Interaction of CO₂ concentrations and water stress in semi-arid plants causes diverging response in instantaneous water use efficiency and carbon isotope composition

Na Zhao¹,³, Ping Meng², Yabing He¹, Xinxiao Yu¹,³*

¹ College of soil and water conservation, Beijing Forestry University, Beijing 100083, P.R. China
² Research Institute of Forestry, Chinese Academy of Forestry 100091, Beijing, P.R. China
³ Beijing collaborative innovation center for eco-environmental improvement with forestry and fruit trees

Abstract. In the context of global warming attributable to the increasing levels of CO₂, severe drought may be more frequent in areas with chronic water shortages (semi-arid areas). This necessitates research on the interactions between increased levels of CO₂ and drought on plant photosynthesis. It is commonly reported that ¹³C fractionation occurs as CO₂ gas diffuses from the atmosphere to the sub-stomatal cavity. Few researchers have investigated ¹³C fractionation at the site of carboxylation to cytoplasm before sugars are exported outward from the leaf. This process typically progresses in response to variations in environmental conditions (i.e., CO₂ concentrations and water stress), including in their interaction. Therefore, saplings of two typical plant species (Platycladus orientalis and Quercus variabilis) from semi-arid areas of Northern China were selected and cultivated in growth chambers with orthogonal treatments (four CO₂ concentration ([CO₂]) × five soil volumetric water content (SWC)). The δ¹³C of water-soluble compounds extracted from leaves of saplings was determined for an assessment of instantaneous water use efficiency (WUEₑₑ) after cultivation. Instantaneous water use efficiency derived from gas-exchange measurement (WUEₑₑ) was integrated to estimate differences in δ¹³C signal variation before leaf-level translocation of primary assimilates. The WUEₑₑ in P. orientalis and Q. variabilis both decreased with increased soil moisture at 35-80% of field capacity (FC), and increased with elevated [CO₂] by increasing photosynthetic capacity and reducing transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes, differed between the two species. The WUEₑₑ in P. orientalis was significantly greater than that in Q. variabilis, while an opposite tendency was observed when comparing WUEₑₑ between the two species. Total ¹³C fractionation at the site of carboxylation to cytoplasm before sugar export (total ¹³C fractionation) was species-specific, as demonstrated in the interaction of [CO₂] and SWC. Rising [CO₂] coupled with moistened soil generated increasing disparities in δ¹³C between water-soluble compounds (δ¹³Cₑₑ) and estimates based on gas-exchange observations (δ¹³Cₑₑ) in P. orientalis, ranging between 0.0328–0.0472‰. Differences between δ¹³Cₑₑ and δ¹₃Cₑₑ in Q. variabilis increased as [CO₂] and SWC increased (0.0384–0.0466‰). The ¹³C fractionation from mesophyll conductance (gₑ) and post-carboxylation both contributed to the total ¹³C fractionation that was determined by δ¹³C of water-soluble compounds and gas-exchange measurements. Total ¹³C fractionation was linearly dependent on stomatal conductance, indicating post-carboxylation fractionation could be attributed to environmental variation. The magnitude and environmental dependence of apparent post-carboxylation fractionation is worth our attention when addressing photosynthetic fractionation.
Key words: Post-carboxylation fractionation; Carbon isotope fractionation; Elevated CO₂ concentration;
Soil volumetric water content; Instantaneous water use efficiency

1 Introduction

Since the industrial revolution, atmospheric CO₂ concentration has increased at an annual rate of 0.4%,
and is expected to increase to 700 µmol mol⁻¹, culminating in more frequent periods of dryness (IPCC,
2014). Increasing atmospheric CO₂ concentrations that exacerbate the greenhouse effect will increase
fluctuations in global precipitation patterns, which will probably amplify drought frequency in arid
regions and lead to more frequent extreme flooding events in humid regions (Lobell et al., 2014).
Accompanying the increasing concentration of CO₂, mean δ¹³C of atmospheric CO₂ is currently being
depleted by 0.02%–0.03% year⁻¹ (CU-INSTAAR/NOAAACMDI network for atmospheric CO₂;
http://www.esrl.noaa.gov/gmd/).

The current carbon isotopic composition may respond to environmental change and its influence on
diffusion via plant physiological and metabolic processes (Gessler et al., 2014; Streit et al., 2013). While
depletion of δ¹³C CO₂ is occurring in the atmosphere, variations in CO₂ concentration ([CO₂]) may affect
δ¹³C of plant organs which, in turn, respond physiologically to changes in climate (Gessler et al., 2014).
The carbon discrimination (¹³C/¹²C) in leaves could also provide timely feedback to the availability of soil
moisture and atmospheric vapor pressure deficit (Cernusak et al., 2012). Discrimination of ¹³C in leaves
relies mainly on environmental factors that affect the ratio of intercellular to ambient [CO₂]/[C₅/C₆].
Rubisco activities and the mesophyll conductance derived from the difference of [CO₂] between
intercellular sites and chloroplasts are also involved (Farquhar et al., 1982; Cano et al., 2014). Changes
in environmental conditions affect photosynthetic discrimination, recording differentially in the δ¹³C of
water-soluble compounds (δ¹³Cₑₑₑ) in different plant organs. Several processes during photosynthesis
alter the δ¹³C of carbon transported within plants. Carbon-fractionation during photosynthetic CO₂
fixation has been reviewed elsewhere (Farquhar et al., 1982; Farquhar and Sharkey, 1982).

Post-photosynthetic fractionation is derived from equilibrium and kinetic isotopic effects that
determine isotopic differences between metabolites and intramolecular reaction positions. These are
deﬁned as “post-photosynthetic” or “post-carboxylation” fractionation (Jäggi et al., 2002; Badeck et al.,
2005; Gessler et al., 2008). Post-carboxylation fractionation in plants includes the carbon discrimination
that follows carboxylation of ribulose-1, 5-bisphosphate and internal diffusion (RuBP, 27%), as well as
related transitory starch metabolism (Gessler et al., 2008; Gessler et al., 2014), fractionation-associated
phloem transport, remobilization or storage of soluble carbohydrates, and starch metabolism
fractionation in sink tissue (tree rings). In the synthesis of soluble sugars, ¹³C-depletions of triose
phosphates occur during export from the cytoplasm, and during production of fructose-1, as does 6-
bisphosphate by aldolase in transitory starch synthesis (Roßmann et al., 1991; Gleixner and Schmidt,
1997). Synthesis of sugars before transportation to the twig is associated with the post-carboxylation
fractionation generated in leaves. Although these are likely to play a role, another consideration is [CO₂]
in the chloroplast (C₅), not in the intercellular space, as considered in the simplified equation of
Farquhar’s model (Evans et al., 1986; Farquhar et al., 1989) is actually defined as carbon isotope
discrimination (δ¹³C). Differences between gas-exchange derived values and online measurements of
δ¹³C have often been used to estimate C₅-C; and mesophyll conductance for CO₂ (Le Roux et al., 2001;
Warren and Adams, 2006; Flexas et al., 2006; Evans et al., 2009; Flexas et al., 2012; Evans and von
Caemmerer 2013). In this regard, changes in mesophyll conductance could be partly responsible for the
differences in the two measurements, as it generally increases in the short term in response to elevated
CO₂ (Flexas et al., 2014), but tends to decrease under drought (Hommel et al., 2014; Théroux-Rancourt et al., 2014). Therefore, it is necessary to avoid confusion between carbon isotope discrimination derived from synthesis of soluble sugars and/or mesophyll conductance. The degree to which carbon fractionation is related to environmental variation has yet to be fully investigated.

