Interactive comment on “The role of Phragmites on the CH$_4$ and CO$_2$ fluxes in a minerotrophic peatland in Southwest Germany” by Merit van den Berg et al.

Merit van den Berg et al.
merit.vandenberg@uni-hohenheim.de

Received and published: 30 July 2016

We would like to thank referee T. Arkebauer for his positive notes about the paper as a whole, his interest in the discussion point about the respiration, and also for criticizing the preciseness of our data descriptions. Many thanks as well for all the language corrections, they are very helpful. Below we give our reply to all discussion points.

"One of the concerns I have is due to the 2 month (or so) gap in the wintertime data. The authors discuss their gap filling methods (basically using a Fluxnet approach for filling in missing CO$_2$ flux data) which seem like a reasonable approach due to the lack of published techniques for filling missing CH$_4$ flux data. However, I believe their presentation could be improved by providing error estimates for the reported fluxes, particularly the monthly and annual estimates presented in Figure 8 and Table 2."

The 2-months data gap is indeed large and the error unknown. To assess the error we will create an artificial gap of the other 2 winter months and fill it using the same method. The comparison with the real data will provide an error guess, which will be included in the paper.

"The discussion of the start of significant CH$_4$ emission and CO$_2$ uptake (lines 165 - 173) could be improved. The authors state that reed growth was initiated "by the end of April" and show a line on May 1st in Figure 3 to indicate this. The statements "From that moment, the reed plants assimilated CO$_2$ and daily CO$_2$ fluxes became negative. At the same time CH$_4$ fluxes rapidly increased." do not quite fit the data shown in Figure 3. It is apparent that the CH$_4$ flux increases some time before May 1st and the CO$_2$ flux does not go negative until some time in mid-May."

Reed growth starts at the 30th of April, so technically at the end of April. The line is just before the 1st of May. Yet, in the revised paper we will write the exact date to avoid confusion about this point. We will also be more precise about the statements like "CO$_2$ fluxes became negative" by providing exact dates and more precise descriptions of the flux changes.

"The presentation of monthly averages of diel fluxes (Figure 4), discussed in Section 3.2, may obscure finer details in the observation record. For example, from examination of Figure 4, the variability in the monthly averaged fluxes of both CO$_2$ and CH$_4$ increases at midday in for March (slightly) and April (more pronounced) whereas the authors state that "From May on, when new reed was present, a distinct diurnal pattern was established for both gases". Also, whilst not so easy to discern, it appears that the CH$_4$ flux peak may be slightly later in the day than the CO$_2$ peak but the authors state that "the highest negative fluxes for CO$_2$ and highest positive fluxes for CH$_4$ around noon"."

There is some variation in the CH$_4$ fluxes in March and April but it is not a clear diurnal...
pattern. In March, the fluxes are a bit higher between 8:00h and 17:00h, but in April
the lowest flux is at 14:00h and the highest at 21:00h. There is at least not a clear
pattern compared to the pattern in the months that follow. For both fluxes, the peaks
are always between 10:00h and 13:00h. CH4 has only in May, September and October
a later peak than CO2. But in June and July, the peak is later for CO2 (in August it is at
the same time). So on average the statement we make holds. And the whole point of
showing this graph is to get rid of the finer details, to be able to visualize this amazing
strong diurnal pattern for CH4 during the growing season. We will explain this point a
bit better in the revised paper.

"The authors conclude that the lack of a pronounced effect of RH on the observed CH4
fluxes (relative to the importance of global radiation) is noteworthy. This is a logical
conclusion from the data presented in the manuscript. However, the range of ambient
RH at the German site may have been smaller than the range of RH at the more
semiarid site in Nebraska reported by Kim et al. It is a bit difficult to say, though, since
the present manuscript uses RH while Kim et al. reported vapor pressure deficits. Both
studies measured these parameters above the canopy and, considering Armstrong
and Armstrong's idea of the importance of the behavior of leaf sheath stomata, are
somewhat removed from the likely site of influence. Also, the influence of wind speed
may not be as apparent at the German site compared to the Nebraska site but, again,
without specifics it is hard to assess."

For the comparison with Kim et al. we will include the range of VPD. But in general,
Armstrong and Armstrong stated that the humidity induced convective flow is nega-
tively correlated with RH and will be close to zero when RH reaches 100%. In our
data we only found this dependency with low radiation, especially when we take a look
at Figure 7 where the radiation is more or less constant. We did not measure RH at
vegetation level. Yet, neglecting temperature effects for the moment, RH will even be
higher at ground level than above the canopy in such a wet, transpiring ecosystem.
It is indeed hard to conclude something about the reasons why we did not find an

influence of wind speed in comparison to Nebraska. It is at least good that these
measurements are done at different geographical locations, so that findings from one
side are not generalized for all Phragmites systems over the world. We will add a few
phrases to discuss this issue.

Please also note the supplement to this comment:
http://www.biogeosciences-discuss.net/bg-2016-122/bg-2016-122-AC1-
supplement.pdf