Interactive comment on “Observing and modelling phytoplankton community structure in the North Sea: can ERSEM-type models simulate biodiversity?” by David A. Ford et al.

M. Butenschön
momm@pml.ac.uk

Received and published: 21 September 2016

This work adresses an import aspect of marine ecosystem modelling and spends a commendable effort towards the assesment of the North Sea phytoplankton community structure.

However, with respect to the speculation on the reason of differences in community structure in the two models already discussed by the referees, I’d encourage the authors to take into consideration the insights of Sinha et al. 2010, demonstrating the sensitivity of the modelled ecosystem food-web structure to the physical driver alone. These findings are potentially in contrast to the hypothesis that the causes for differences in community structure are mainly in the parametrisation of the biogeochemical model, which therefore requires a much more solid base (e.g. simulations using identical physical driver and external forcings).

Furthermore, it should be noted that one of the model versions used in this work (referred to as PML-ERSEM) is based on a parametrisation published in 2004. Since then, other versions and parametrisations of this ERSEM flavour have emerged (e.g.
the recent works of Butenschön et al. 2016, Ciavatta et al. 2016 and de Mora et al.
2016) that show a distinctively different community structure than the parametrisation
used in this work (even if for different configurations, see figures 2 and 3 in de Mora et
al. 2016 and figure 10 in Butenschön et al. 2016). While I wouldn’t expect the authors
to repeat their work with a different parametrisation, the fact that the used parametri-
sation (which is the established one still in use in the operational suite of the UKMO)
has evolved since its publication clearly deserves mentioning as these new parametri-
sations are openly available in the published, peer-reviewed scientific literature.

References:

Butenschön, M., Clark, J., Aldridge, J.N., Allen, J.I., Artioli, Y., Blackford, J.,
Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S.,
vander Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., Torres, R.,
2016. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosys-
tem dynamics of the lower trophic levels. Geosci. Model Dev. 9, 1293–1339.

Ciavatta, S., Kay, S., Saux-Picart, S., Butenschön, M., Allen, J.I., 2016. Decadal re-
analysis of biogeochemical indicators and fluxes in the North West European shelf-sea

de Mora, L., Butenschön, M., Allen, J.I., 2016. The assessment of a global marine
ecosystem model on the basis of emergent properties and ecosystem function: a case
study with ERSEM. Geosci. Model Dev. 9, 59–76. doi:10.5194/gmd-9-59-2016

emergent behavior of a complex ecosystem model in two ocean general circulation
models. Progress in Oceanography 84, 204–224. doi:10.1016/j.pocean.2009.10.003