autotrophic production of CO$_2$. The autotrophic component of R_s occurs as a direct consequence of root respiration, which is firmly coupled (within several hours) to recent photosynthesis (Liu et al., 2006; Baldocchi et al., 2006; Hö gberg and Read, 2006; Bahn et al., 2009; Kuzyakov and Gavrichkova, 2010). Therefore, photosynthesis may govern the level of variation in asynchronicity between R_s and T_s in drylands. In drylands, especially in desert ecosystems characterized by sandy soils of high porosity, the influence of SWC on gas diffusion is likely minimized. In general, most available water is used directly in sustaining biological activity in drylands (Noy-Meir, 1973). Under drought conditions, stomata closure in plants at midday reduces water losses, resulting in a suppression of photosynthesis (Jia et al, 2014). Such changes in diel patterns of photosynthesis likely result in modification of diel patterns in R_s, leading to hysteresis between R_s and T_s. Soil water content likely regulates photosynthesis and, in doing so, causes hysteresis between R_s and T_s to vary over the growing season.

In this study, we hypothesize that: (1) photosynthesis has a role in controlling hysteresis between R_s and T_s; and (2) SWC regulates the control of photosynthesis on hysteresis and its variation over the growing season. The main objectives of this research were to: (1) investigate seasonal variation in diel hysteresis between R_s and T_s; (2) explore the causes that lead to variation in diel hysteresis; and (3) understand how SWC influences diel hysteresis. To undertake this work, we measured R_s, SWC, T_s, and photosynthesis continuously in a desert-shrub ecosystem over an entire year in 2013.

2 Materials and Methods

2.1 Site description

The study was conducted at Yanchi Research Station of Beijing Forestry University, Ningxia, northwest China (37°42’31” N, 107°13’37” E, 1550 m a.s.l). The station is located at the southern edge of the Mu Us desert in the transition between the arid and semi-arid climatic zones. Based on 51 years of data (1954-2004) from the Meteorological Station at Yanchi, the mean annual air temperature at the station was 8.1°C and the mean annual total precipitation was 292 mm (ranging between 250 to 350 mm), 63% of which fell in late summer (i.e., July-September; Wang et al., 2014; Jia et al., 2014). Radiation and evaporative demand were high at the station, i.e., annual incoming shortwave radiation was 1.4×10^5 MJ m$^{-2}$ and annual potential evaporation was on average 5.5×10^{-3} kg m$^{-2}$ d$^{-1}$. The soil at the research station was of a sandy type, with a bulk
density of 1.6 g cm$^{-3}$. The total soil porosity within 0-2 cm and 5-25 cm depth was 50% and 38%, respectively. Soil organic matter, soil nitrogen, and pH were 0.21-2.14 g kg$^{-1}$, 0.08-2.10 g kg$^{-1}$, and 7.76-9.08, respectively (Wang et al., 2014; Jia et al., 2014). At the study site, over 80% of soil organic matter and soil nitrogen was concentrated in the first 10 cm of the soil. The vegetation was regenerated from aerial seeding that took place in 1998 and is currently dominated by a semi-shrub cover of *Artemisia ordosica*, averaging about 50 cm tall with a canopy size of about 80 cm × 60 cm (for additional details, see Jia et al. 2014 and Wang et al. 2014 and 2015).

2.2 Soil respiration and photosynthesis measurement

Two permanent polyvinyl chloride soil collars were initially installed on a small fixed sand dune in March, 2012. The collars were 20.3 cm in diameter and 10 cm in height, with 7 cm inserted into the soil. One collar was set on bare land with an opaque chamber (LI-8100-104, Nebraska, USA) and the other, over an *Artemisia ordosica* plant (~10 cm tall) with a transparent chamber (LI-8100-104C). Soil respiration (µmol CO$_2$ m$^{-2}$ s$^{-1}$) was directly estimated from CO$_2$-flux measurements obtained with the opaque-chamber system. Photosynthetic rates (µmol CO$_2$ m$^{-2}$ s$^{-1}$) of the selected plants were determined as the difference in CO$_2$ fluxes between the transparent- and the opaque-chamber.