The simultaneous isotopic analysis of leaves allows determination of temporal variation in isotopic fractionation (Rinne et al., 2016). This will aid in accurate recording of environmental conditions. Newly assimilated carbohydrates can be extracted, and these are termed the water-soluble compounds (WSCs) in leaves (Brandes et al., 2006; Gessler et al., 2009). WSCs can also be associated with an assimilation-weighted mean of C_{i}/C_{a} (and C_{i}/C_{w}) photosynthesized over periods ranging from a few hours to 1–2 days (Pons et al., 2009). However, there is disagreement whether fractionation caused by post-carboxylation and/or mesophyll resistance can alter the stable signatures of leaf carbon and thence influence instantaneous water use efficiency (iWUE). In addition, the manner in which iWUE derived from isotopic fractionation responds to environmental factors, such as elevated [CO₂] and/or soil water gradients, is unknown.

Consequently, we investigated the δ^{13}C of the fast-turnover carbohydrate pool in sapling leaves of two tree species, *Platycladus orientalis* (L.) Franco and *Quercus variabilis* Bl., native to semi-arid areas of China. We conducted gas-exchange measurements in controlled-environment growth chambers. One goal is to differentiate the δ^{13}C fractionation from the site of carboxylation to cytoplasm prior to sugar transport in *P. orientalis* and *Q. variabilis*, which is the total δ^{13}C fractionation determined from the δ^{13}C of WSCs and gas-exchange measurements. Another goal is to discuss the potential causes for the observed divergence, estimate contributions of post-photosynthesis and mesophyll conductance on these differences, and describe how carbon isotopic fractionation responds to the interactive effects of elevated [CO₂] and water stress.

2 Material and Methods

2.1 Study site and design

P. orientalis and *Q. variabilis* saplings, selected as experimental material, were obtained from the Capital Circle forest ecosystem station, a part of Chinese Forest Ecosystem Research Network (CFERN), 40°03′45″N, 116°5′45″E, Beijing, China. This region is forested by *P. orientalis* and *Q. variabilis*. We chose saplings of similar basal diameters, heights, and growth class. Each sapling was placed into an individual pot (22 cm diam. × 22 cm high). Undisturbed soil samples were collected from the field, sieved (with particles >10 mm removed), and placed into the pots. The soil bulk density in the pots was maintained at 1.337–1.447 g cm⁻³. After a 30-day transplant recovery period, the saplings were placed into growth chambers for orthogonal cultivation.

The controlled experiment was conducted in growth chambers (FH-230, Taiwan Hipoint Corporation, Kaohsiung City, Taiwan). To reproduce the meteorological conditions of different growing seasons in the research region, daytime and nighttime temperatures in the chambers were set to 25 ± 0.5°C from 07:00 to 17:00 and 18 ± 0.5°C from 17:00 to 07:00. Relative humidity was maintained at 60% and 80% during the daytime and nighttime, respectively. The mean daytime light intensity was 200–240 μmol m⁻² s⁻¹. The chamber system is designed to control and monitor [CO₂]. Two growth chambers (A and B) were used in this study. Chamber A maintained [CO₂] at 400 ppm (C₉₀₀) and 500 ppm (C₅₀₀). Chamber B maintained [CO₂] at 600 ppm (C₆₀₀) and 800 ppm (C₈₀₀). The target [CO₂] in each chamber had a standard deviation of ± 50 ppm during plant cultivation and testing.
An automatic watering device was used to irrigate the potted saplings to avoid heterogeneity when scheduled watering was not made (Fig. 1). The watering device consisted of a water storage tank, holder, controller, soil moisture sensors, and a drip irrigation component. Prior to use, the tank was filled with water, and the soil moisture sensor was inserted to a uniform depth in the soil. After connecting the controller to an AC power supply, target soil volumetric water content (SWC) could be set and monitored by soil moisture sensors. Since changes in SWC could be sensed by the sensors, this automatic watering device could be regulated to begin watering or stop watering the plants. One irrigation device was installed per chamber. Based on mean field capacity (FC) of potted soil (30.70%), we established orthogonal treatments of four [CO₂] × five SWC (Table 1). In Table 1, A₁–A₄ denotes [CO₂] of 400 (C₄₀₀), 500 (C₅₀₀), 600 (C₆₀₀) and 800 ppm (C₈₀₀) in the chambers; B₁–B₄ denotes 35–45% (10.74–13.81%), 50–60% (15.35–18.42%), 60–70% (18.42–21.49%), 70–80% (21.49–24.56%), and 100% of FC (CK, 27.63–30.70%). Each orthogonal treatment of [CO₂] × SWC for two saplings per species was repeated twice. Each treatment lasted 7 days. One pot was exposed in each of the [CO₂] × SWC treatments. Pots in the chambers were rearranged every two days to promote uniform illumination.

2.2 Foliar gas exchange measurement

Fully expanded primary annual leaves of the saplings were measured with a portable infrared gas photosynthesis system (LI-6400, Li-Cor, Lincoln, US) before and after the 7-day cultivation. Two saplings per species were replicated per treatment (SWC × [CO₂]). For each sapling, four leaves were sampled and four measurements were conducted on each leaf. Main photosynthetic parameters, such as net photosynthetic rate (Pₚ), transpiration rate (Tₑ), were measured. Based on theoretical considerations of Von Caemmerer and Farquhar (1981), stomatal conductance (gₛ) and intercellular [CO₂] (Cᵢ) were calculated by the Li-Cor software. Instantaneous water use efficiency via gas exchange (WUEₑ) was calculated as the ratio Pₚ / Tₑ.

2.3 Plant material collection and leaf water-soluble compounds extraction

Eight recently-expanded sun leaves were selected per sapling and homogenized in liquid nitrogen after gas-exchange measurements were finished. For extraction of WSCs from the leaves (Gessler et al., 2004), 50 mg of ground leaves and 100 mg of PVPP (polyvinylpolypyrrolidone) were mixed and incubated in 1 mL distilled water for 60 min at 5°C in a centrifuge tube. Each leaf sample was replicated twice. The tubes containing the mixture were heated in 100°C water for 3 min. After cooling to room temperature, the supernatant of the mixture was centrifuged (12000 × g for 5 min) and 10 μL of supernatant was transferred into a tin capsule and dried at 70°C. Folded capsules were used for δ¹³C analysis of WSCs. The samples of WSCs from leaves were combusted in an elemental analyzer (EuroEA, HEKAtech GmbH, Wegberg, Germany) and analyzed with a mass-spectrometer (DELTA plus XP, ThermoFinnigan).