Continuous measurements of CO$_2$ fluxes (µmol CO$_2$ m$^{-2}$ s$^{-1}$) were made *in situ* over an entire year with a Li-8100 CO$_2$ gas analyzer and a LI-8150 multiplexer (LI-COR, Nebraska, USA) connected to each chamber. Instrument maintenance was carried out bi-weekly during the growing season, including removing plant-regrowth in the opaque-chamber installation, and cleaning to avoid blackout conditions associated with the transparent-chamber installation. Measurement time for each chamber was 3 minutes and 15 seconds, including a 30-second pre-purge, 45-second post-purge, and 2-minute measurement period. The CO$_2$-flux data collected over 2013 were used in our analysis.

2.3 Measurements of temperatures, soil water content and other environmental factors

Hourly soil temperature (T_s, °C) and volumetric soil water content (SWC, m3 m$^{-3}$) at a 10-cm depth were measured simultaneously about 10 cm from the chambers using a LI-8150-203 temperature sensor and EC$_{H2O}$ moisture sensor (LI-COR, Nebraska, USA; see Wang et al., 2014). Other environmental variables were recorded every half hour using sensors mounted on a 6-m-tall flux tower approximately 800 m from our soil CO$_2$-flux measurement site. Air temperature (T_a, °C) was measured with a thermohygrometer (HMP155A, Vaisala, Finland). Soil surface temperature (T_{surf}, °C) was measured with an infrared-emission sensor (Model SI-111, Campbell Scientific Inc., USA). Incident photosynthetically active radiation (PAR) was measured with a light-quantum sensor (PAR-LITE, Kipp and Zonen, the Netherlands) and precipitation (PPT, mm), with three tipping-bucket rain gauges (Model TE525MM, Campbell Scientific Inc., USA) placed 50 m from the flux tower (see Jia et al., 2014).

2.4 Data processing and statistical analysis
In this study, the Q_{10} function (e.g., Eq. (1)) is used to describe the response of R_s to temperature. The response of R_s to changes in photosynthesis is characterized by a linear function (Eq. (2)). The instantaneous relative importance (RI) of photosynthesis to temperature in controlling R_s over the growing season is calculated with a correlation-based ratio (Eq. (3)). As RI increases, the more important photosynthesis is to R_s:

\[R_s = R_{10} \times Q_{10}^{(T-10)/10} \tag{1} \]

\[R_s = a \times P + b \tag{2} \]

\[RI = \frac{\rho_p}{\rho_t} \tag{3} \]

where R_{10} is the respiration at 10°C, Q_{10} is the temperature sensitivity of respiration, T is temperature, P is photosynthesis (μmol CO$_2$ m$^{-2}$ s$^{-1}$), a and b are regression coefficients, and ρ_p and ρ_t are the correlation coefficients between photosynthesis and R_s and temperature and R_s, respectively.

Measurements of CO$_2$ fluxes were screened by means of limit checking, i.e., hourly CO$_2$-flux data < -30 or > 15 μmol CO$_2$ m$^{-2}$ s$^{-1}$ were considered to be anomalous as a result of, for instance, gas leakage or plant damage by insects and immediately removed from the dataset (Wang et al., 2014, 2015). After limit checking, hourly CO$_2$ fluxes greater than three times the standard deviation from the calculated mean of 5 days’ worth of flux data were equally removed. Quality control and instrument failure together resulted in 5% loss of hourly fluxes for all chambers, 4% for temperatures, and 8% for SWC (Fig. 1).

Pearson correlation analysis was used to calculate the correlation coefficient between temperature or photosynthesis and R_s. Cross-correlation analysis was used to estimate hysteresis in temperature-R_s and photosynthesis-R_s relationships. We used root mean squared error (RMSE) and the coefficient of determination (R^2) as criteria in evaluating model performance. To evaluate seasonal variation in diel hysteresis, the mean monthly diel cycles of R_s, T_a, T_{surf}, T_s, and photosynthesis were generated by averaging their hourly means at a given hour over a particular month (Table 1). Exponential and linear regression was used to evaluate influence of SWC on the control of photosynthesis over temperature-R_s hysteresis. Furthermore, influences of SWC on diel hysteresis was examined in a wet month with highest rainfall and adequate SWC (July, $PPT = 117.9$ mm) and a dry month with low rainfall and inadequate SWC (August, $PPT = 10.9$ mm) during the growing season (see Wang et al., 2014). All statistical analyses were performed in MATLAB, with a significance level of 0.05 (R2010b, Mathworks Inc., Natick, MA, USA).

3 Results

3.1 Diel patterns of soil respiration, photosynthesis, and environmental factors
Incident photosynthetically active radiation, T_u, T_{surf}, and T, showed clear and stable diel patterns over the year (Fig. 1a-d), peaking at ~12:00 PM (Local Time, LT), ~16:00 PM, ~14:00 PM, and ~17:00 PM, respectively (Fig. 1a-d). Unlike the environmental factors, diel patterns in R_s remained constant over the non-growing part of the year, peaking at 11:00 AM-13:00 PM, and being highly variable during the rest of the year, peaking between 10:00 AM-16:00 PM (Fig. 1f). Similar to R_s, during the growing season, diel patterns in photosynthesis were also highly variable, peaking between 10:00 AM-16:00 PM (Fig. 1e). Diel patterns in monthly mean R_s were similar to those in T_{surf} during the wet month and similar to those in photosynthesis during the dry month (Fig. 2g, h).

3.2 Relative control of photosynthesis and temperature on diel soil respiration

Among temperatures at the three soil depths, T_{surf} correlated best with diel R_s, due to the high R^2's with monthly mean diel R_s throughout the year (Table 1). Over the growing season, monthly mean diel R_s correlated fairly well with photosynthesis (Table 1). The response of R_s to temperature and photosynthesis was affected by SWC during the growing season (Table 2; Fig. 3). During the wet month (July) with precipitation of 117.9 mm, T_{surf} alone explained 97% of the variation in diel R_s (Q_{10} function), whereas photosynthesis explained 67% of the variation (Fig. 3a, Table 2). However, during the dry season with precipitation of 10.9 mm, photosynthesis explained 88% of the variation in diel R_s, by way of Eq. (2), whereas T_{surf} explained 76% of the variation (Fig. 3b, Table 2). Over the growing season, RI of photosynthesis and temperature to R_s was significantly affected by SWC (Fig. 4), decreasing with increasing SWC.

3.3 Effects of soil water content on diel hysteresis in temperature-R_s relationship

Diel hysteresis in both T_{surf}-R_s and photosynthesis-R_s relationships were affected by SWC (Fig. 5). In the wet month (July), monthly mean diel R_s was out of phase with photosynthesis, but in phase with T_{surf} (Fig. 2g). Soil respiration peaked at 16:00 PM, having similar timing to T_{surf} (i.e., 15:00 PM), but four hours later than photosynthesis (peaking at 12:00 PM; Fig. 2g). In the dry month (August), however, diel R_s was in phase with photosynthesis, but out of phase with T_{surf} (Fig. 2h). Both photosynthesis and R_s plateaued between 10:00 AM-16:00 PM, whereas T_{surf} peaked at 15:00 PM (Fig. 2h). Over the growing season, the diel hysteresis between R_s and T_{surf} was linearly related to SWC when $SWC < 0.08 \text{ m}^3 \text{ m}^{-3}$ (ratio of SWC to soil porosity $= 0.26$; Fig. 5a). No hysteresis was observed when $SWC > 0.08 \text{ m}^3 \text{ m}^{-3}$ (Fig. 5a). In contrast, diel hysteresis between R_s and photosynthesis was linearly related to SWC when $SWC < 0.08 \text{ m}^3 \text{ m}^{-3}$ (Fig. 5b), but ceased to be related when $SWC > 0.08 \text{ m}^3 \text{ m}^{-3}$ ($p = 0.439$; Fig. 5b).

4 Discussion

4.1 Physical vs. biological controls of diel hysteresis
In our study, we found that the diurnal pattern in temperature \((T_a, T_{surf}, \text{ and } T_s) \) lagged behind that in \(R_e \) by several hours, which resulted in a counterclockwise loop in the relationship between \(R_e \) and temperature. Although the magnitude of diel hysteresis between \(R_e \) and temperature differed among the three temperature measurements, their seasonal variation was generally consistent. Among the temperature measurements, \(T_{surf} \) was more closely related to diel \(R_e \), resulting in weaker hysteresis. The magnitude of hysteresis between \(R_e \) and \(T_{surf} \) was comparable to those in other plant systems, e.g., 3.5-5 h in a boreal aspen stand (Gaumont-Guay et al., 2006) and 0-5 h in a Chinese pine plantation (Jia et al., 2013).