Carbon isotope signatures were expressed in δ-notation (parts per thousand), relative to the international Pee Dee Belemnite (PDB) standard:

\[\delta^{13}C = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \] \hspace{1cm} (1)

where δ¹³C is the heavy isotope and \(R_{\text{sample}} \) and \(R_{\text{standard}} \) refer to the isotope ratio between the particular substance and the corresponding standard, respectively. The precision of repeated measurements was 0.1‰.

2.4 Isotopic calculation
2.4.1 13C fractionation from the site of carboxylation to cytoplasm prior to sugar transportation

Based on the linear model of Farquhar and Sharkey (1982), the isotope discrimination, Δ, was calculated as

$$\Delta = \frac{\delta^{13}C_a - \delta^{13}C_{WSC}}{(1 + \delta^{13}C_{WSC})},$$

(2)

where $\delta^{13}C_a$ and $\delta^{13}C_{WSC}$ are the isotope signatures of ambient $[CO_2]$ in chambers and WSCs extracted from leaves, respectively. The C_a/C_{a0} was determined by

$$C_i/C_a = (\Delta - a)/(b - a),$$

(3)

where C_i and C_a are the $[CO_2]$ within substomatal cavities and in growth chambers, respectively; a is the fractionation occurring CO_2 diffusion in still air (4%) and b refers to the discrimination during CO_2 fixation by ribulose 1,5- bisphosphate carboxylase/oxygenase (Rubisco) and internal diffusion (30%).

Instantaneous water use efficiency by gas-exchange measurement (WUE$_{ge}$) was calculated as

$$WUE_{ge} = \frac{P_n}{T_e} = \frac{(C_a - C_i)}{1.6\Delta e},$$

(4)

where 1.6 is the diffusion ratio of stomatal conductance for water vapor to CO_2 in chambers and Δe is the difference between e_f and e_{atm}, representing the extra- and intra-cellular water vapor pressure, respectively:

$$\Delta e = e_f - e_{atm} = 0.611 \times e^{17.502T/(240.97+T)} \times (1 - RH),$$

(5)

where T and RH are the leaf-surface temperature and relative humidity, respectively. Combining Eqs. (2, 3 and 4), the instantaneous water use efficiency was determined by the $\delta^{13}C_{WSC}$ of leaves, defined as:

$$WUE_{cp} = \frac{P_n}{T_e} = (1 - \phi) \frac{(C_a - C_i)}{1.6\Delta e} = C_a (1 - \phi) \left[\frac{b - \delta^{13}C_a + (b+1)\delta^{13}C_{WSC}}{(b-a)(1+\delta^{13}C_{WSC})} \right]/1.6\Delta e,$$

(6)

where ϕ is the respiratory ratio of leaf carbohydrates to other organs at night (0.3).

Then the 13C fractionation from the site of carboxylation to cytoplasm prior to sugar transportation (defined as the total 13C fractionation) was estimated by the observed δ^{13}C of WSCs from leaves (δ^{13}C$_{WSC}$) and the modeled δ^{13}C calculated from gas-exchange measurements (δ^{13}C$_{model}$). The δ^{13}C$_{model}$ was calculated by δ^{13}C$_{model}$ from Eqn. (2); δ^{13}C$_{model}$ was determined by combining Eqs. (3 and 4) as

$$\Delta_{model} = (b - a) \left(1 - \frac{1.6\Delta e WUE_{ge}}{C_a} \right) + a,$$

(7)

$$\delta^{13}C_{model} = \frac{C_a - \Delta_{model}}{1 + \Delta_{model}},$$

(8)

Total 13C fractionation = δ^{13}C$_{WSC} - \delta^{13}$C$_{model}$.

2.4.2 Method of estimating mesophyll conductance and the contribution of post-carboxylation fractionation

CO$_2$ diffusion into photosynthetic sites includes two main processes. CO$_2$ first moves from ambient air surrounding the leaf (C_i) through stomata to the sub-stomatal cavities (C_i). From sub-stomatal cavities, CO$_2$ then moves to the sites of carboxylation in the chloroplast stroma (C_a) of the leaf mesophyll. The latter procedure of diffusion is termed mesophyll conductance (g_m; Flexas et al., 2008). The carbon isotope discrimination was generated from the relative contribution of diffusion and carboxylation, reflected by C_i to C_a. The carbon isotopic discrimination (δ) can be presented as (Farquhar et al. 1982):
\[\Delta = a \frac{C_a - C_i}{C_a} + C_a - C_i + (e_f + a_i) \frac{C_i - C_a}{C_a} + b \frac{C_i}{C_a} - \frac{e_{R} + f f^*}{C_a}, \]

(10)

where \(C_a \), \(C_i \), and \(C_r \) are the [CO\(_2\)] in the ambient air, at the boundary layer of the leaf, in the substomatal cavities, and at the sites of carboxylation, respectively; \(a_i \) is the CO\(_2\) diffusional fractionation at the boundary layer (2.9%); \(e_i \) is the discrimination for CO\(_2\) diffusion when CO\(_2\) enters in solution (1.1%, at 25°C); \(a_f \) is the CO\(_2\) diffusional fractionation in the liquid phase (0.7%); \(e \) and \(f \) are carbon discriminations derived in dark respiration \((R_0) \) and photorespiration, respectively; \(k \) is the carboxylation efficiency, and \(f^* \) is the CO\(_2\) compensation point in the absence of dark respiration (Brooks and Farquhar, 1985).

When gas in the cuvette is well stirred during gas-exchange measurements, diffusion across the boundary layer could be neglected and Eqn. (10) can be written as

\[\Delta = a \frac{C_a - C_i}{C_a} + (e_f + a_i) \frac{C_i - C_a}{C_a} + b \frac{C_i}{C_a} - \frac{e_{R} + f f^*}{C_a}. \]

(11)

There is no consensus about the value of \(e \), although recent measurements estimate it as ranging from 0-4%. The value of \(f \) has been estimated to range from 8-12% (Gillon and Griffiths, 1997; Igamberdiev et al., 2004; Lanigan et al., 2008). As the most direct factor, \(b \) influences the calculation of \(g_m \), which is thought to be approximately 30% in higher plants (Guy et al., 1993).

The difference of [CO\(_2\)] between substomatal cavities and chloroplasts is omitted, while diffusion related to dark-respiration and photorespiration are negligible and Eqn. (11) may be simplified to

\[\Delta_i = a + (b - a_i) \frac{C_i}{C_a} \]

(12)

Eqn. (12) denotes the linear relationship between carbon discrimination and \(C/C_a \). This underlines subsequent comparison between expected \(\Delta \) (originating from gas-exchange, \(\Delta_{ex} \) and measured \(\Delta_{obs} \)).