Contradictory results exist on the effects of SWC on hysteresis between \(R_e \) and temperature. Some studies have reported that the greatest diel hysteresis in temperature and \(R_e \) occurs during dry months (Tang et al., 2005; Vargas and Allen, 2008; Carbone et al., 2008; Wang et al., 2014), which is consistent with our finding. Whereas, some studies have reported strong hysteresis-loops under high SWC (Riveros-Iregui et al., 2007; Zhang et al., 2015). These contrasting findings may be a result of differences in soil properties and biophysical processes. In montane-conifer forests (Riveros-Iregui et al., 2007) and pine plantations (Zhang et al., 2015), dense soils have a propensity to affect within-soil gas transport, resulting in physical properties of the soil having greater control on diel hysteresis. High SWC tends to block gas transport, leading to greater hysteresis than under low SWC. However, at our site, sandy soils with high porosity, SWC was lower (< 0.15 m\(^3\) m\(^{-3}\), Fig 1).

According to the Millington-Quirk model (Millington and Quirk, 1961), changes in SWC may have minor influences on within-soil gas transport processes. As a result, biological processes become more important in controlling diel hysteresis. During dry months of the growing season, low SWC causes stomata closure (Tang et al., 2005; Vargas and Allen, 2008; Carbone et al., 2008; Jia et al., 2014; Wang et al., 2014), suppressing photosynthesis (Fig. 2). Diel patterns in \(R_e \) generally followed those of photosynthesis under low SWC, resulting in a large hysteresis between \(R_e \) and temperature (Fig. 2). Our results confirm the importance of biological processes in regulating diel hysteresis addressed in other studies (e.g., Högberg et al., 2001; Tang et al., 2005; Sampson et al., 2007; Kuzyakov and Gavrichkova, 2010; Mencuccini and Höltä, 2010). This relationship is consistent with our first hypothesis.

4.2 Causes and the influences of soil water content on seasonal variation in diel hysteresis

Earlier studies report that the rate of photosynthate transport, along with plant height, are important factors in determining the level of seasonal variation in diel hysteresis (Kuzyakov and Gavrichkova, 2010). Plant height is shown by other researchers to correlate fairly well to differences in diel hysteresis in various ecosystems (Kuzyakov and Gavrichkova, 2010). Height growth in *Artemisia ordosica* is generally slow, at about 3-4 cm yr\(^{-1}\) for our site. This suggests that plant height potentially played a minor role in affecting seasonal variation in diel hysteresis. Moreover, phloem transport rates vary from 0.2 to 2 m h\(^{-1}\) (Kuzyakov and Gavrichkova, 2010), suggesting that maximum delay in hysteresis by photosynthate transport alone should be about 30 min. This is clearly incompatible with our own findings, where lag times could be as large as 5 h (Table 1).
In our study, diel (R_s) varied consistently with T_{surf}, with no observable signs of hysteresis when $SWC > 0.08 \text{ m}^3 \text{ m}^{-3}$. However, as SWC decreased from this value, diel (R_s) varied more closely with photosynthesis, leading to increased diel hysteresis between R_s and T_{surf}. These results suggest that SWC played a more important role in regulating the relative control of photosynthesis and temperature on diel (R_s) over the growing season, supporting our second hypothesis.

A possible explanation for SWC regulation of hysteresis might be associated with changes in the relative contribution of autotrophic and heterotrophic respiration to total R_s in response to rainfall-induced changes in SWC. For example, the birth effect, which claims there is a burst of decomposition of soil organic matter and corresponding CO$_2$ gas release after soil re-wetting by precipitation (Jarvis et al., 2007). In our study, the periods with $SWC > 0.08 \text{ m}^3 \text{ m}^{-3}$ only lasted several days (Fig. 1g, h). Resource pool accumulation on the surface of the soil may have resulted from microbial growth and nutrient mineralization between successive precipitation events (Fisher et al., 1987). Most organic material and microbes decomposing the material tend to concentrate in the upper part of the soil (Ciais et al., 2011; Thomas, 2012; Gao et al., 2014), whereas plant roots are found much deeper. Consequently, wet periods with $SWC > 0.08 \text{ m}^3 \text{ m}^{-3}$ can be responsible for heightened heterotrophic activity, but not enough or long enough to elicit autotrophic activity (Sponseller 2007; Song et al., 2015), leading to a higher relative contribution of heterotrophic respiration to total R_s. Heterotrophic respiration has been reported to respond primarily to soil surface temperature (Lloyd and Taylor, 1994; Winkler et al., 1996). Therefore, diel (R_s) should co-varied much more strongly with T_{surf}, eliminating hysteresis altogether when $SWC > 0.08 \text{ m}^3 \text{ m}^{-3}$. By contrast, dry periods with $SWC < 0.08 \text{ m}^3 \text{ m}^{-3}$ often occurred between successive precipitation events (Fig. 1g, h). Heterotrophic respiration is observed to be largely suppressed during these periods (Borken et al., 2006), giving opportunity for autotrophic respiration to contribute to total R_s. Since root respiration has been reported to be strongly associated with photosynthesis (Liu et al., 2006; Baldocchi et al., 2006; Högberg and Read, 2006; Kuzyakov and Gavrihkova, 2010), it is not surprising that R_s is seen to co-vary with photosynthesis during dry periods. Although we could not directly show changes in relative contribution between autotrophic and heterotrophic respiration to total R_s, the changes in relative correlation and diel patterns during the dry and wet months could be used as an indirect confirmation of our inference. Casals et al. (2011) reported that the ratio of autotrophic components increased in response to drought, increasing the influence of recent photosynthate supply to R_s, which is also consistent with our findings.

Our work provides urgently needed new information concerning causes/mechanisms involved in defining variation in diel hysteresis in desert-shrub ecosystems. Based on our work, we suggest that diel photosynthesis should be considered in simulations of diel (R_s) in drylands, especially when SWC falls below 0.08 $\text{ m}^3 \text{ m}^{-3}$ (ratio of SWC to soil porosity = 0.26). This information would be particularly useful when processing ecosystem fluxes obtained with eddy-covariance measurements, rather than rely on relating daytime simulations of R_s to night-time respiration-temperature relationships commonly in practise. This would involve more complex, iterative methods, than what is currently being used because of the implied feedbacks that would be involved.
5 Conclusions

Soil water content regulated the relative control between photosynthesis and temperature on diel R_s by changing the relative contribution of autotrophic and heterotrophic respiration to total R_s, causing seasonal variation in diel hysteresis between R_s and temperature. Hysteresis was not observed between R_s and T_{surf}, when $SWC > 0.08$ m3 m$^{-3}$ (ratio of SWC to soil porosity = 0.26), but lag-hours increased between the co-variation in the variables as SWC decreased below this threshold. Our findings highlight the importance of biological mechanisms in diel hysteresis between R_s and temperature and the importance of SWC in plant photosynthesis-soil respiration dynamics in dryland ecosystems.

Acknowledgement. We acknowledge the grants obtained from National Natural Science Foundation of China (NSFC) (31670710 and 31361130340), the Fundamental Research Funds for the Central Universities (BLYJ201601), and the Finnish-Chinese research collaboration project EXTREME (2013-2016), between Beijing Forestry University and University of Eastern Finland (EXTREME proj. 14921 funded by Academy of Finland). Also the U.S.–China Carbon Consortium (USCCC) supported this work via helpful discussions and the exchange of ideas. We acknowledge also Huishu Shi, Yuming Zhang, Wei Feng, Yajuan Wu, Peng Liu, Qiang Yang, Mingyan Zhang for their assistances with the field measurements and instrumentation maintenance.

References

Table 1. Analysis of mean monthly diel cycles of soil respiration (R_s), air temperature (T_a), soil surface temperature (T_{surf}), soil temperature at a 10-cm depth (T_s), and photosynthesis (P) in a dominant desert-shrub ecosystem, including correlation coefficients and lag times in R_s vs. T_a, T_{surf}, T_s, and P cycles. Pearson’s correlation coefficients (r) that are significant (i.e., $p < 0.05$) are denoted in bold.