To evaluate the differences of [CO\(_2\)] between intercellular air and sites of carboxylation associated with \(^{13}C \) fractionation from mesophyll conductance. Consequently, \(g_m \) is calculated by subtracting the \(\Delta_{obs} \) of Eqn. (11) from \(\Delta_i \) [Eqn. (12)]:

\[\Delta_i - \Delta_{obs} = (b - e_f - a_i) \frac{C_i - C_a}{C_a} + \frac{e_{R} + f f^*}{C_a}, \]

(13)

and \(P_n \) from Fick’s first law is presented by

\[P_n = g_m (C_i - C_a). \]

(14)

Substituting Eqn. (14) into Eqn. (13) we obtain

\[\Delta_i - \Delta_{obs} = (b - e_f - a_i) \frac{P_n}{g_mC_a} + \frac{e_{R} + f f^*}{C_a}, \]

\[g_m = \frac{(b-e_f-a_i) \frac{P_n}{g_mC_a}}{(\Delta_i-\Delta_{obs}) \frac{e_{R} + f f^*}{C_a}}, \]

(16)

In the calculation of \(g_m \), terms of respiratory and photorespiration could be ignored and \(e \) and \(f \) are assumed to be zero or cancelled in the calculation of \(g_m \).

Then Eqn. (16) can be rewritten as
\[g_m = \frac{(b - a) \Delta m}{\Delta n} \]
(17)

Therefore, the contribution of post-carboxylation fractionation can be estimated by

\[
\text{Contribution of post-carboxylation fractionation} = \left(\frac{\text{Total }^{13}\text{C fractionation} - \text{fractionation from mesophyll conductance}}{\text{Total }^{13}\text{C fractionation}} \right) \times 100\%.
\]
(18)

3 Results

3.1 Foliar gas exchange measurements

When SWC increased between the treatments, \(P_n, g, \) and \(T_r \) in \(P. orientalis \) and \(Q. variabilis \) peaked at 70–80% of FC and 100% of FC (Fig. 2). The \(C_i \) in \(P. orientalis \) rose as SWC increased. It peaked at 60–70% of FC and declined thereafter with increased SWC in \(Q. variabilis. \) The carbon uptake and \(C_i \) were significantly improved by elevated \([\text{CO}_2] \) at all SWC for the two species \((p < 0.05). \) Greater increases of \(P_n \) in \(P. orientalis \) were found at 50–70% of FC from \(C_{400} \) to \(C_{800}, \) which was at 35–45% of FC in \(Q. variabilis. \) As water stress was reduced (at 70–80% and 100% of FC), reduction of \(g, \) in \(P. orientalis \) was more pronounced with elevated \([\text{CO}_2] \) at a given SWC \((p < 0.01). \) Nevertheless, \(g, \) in \(Q. variabilis \) for \(C_{400}, C_{500}, \) and \(C_{600} \) was significantly higher than that for \(C_{600} \) at 50–80% of FC \((p < 0.01). \) Coordinated with \(g, T_r \) of the two species for \(C_{400} \) and \(C_{500} \) was significantly higher than that for \(C_{600} \) and \(C_{600}, \) except at 35–60% of FC \((p < 0.01, \) Figs. 2g and 2h). \(P_n, g, \) and \(T_r \) in \(Q. variabilis \) was significantly greater than the corresponding values in \(P. orientalis \) \((p < 0.01, \) Fig. 2).

3.2 \(^{13}\text{C} \) of water-soluble compounds in leaves

After observations of photosynthetic traits in leaves of the two species, the same leaves were immediately frozen and WSCs were extracted for all orthogonal treatments. The carbon isotope composition of WSCs \((^{13}\text{C}_{\text{WSC}})\) of both species increased as SWC increased (Figs. 3a and 3b, \(p < 0.01). \) The mean \(^{13}\text{C}_{\text{WSC}} \) of \(P. orientalis \) and \(Q. variabilis \) ranged from -27.44 ± 0.155\% to -26.71 ± 0.133\%, and from -27.96 ± 0.129\% to -26.49 ± 0.236\%, respectively. The photosynthetic capacity varied with increased SWC and the mean \(^{13}\text{C}_{\text{WSC}} \) of the two species, reaching their respective maxima at 70–80% of FC. With gradual enrichment of \([\text{CO}_2],\) mean \(^{13}\text{C}_{\text{WSC}} \) in both species declined when \([\text{CO}_2]\) exceeded 600 ppm \((p < 0.01). \) Except for \(C_{400} \) at 50–100% of FC, the \(^{13}\text{C}_{\text{WSC}} \) in \(P. orientalis \) was significantly higher than that in \(Q. variabilis \) for most \([\text{CO}_2] \times \text{SWC treatments} \((p < 0.01, \) Fig. 3).

3.3 Estimations of WUE_{ge} and WUE_{sp}

Figure 4a shows that increments of WUE_{ge} in \(P. orientalis \) under severe drought (i.e., 35–45% of FC) were highest for most \([\text{CO}_2],\) ranging from 90.74 to 564.68\%. The WUE_{ge} in \(P. orientalis \) decreased as SWC increased and increased as \([\text{CO}_2] \) \(p < 0.05). \) Differing from variation in WUE_{ge} in \(P. orientalis \) with moistened soil, WUE_{ge} in \(Q. variabilis \) increased slightly at 100% of FC for \(C_{500} \) or \(C_{800} \) (Fig. 4b). The maximum WUE_{ge} occurred at 35–45% of FC for \(C_{400} \) among all orthogonal treatments associated with both species. Elevated \([\text{CO}_2]\) enhanced the WUE_{ge} in \(Q. variabilis \) at any SWC, except at 60–80% of FC. Thirty-two saplings of \(P. orientalis \) had greater WUE_{ge} than did \(Q. variabilis \) for the same \([\text{CO}_2] \times \text{SWC treatments} \((p < 0.05). \) As illustrated in Fig. 5a, WUE_{sp} in \(P. orientalis \) for \(C_{400} \) or \(C_{600} \) increased as water stress was alleviated beyond 50–60% of FC, as well as that for \(C_{400} \) or \(C_{500}, \) while SWC exceeded 60–70% of FC. \(Q. variabilis \) showed variable WUE_{sp} with increasing SWC (Fig. 5b). Except for \(C_{400}, \) WUE_{sp} in \(Q. variabilis \) showed variable WUE_{sp} with increasing SWC (Fig. 5b). Except for \(C_{400}, \) WUE_{sp} in \(Q. variabilis \) showed variable WUE_{sp} with increasing SWC (Fig. 5b).
decreased abruptly at 50–60% of FC, and then increased as SWC increased for C_{600}, C_{800}, and C_{400}. In contrast to the results for WUE_{cp}, WUE_{cp} in \textit{Q. variabilis} was more pronounced than in \textit{P. orientalis} among all orthogonal treatments.