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s-T_a Lag</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>0.64</td>
<td>0.25</td>
<td>0.49</td>
<td>0.46</td>
<td>0.85</td>
<td>0.85</td>
<td>0.93</td>
<td>0.76</td>
<td>0.94</td>
<td>0.89</td>
<td>0.78</td>
<td>0.77</td>
</tr>
<tr>
<td>R_s-T_{surf} Lag</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>0.82</td>
<td>0.57</td>
<td>0.75</td>
<td>0.72</td>
<td>0.96</td>
<td>0.96</td>
<td>0.98</td>
<td>0.87</td>
<td>0.98</td>
<td>0.97</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>R_s-T_s Lag</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>r</td>
<td>-0.06</td>
<td>-0.31</td>
<td>-0.06</td>
<td>-0.07</td>
<td>0.54</td>
<td>0.58</td>
<td>0.80</td>
<td>0.31</td>
<td>0.77</td>
<td>0.65</td>
<td>0.23</td>
<td>0.12</td>
</tr>
<tr>
<td>R_s-P Lag</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
</tr>
</tbody>
</table>

13
Table 2. Regressions based on the Q_{10} and linear models of soil respiration (R_s) for a wet and a dry month. Variables T_{surf} (°C) refers to the soil surface temperature; P photosynthesis in the dominant shrub layer; R^2 the coefficient of determination; and RMSE the root mean squared error.

<table>
<thead>
<tr>
<th>Model</th>
<th>Wet month: July</th>
<th>Dry month: August</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{surf}-R_s</td>
<td>$R_s = 1.13 \times 1.4^{T_{surf}}$</td>
<td>$R_s = 1.12 \times 1.1^{T_{surf}}$</td>
</tr>
<tr>
<td></td>
<td>$R^2 = 0.97$</td>
<td>$R^2 = 0.76$</td>
</tr>
<tr>
<td></td>
<td>RMSE = 0.0521</td>
<td>RMSE = 0.0796</td>
</tr>
<tr>
<td>P-R_s</td>
<td>$R_s = 0.03 \times P + 1.61$</td>
<td>$R_s = 0.04 \times P + 1.29$</td>
</tr>
<tr>
<td></td>
<td>$R^2 = 0.67$</td>
<td>$R^2 = 0.88$</td>
</tr>
<tr>
<td></td>
<td>RMSE = 0.1889</td>
<td>RMSE = 0.05752</td>
</tr>
</tbody>
</table>
Figure 1. Seasonal variation in incident photosynthetically active radiation (PAR), temperature [i.e., air temperature (T_a), soil surface temperature (T_{surf}), soil temperature (T_s)], photosynthesis (P), and soil respiration (R_s) in *Artemisia ordosica*, and seasonal variation in soil water content (SWC) and precipitation (PPT) for 2013. Hourly PAR, T_a, T_{surf}, T_s, R_s, and P are normalized against all values for each day. Each hourly value (y-axis) for each day (x-axis) is shown as a value of 1 through 0; 1 denotes the peak value for a given day and 0, the daily minimum.
Figure 2. Mean monthly diel cycle of soil water content (SWC), incident photosynthetically active radiation (PAR), temperature [air temperature (T_a), soil surface temperature (T_{surf}), soil temperature (T_s)], soil respiration (R_s), and photosynthesis (P) in *Artemisia ordosica* during a wet (July) and dry (August) month. Each point is the monthly mean for a particular time of day. Bars represent standard errors.
Figure 3. Diel soil respiration (R_s) vs. soil surface temperature (T_{surf}), diel R_s vs. photosynthesis in *Artemisia ordosica* (P), and their lag correlations during a wet (July) and dry (August) month.
Figure 4. Relationship between soil water content (SWC) and the relative importance (RI) of soil surface temperature and photosynthesis in *Artemisia ordosica* with respect to diel soil respiration.
Figure 5. Lag time between soil respiration (R_s) and soil surface temperature (T_{surf}), R_s, and photosynthesis in *Artemisia ordosica*, and in relation to soil water content (SWC). Lag time were bin-averaged using SWC-intervals of 0.004 m3 m$^{-3}$.