3.4 \(^{14}\text{C} \) Fractionation from the Site of Carboxylation to Cytoplasm before Sugar Transportation

We evaluated the total \(^{14}\text{C} \) fractionation from the site of carboxylation to the cytoplasm by gas-exchange measurements and WSCs in leaves (Table 2), which can help track the path of \(^{14}\text{C} \) fractionation in leaves. Comparing \(\delta^{13}\text{C}_{\text{WSC}} \) with \(\delta^{13}\text{C}_{\text{model}} \) from Eqns. (4, 7–9), the total \(^{14}\text{C} \) fractionation in \textit{P. orientalis} ranged from 0.0328 to 0.0472%, which was less than that in \textit{Q. variabilis} (0.0384 to 0.0466%). The total fractionation in \textit{P. orientalis} was magnified with increasing SWC, especially when SWC reached 35–80% of FC from C_{600} to C_{800} (increased by 21.30–42.04%). The total fractionation for C_{600} and C_{800} were amplified as SWC increased until 50–60% of FC in \textit{Q. variabilis}, whereas they were increased at 50–80% of FC and decreased at 100% of FC for C_{600} and C_{400}. Elevated [CO\textsubscript{2}] enhanced the mean total fractionation in \textit{P. orientalis}, while fractionation in \textit{Q. variabilis} declined sharply from C_{600} to C_{800}. Total \(^{14}\text{C} \) fractionation, with increased SWC, in \textit{P. orientalis} increased more rapidly than it did in \textit{Q. variabilis}.

3.5 \(g_{\text{m}} \) Imposed on the Interaction of CO\textsubscript{2} Concentration and Water Stress

A comparison between online leaf \(\delta^{13}\text{C}_{\text{WSC}} \) and the values of gas-exchange measurements is given to estimate the \(g_{\text{m}} \) over all treatments in Fig. 6 [Eqns. (10–17)]. A significant increasing trend occurred in \(g_{\text{m}} \) with decreasing water stress in \textit{P. orientalis}, ranging from 0.0091–0.0690 mol CO\textsubscript{2} m2 s-1 (\(\rho < 0.05 \)), reaching a maximum at 100% of FC under a given [CO\textsubscript{2}]. Increases in \(g_{\text{m}} \) in \textit{Q. variabilis} with increasing SWC were not significant, except those under C_{600}. With increasing [CO\textsubscript{2}], \(g_{\text{m}} \) in the two species increased at different rates. With \textit{P. orientalis} under C_{600}, \(g_{\text{m}} \) increased gradually and reached a maximum under C_{800} at 35–60% and 100% of FC (\(\rho < 0.05 \)). However, that was maximized under C_{600} (\(\rho < 0.05 \)) and reduced under C_{800} at 60–80% of FC. The maximum increment in \(g_{\text{m}} \) (8.2–58.4%) occurred at C_{600} at all SWC for \textit{Q. variabilis}. The \(g_{\text{m}} \) in \textit{Q. variabilis} was clearly greater than that in \textit{P. orientalis} under the same treatment conditions.

3.6 Contribution of Post-carboxylation Fractionation

We evaluated the difference between \(\Delta_{l} \) and \(\Delta_{\text{obs}} \) in \(^{13}\text{C} \) fractionation derived from mesophyll conductance. The post-photosynthetic fractionation after carboxylation can be calculated by subtracting \(g_{\text{m}} \)-sourced fractionation from the total \(^{13}\text{C} \) fractionation (Table 2). The \(g_{\text{m}} \)-sourced fractionation provided a smaller contribution to the total \(^{13}\text{C} \) fractionation than did post-carboxylation fractionation irrespective of treatment (Table 2). The \(g_{\text{m}} \)-sourced fractionation in the two species illustrated different variations with increasing SWC, which declined at 50–80% of FC and increased at 100% of FC in \textit{P. orientalis}; yet, in \textit{Q. variabilis}, it increased with water stress alleviation at 50–80% of FC and then decreased at 100% of FC. Nevertheless, in the two species post-carboxylation fractionation in leaves all increased as SWC increased. The \(g_{\text{m}} \)-sourced fractionation in \textit{P. orientalis} and \textit{Q. variabilis} reached their peaks under C_{600} and C_{400}, respectively. Post-carboxylation fractionation was magnified with increases in [CO\textsubscript{2}] in \textit{P. orientalis}, and reached a maximum under C_{600} and then declined under C_{400}.

3.7 Relationship between \(g_{\text{m}} \), \(g_{\text{c}} \) and total \(^{13}\text{C} \) Fractionation

Total \(^{13}\text{C} \) fractionation may be correlated with resistances associated with stomata and mesophyll cells. We performed linear regressions between \(g_{\text{c}}/g_{\text{m}} \) and total \(^{13}\text{C} \) fractionation in \textit{P. orientalis} and \textit{Q. variabilis} (Fig. 7 and 8). The total \(^{13}\text{C} \) fractionation was correlated to \(g_{\text{c}} \) (\(\rho < 0.01 \)). The positive linear relationships between \(g_{\text{m}} \) and total \(^{13}\text{C} \) fractionation (\(\rho < 0.01 \)) indicated that the variation of [CO\textsubscript{2}].
through the chloroplast was correlated with carbon discrimination following leaf photosynthesis.

4 Discussion

4.1 Photosynthetic traits

The exchange of CO₂ and water vapor via stomata can be modulated by the soil/leaf water potential (Robredo et al., 2010). Saplings of P. orientalis reached maximum P_n and g_s at 70–80% of FC irrespective of [CO₂] treatments. As SWC exceeded this soil water threshold, elevated CO₂ caused a greater reduction in g_s as was previously reported for barley and wheat (Wall et al., 2011). The decrease in g_s, responding to elevated [CO₂], could be mitigated with increased SWC. The C_i in Q. variabilis peaked at 60–70% of FC and then declined as soil moisture increased (Wall et al., 2006; Wall et al., 2011). This may be because stomata tend to maintain a constant C_i or C_i/C_a when ambient [CO₂] is increased, which would determine the amount of CO₂ used directly in the chloroplast (Yu et al., 2010). This result could be explained as stomatal limitation (Farquhar and Sharkey, 1982; Xu, 1997). However, C_i in P. orientalis increased considerably, while SWC exceeded 70–80% of FC, as found by Mielke et al. (2000). One possible contributing factor is plants close their stomata to reduce water loss during organic matter synthesis simultaneously decreasing the availability of CO₂ and generating respiration of organic matter (Robredo et al., 2007). Another possible explanation is that the limited root volume of potted plants may be unable to absorb sufficient water to support the full growth of shoots (Leakey et al., 2009; Wall et al., 2011). In the present study, increasing [CO₂] may cause nonstomatal limitation when SWC exceeds a soil moisture threshold of 70–80% of FC. The accumulation of nonstructural carbohydrates in leaf tissue may induce mesophyll-based and/or biochemical-based transient inhibition of photosynthetic capacity (Farquhar and Sharkey, 1982; Xu and Zhou, 2011) developed a five-level SWC gradient to examine the effect of water on the physiology of a perennial, Leymus chinensis, and demonstrated that there was a clear maximum in SWC, below which the plant could adjust to changing environmental conditions. Micanda-Apodaca et al. (2014) also concluded that in suitable water conditions, elevated CO₂ assimilation in herbaceous plants.

The P_n of the two woody plant species increased with elevated [CO₂] similar to results seen with other C3 woody plants (Kgope et al., 2010). Increasing [CO₂] alleviated severe drought and the need for heavy irrigation, suggesting that photosynthetic inhibition produced by a lack or excess of water may be mediated by increased [CO₂] (Robredo et al., 2007; Robredo et al., 2010) and ameliorate the effects of drought stress by reducing plant transpiration (Kirkham, 2016; Kadam et al., 2014; Micanda-Apodaca et al., 2014; Tausz-Posch et al., 2013).

4.2 Differences between WUEₑₑ and WUEₑₑ

Increases in WUEₑₑ in P. orientalis and Q. variabilis that resulted from the combination of P_n increase and g_s decrease were followed by a reduction in T_r (Figs. 2a, 2g, 2b and 2h). This result was also demonstrated by Ainsworth and McGrath (2010). Comparing P_n and T_r in the two species, a lower WUEₑₑ in Q. variabilis was obtained due to its physiological and morphological traits, such as larger leaf area, higher stomatal conductance than that in P. orientalis (Adiredjo et al., 2014). Medlyn et al. (2001) reported that stomatal conductance of broadleaved species is more sensitive to elevated [CO₂] than conifer species. There is no agreement on the patterns of iWUE at the leaf level, related to SWC (Yang et al., 2010). The WUEₑₑ in P. orientalis and Q. variabilis were enhanced with soil drying, as presented by Parker and Pallardy (1991), DeLucia and Heckathorn (1989), Reich et al. (1989), and Leakey (2009).
Bögelein et al. (2012) confirmed that WUE_{cp} was more consistent with daily mean WUE_{ge} than with WUE_{phloem} (calculated with the δ¹³C of phloem). The WUE_{cp} of the two species demonstrated similar variations to those in δ¹³C_{wsc}, which differed from those of WUE_{ge}. Pons et al. (2009) noted that J of leaf soluble sugar is coupled with environmental dynamics over a period ranging from a few hours to 1–2 days. The WUE_{cp} of our materials responded to [CO₂] × SWC treatments over a number of cultivated days, whereas WUE_{ge} was characterized as the instantaneous physiological change in plants to new conditions. Consequently, WUE_{cp} and WUE_{ge} had different degrees of variation in response to different treatments.

4.3 Influence of mesophyll conductance on the fractionation after carboxylation

Mesophyll conductance, g_{m}, has been identified to coordinate with environmental factors more rapidly than stomatal conductance (Galmés et al., 2007; Tazoe et al., 2011; Flexas et al., 2007). During our 7-day cultivations, g_{m} increased and WUE_{cp} decreased with increasing SWC. It has been documented that g_{m} can improve WUE under drought pretreatment (Han et al., 2016). However, the mechanism by which g_{m} responds to the fluctuation of [CO₂] is unclear. Terashima et al. (2006) demonstrated that CO₂ permeable aquaporin, located in the plasma membrane and inner envelope of chloroplasts, could regulate the change in g_{m}. In our study, g_{m} is species-specific to the [CO₂] gradient. The g_{m} in *P. orientalis* significantly decreased by 9.0% to 44.1% from C_{600} to C_{800} at 60%–80% of FC; these are similar to the results of Flexas et al. (2007). A larger g_{m} in *Q. variabilis* under C_{800} was observed compared to *P. orientalis*.

Furthermore, g_{m} contributed to the total ¹³C fractionation that followed carboxylation, while photosynthate had not been transported to the sapling twigs. The ¹³C fractionation of CO₂ from the air surrounding the leaf to sub-stomatal cavities may be simply explained by stomatal resistance, which also contains the fractionation derived from mesophyll conductance between sub-stomatal cavities and the site of carboxylation in the chloroplast that cannot be neglected and should be elucidated (Pons et al., 2009; Cano et al., 2014). In estimating the post-carboxylation fractionation, g_{m}-sourced fractionation must be subtracted from the total ¹³C fractionation (the difference between δ¹³C_{wsc} and δ¹³C_{model}), which is closely associated with g_{m} (Fig. 8, p = 0.01). Variations in g_{m}-sourced fractionation are coordinated with those in g_{m} with changing environmental conditions (Table 2).

4.4 Post-carboxylation fractionation generated before photosynthesize moves out of leaves

Photosynthesis, a biochemical and physiological process (Badeck et al., 2005), is characterized by discrimination in ¹³C, which leaves an isotopic signature in the photosynthetic apparatus. Farquhar et al. (1989) reviewed the carbon-fractionation in leaves and covered the significant aspects of photosynthetic carbon isotope discrimination. The post-carboxylation/photosynthetic fractionation associated with the metabolic pathways of non-structural carbohydrates (NSC; defined here as soluble sugars + starch) within leaves, and fractionation during translocation, storage, and remobilization prior to tree ring formation is unclear (Epron et al., 2012; Gessler et al., 2014; Rinne et al., 2016). The synthesis of sucrose and starch before transportation to twigs falls within the domain of post-carboxylation fractionation generated in leaves. Hence, we hypothesized that ¹³C fractionation might exist. When we completed the leaf gas-exchange measurements, leaf samples were collected immediately to determine the δ¹³C_{wsc}.

Presumably, ¹³C fractionation generated in the synthetic processes of sucrose and starch was contained within the ¹³C fractionation from the site of carboxylation to cytoplasm before sugar transportation. Comparing δ¹³C_{wsc} with δ¹³C_{abs}, the total ¹³C fractionation in *P. orientalis* ranged from 0.0328 to 0.0472%, which was somewhat less than that in *Q. variabilis* (from 0.0384 to 0.0466%). Post-carboxylation fractionation contributed 75.30–98.9% to total ¹³C fractionation, determined by subtracting
the fractionation in g_w from total 13C fractionation. Gessler et al. (2004) reviewed the environmental
components of variation in photosynthetic carbon isotope discrimination in terrestrial plants. Total 13C
fractionation in P. orientalis was enhanced by the increase in SWC, consistent with that in Q. variabilis,
except at 100% of FC. The 13C isotope signature in P. orientalis was depleted with elevated [CO$_2$]. Yet,
13C-depletion was weakened in Q. variabilis for C_{050} and C_{000}. Linear regressions between g_w and total
13C fractionation indicated that the post-carboxylation fractionation in leaves depends on the variation of
g_w and that stomata aperture was correlated with environmental change.

5 Conclusions

Through orthogonal treatments of four [CO$_2$] × five SWC, WUE$_{cp}$ calculated by δ^{13}C$_{wsc}$ and WUE$_{ge}$
derived from simultaneous leaf gas-exchange, were estimated to differentiate the δ^{13}C signal variation
before leaf-level translocation of primary assimilates. The influence of g_w on 13C fractionation between
the sites of carboxylation and ambient air is important. It requires consideration when testing the
hypothesis that the post-carboxylation contributes to the 13C fractionation from the site of carboxylation
to cytoplasm before sugar transport. In response to the interactive effects of [CO$_2$] and SWC, WUE$_{ge}$ in
the two tree species both decreased with increasing SWC, and increased with elevated [CO$_2$] at 35–80%
of FC. We concluded that relative soil drying, coupled with elevated [CO$_2$], can improve WUE$_{ge}$ by
strengthening photosynthetic capacity and reducing transpiration. WUE$_{ge}$ in P. orientalis was
significantly greater than that in Q. variabilis, while the opposite was the case for WUE$_{cp}$. The g_w and
post-carboxylation both contributed to the total 13C fractionation. Rising [CO$_2$] and/or moistening soil
generated increasing disparities between δ^{13}C$_{wsc}$ and δ^{13}C$_{model}$ in P. orientalis; nevertheless, the
differences between δ^{13}C$_{wsc}$ and δ^{13}C$_{model}$ in Q. variabilis increased when [CO$_2$] was less than 600 ppm
and/or water stress was alleviated. Total 13C fractionation in the leaf was linearly dependent on g_w. With
respect to carbon isotope fractionation in post-carboxylation and transportation processes, we note that
13C fractionation derived from the synthesis of sucrose and starch is likely influenced by environmental
changes. A clear description of the magnitude and environmental dependence of post-carboxylation
fractionation is worth considering.

References

Adiredjo, A. L., Navaud, O., Lamaze, T., and Grieu, P.: Leaf carbon isotope discrimination as an accurate
indicator of water use efficiency in sunflower genotypes subjected to five stable soil water contents,
Ainsworth, E. A. and McGrath, J. M.: Direct effects of rising atmospheric carbon dioxide and ozone on
fractionation of stable carbon isotopes between plant organ – a widespread phenomenon, Rapid
Bögelein, R., Hassdentufel, M., Thomas, F. M., and Werner, W.: Comparison of leaf gas exchange and
stable isotope signature of water-soluble compounds along canopy gradients of co-occurring
Brandes, E., Kodama, N., Whittaker, K., Weston, C., Rennenberg, H., Keitel, C., Adams, M. A., and
Gessler, A.: Short-term variation in the isotopic composition of organic matter allocated from the
leaves to the stem of Pinus sylvestris: effects of photosynthetic and postphotosynthetic carbon
Brooks, A. and Farquhar, G. D.: Effect of temperature on the CO2/O2 specificity of ribulose-1,5-
bisphosphate carboxylase/oxygenase and the rate of respiration in the light, Planta, 165, 397–406,
1985.
Sharkey TD, von Caemmerer S. eds. Photosynthesis: physiology and metabolism. Advances in
photosynthesis and water-use efficiency during long-term water stress and recovery in two
Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants,
Epron, D., Nouvellon, Y., and Ryan, M. G.: Introduction to the invited issue on carbon allocation of trees
Evans, J. R., Kaldenhoff, R., Genty, B., and Terashima, I.: Resistances along the CO2 diffusion pathway
concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher-plants, Funct. Plant
Evans, J. R. and von Caemmerer, S.: Temperature response of carbon isotope discrimination and
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope discrimination and photosynthesis,
Farquhar, G. D., O'Leary, M. H., and Berry, J. A.: On the relationship between carbon isotope
discrimination and the intercellular carbon dioxide concentration in leaves, Funct. Plant Biol., 9,
Flexas, J., Barbour, M. M., Brendel, O., Cabrera, H. M., Carriqui, M., Díaz-Ispejo, A., Douthe, C.,
Dreyer, E., Ferrio, J. P., Gago, J., Gallé, A., Galmés, J., Kodama, N., Medrano, H., Niinemets, Ü.,
diffusion conductance to CO2: An unappreciated central player in photosynthesis, Plant Science,
Flexas, J., Carriqui, M., Coopman, R. E., Gago, J., Galmés, J., Martorell, S., Morales, F.; and Díaz-
Espejo, A.: Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated
factors for predicting leaf photosynthesis responses to climate change? Plant Science, 226, 41–48,
2014.
variations of mesophyll conductance in response to changes in CO2 concentration around leaves,

Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N., Quinones, C., Tamilselvan, A., Prasad, P. V.

Author contributions

N. Zhao and Y. He collected field samples, and performed the experiments. N. Zhao analyzed the data and wrote the paper. P. Meng commented on the theory and study design. X. Yu revised and edited the manuscript.

Acknowledgements. Financial support for this project was provided by the National Natural Science Foundation of China (grant No. 41430747) and the Beijing Municipal Education Commission (CEFF-PXM2017_014207_000043). We thank Beihei Zhou and Yuanhai Lou for collection of materials and management of saplings. We are grateful to anonymous reviewers for constructive suggestions regarding this manuscript. Due to space limitations we cited selected references involving this study topic and apologize for authors whose work was not cited.
Figure 1. Diagram of the automatic drip irrigation device used in this study; numbers indicate the individual parts of the irrigation device (No. 1–12). The lower-left corner of this figure presents the detailed schematic for the drip irrigation component (No. 8–12).
Figure 2. Net photosynthetic rates (P_n, μmol m$^{-2}$ s$^{-1}$, a and b), stomatal conductance (g_s, μmol H$_2$O m$^{-2}$ s$^{-1}$, c and d), intercellular CO$_2$ concentration (C_i, μmol CO$_2$ mol$^{-1}$, e and f), and transpiration rates (T_r, mmol H$_2$O m$^{-2}$ s$^{-1}$, g and h) in *P. orientalis* and *Q. variabilis* for four CO$_2$ concentration \times five soil volumetric water content treatments. Means ± SDs, n= 32.
Figure 3. Carbon isotope composition of water-soluble compounds ($\delta^{13}C_{\text{wsc}}$) extracted from leaves of P. orientalis (a) and Q. variabilis (b) for four CO$_2$ concentration × five soil volumetric water content treatments. Means ± SDs, n= 32.
Figure 4. Instantaneous water use efficiency through gas exchange measurements (WUE\textsubscript{\textit{g}a}) for leaves from \textit{P. orientalis} (a) and \textit{Q. variabilis} (b) for four CO\textsubscript{2} concentration \times five soil volumetric water content treatments. Means ± SDs, n= 32.
Figure 5. Instantaneous water use efficiency estimated by δ^{13}C of water-soluble compounds (WUE$_{wp}$) from leaves of *P. orientalis* (a) and *Q. variabilis* (b) for four CO$_2$ concentration \times five soil volumetric water content treatments. Means \pm SDs, n=32.
Figure 6. Mesophyll conductance in *P. orientalis* (a) and *Q. variabilis* (b) for four CO$_2$ concentration \times five soil volumetric water content treatments. Means \pm SDs, $n=32$.
Figure 7. Regressions between stomatal conductance and total 13C fractionation in *P. orientalis* (a) and *Q. variabilis* (b) for four CO$_2$ concentration \times five soil volumetric water content treatments ($p<0.01$, n=32).
Figure 8. Regressions between mesophyll conductance and total 13C fractionation in *P. orientalis* (a) and *Q. variabilis* (b) for four CO$_2$ concentration \times five soil volumetric water content treatments ($p \leq 0.01$, n=32).
Table 2. Carbon-13 isotope fractionation in *P. orientalis* and *Q. variabilis* under four CO₂ concentration × five soil volumetric water content treatments.

<table>
<thead>
<tr>
<th>Species</th>
<th>SWC (of FC)</th>
<th>13C fractionation (%)</th>
<th>CO₂ concentration (ppm)</th>
<th>13C fractionation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. orientalis</td>
<td>35–45%</td>
<td>0.0328 0.0373 0.0349 0.0332</td>
<td>0.0081 0.0030 0.0034 0.0072</td>
<td>0.0247 0.0343 0.0315 0.0260</td>
</tr>
<tr>
<td></td>
<td>50–60%</td>
<td>0.0367 0.0437 0.0382 0.0374</td>
<td>0.0018 0.0058 0.0094 0.0004</td>
<td>0.0349 0.0379 0.0288 0.0370</td>
</tr>
<tr>
<td></td>
<td>60–70%</td>
<td>0.0405 0.0346 0.0421 0.0409</td>
<td>0.0018 0.0050 0.0026 0.0007</td>
<td>0.0387 0.0316 0.0395 0.0402</td>
</tr>
<tr>
<td></td>
<td>70–80%</td>
<td>0.0444 0.0453 0.0413 0.0452</td>
<td>0.0044 0.0052 0.0103 0.0013</td>
<td>0.0400 0.0401 0.0310 0.0439</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.0441 0.0453 0.0456 0.0472</td>
<td>Mesophyll conductance 0.0057 0.0040 0.0025 0.0039</td>
<td>Post-photosynthesis 0.0384 0.0413 0.0431 0.0433</td>
</tr>
<tr>
<td>Q. variabilis</td>
<td>35–45%</td>
<td>0.0388 0.0402 0.0406 0.0384</td>
<td>0.0097 0.0025 0.0006 0.0091</td>
<td>0.0381 0.0377 0.0400 0.0293</td>
</tr>
<tr>
<td></td>
<td>50–60%</td>
<td>0.0433 0.0448 0.0409 0.0368</td>
<td>0.0061 0.0084 0.0023 0.0018</td>
<td>0.0372 0.0364 0.0386 0.0350</td>
</tr>
<tr>
<td></td>
<td>60–70%</td>
<td>0.0424 0.0440 0.0445 0.0414</td>
<td>0.0066 0.0086 0.0078 0.0041</td>
<td>0.0358 0.0354 0.0367 0.0373</td>
</tr>
<tr>
<td></td>
<td>70–80%</td>
<td>0.0424 0.0446 0.0482 0.0457</td>
<td>0.0034 0.0016 0.0074 0.0028</td>
<td>0.0390 0.0430 0.0408 0.0429</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.0441 0.0466 0.0466 0.0398</td>
<td>0.0027 0.0076 0.0022 0.0125</td>
<td>0.0414 0.0390 0.0444 0.0273</td>
</tr>
<tr>
<td>P. orientalis</td>
<td>Repeats (cultivated period)</td>
<td>B₁</td>
<td>B₂</td>
<td>B₃</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>A₁</td>
<td>R₁: June 2–9</td>
<td>A₁B₁R₁</td>
<td>A₁B₂R₁</td>
<td>A₁B₃R₁</td>
</tr>
<tr>
<td></td>
<td>R₂: June 12–19</td>
<td>A₁B₁R₂</td>
<td>A₁B₂R₂</td>
<td>A₁B₃R₂</td>
</tr>
<tr>
<td></td>
<td>R₃: July 11–18</td>
<td>A₁B₁R₁</td>
<td>A₁B₂R₁</td>
<td>A₁B₃R₁</td>
</tr>
<tr>
<td>A₂</td>
<td>R₁: July 22–29</td>
<td>A₂B₁R₂</td>
<td>A₂B₂R₂</td>
<td>A₂B₃R₂</td>
</tr>
<tr>
<td>A₃</td>
<td>R₁: June 2–9</td>
<td>A₃B₁R₁</td>
<td>A₃B₂R₁</td>
<td>A₃B₃R₁</td>
</tr>
<tr>
<td></td>
<td>R₂: June 12–19</td>
<td>A₃B₁R₂</td>
<td>A₃B₂R₂</td>
<td>A₃B₃R₂</td>
</tr>
<tr>
<td>A₄</td>
<td>R₁: July 11–18</td>
<td>A₄B₁R₁</td>
<td>A₄B₂R₁</td>
<td>A₄B₃R₁</td>
</tr>
<tr>
<td></td>
<td>R₂: July 22–29</td>
<td>A₄B₁R₂</td>
<td>A₄B₂R₂</td>
<td>A₄B₃R₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q. variabilis</th>
<th>Repeats (cultivated period)</th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>B₄</th>
<th>B₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>P₁: June 21–28</td>
<td>A₁B₁P₁</td>
<td>A₁B₂P₁</td>
<td>A₁B₃P₁</td>
<td>A₁B₄P₁</td>
<td>A₁B₅R₁</td>
</tr>
<tr>
<td></td>
<td>P₂: July 2–9</td>
<td>A₁B₁P₂</td>
<td>A₁B₂P₂</td>
<td>A₁B₃P₂</td>
<td>A₁B₄P₂</td>
<td>A₁B₅R₂</td>
</tr>
<tr>
<td>A₂</td>
<td>P₁: August 4–11</td>
<td>A₂B₁P₁</td>
<td>A₂B₂P₁</td>
<td>A₂B₃P₁</td>
<td>A₂B₄P₁</td>
<td>A₂B₅R₁</td>
</tr>
<tr>
<td></td>
<td>P₂: August 15–22</td>
<td>A₂B₁P₂</td>
<td>A₂B₂P₂</td>
<td>A₂B₃P₂</td>
<td>A₂B₄P₂</td>
<td>A₂B₅R₂</td>
</tr>
<tr>
<td>A₃</td>
<td>P₁: June 21–28</td>
<td>A₃B₁P₁</td>
<td>A₃B₂P₁</td>
<td>A₃B₃P₁</td>
<td>A₃B₄P₁</td>
<td>A₃B₅R₁</td>
</tr>
<tr>
<td></td>
<td>P₂: July 2–9</td>
<td>A₃B₁P₂</td>
<td>A₃B₂P₂</td>
<td>A₃B₃P₂</td>
<td>A₃B₄P₂</td>
<td>A₃B₅R₂</td>
</tr>
<tr>
<td>A₄</td>
<td>P₁: August 4–11</td>
<td>A₄B₁P₁</td>
<td>A₄B₂P₁</td>
<td>A₄B₃P₁</td>
<td>A₄B₄P₁</td>
<td>A₄B₅R₁</td>
</tr>
<tr>
<td></td>
<td>P₂: August 15–22</td>
<td>A₄B₁P₂</td>
<td>A₄B₂P₂</td>
<td>A₄B₃P₂</td>
<td>A₄B₄P₂</td>
<td>A₄B₅R₂</td>
</tr>
</tbody>
</table>