Point-by-point comment to Referee #1, 2, and 3

Referee #1: My main points are that the abstract needs to be shortened and made more concise. And there are some aspects of the discussion, particularly related to the biological communities, should be modified according to my specific comments below. Additionally, I suggest some minor grammatical modifications. My specific comments follow below:

Title: No mention of the chemosynthetic fauna, yet they are a central part of the results and discussion. Why?

Reply: We changed the title to: “Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at Campeche Knolls, southern Gulf of Mexico”

Referee #1: Abstract: It strikes me as too detailed. It needs to be streamlined to summarize the key points, and lose some of the detail. Also, the order of topics (method employed to data acquisition, habitat, community, gas composition, gas emission, hydrate and fauna, summary) is somewhat chaotic and could be reordered and better integrated to make the information smoother. Also the part of the final sentence on "species new to science" is unsubstantiated, not discussed elsewhere in the paper and should be deleted.

Reply: We have rewritten the abstract following the recommendations.

Referee #1: Introduction: para 3: "scuba-diving depths" is subjective. What is it, 30m?

Reply: Correct, it was at 30 m water depth, we changed the sentence accordingly.

Referee #1: Introduction: para 3, last sentence: on oil exploration. This sentence is not really part of the paragraph or the paper and should be eliminated, or developed more fully.

Reply: We deleted the sentence.

Referee #1: Methods, para 2: Please provide the exact dates for cruise M-114. Same for Table 1 (see comment below).

Reply: We included the dates of the cruise in the text and included the dates of all stations conducted in Table 1.

Referee #1: Results 4.1: Paragraph 2. The backscatter profiles that you show, and the situation you discuss related to its appearance in only part of the water column can also be due to currents. If this is the case, then linearly projecting the flare from mid-water to the seabed may be biased. You might want to at least mention this.

Reply: We have re-written the paragraph and now describe in more detail how flares were traced through the water column analyzing swath by swath manually. Such three dimensional analyses allows to trace the flares through the water column although deviated by currents. We are therefore confident that the fact that flares only appeared above the seafloor in the echosounder records are not due to currents.

Referee #1: Site Description 4.2.1: replace "in the following" with ‘hereafter’

Reply: Done.
Referee #1: 4.2.2. The term "decimeter" while not incorrect, seems somewhat awkward to me. Perhaps consider replacing it with or tens of cm?? Sorry if this seems nitpicky, and I am certainly willing to yield to the editor on this if we differ in opinion.

Reply: We changed the phrase giving the more accurate numbers “10 to 30 cm in height”.

Referee #1: 4.2.3. In the mention of the bivalves and other fauna found here, was there any collection made for analysis of these organisms?

Reply: We included two sentences in the Material and Method section indicating that biological samples were taken but that the taxonomic identification is far from being complete.

Referee #1: 4.3. Were the camera sled observations from previous cruises included in this paper? It seems ambiguous.

Reply: Yes, we used camera sled observations from previous cruises and included the information explicitly into the result section.

Reply: Done.

Referee #1: Discussion, 5.1, para 3, sentence 1. Camera sled surveys. It is unclear to me what data the camera sled surveys have added to the present manuscript.

Reply: The camera sled surveys as summarized in Table 1 double the locations with evidence for hydrocarbon seepage at Campeche Knolls as shown in Figure 2. It supports the fact that this particular form of hydrocarbon seepage with asphalt deposits at the seafloor is not limited to the sites described in detail by ROV but are more wide spread and, thus, an integral component of seepage at Campeche Knolls. The importance of such observation has also be emphasized by Referee #2 that is why we left these information integrated into the manuscript.

Referee #1: Discussion, 5.1, para 2, sentence 1: "proven for". Revise as "visually identified at"

Reply: Done.

Referee #1: Sec 5.3: find and fix spelling error "alcalinity"

Reply: Done.

Referee #1: Sec 5.3. ": : :we speculate that gas seepage at our study sites was stable on time scales of hundreds of years: : :". Be careful here. I see your point and will not wholly disagree, but the only chronometer you are invoking are vestimentiferan "estimated" lifespans from a completely different location. Further the Bergquist method of aging was not unequivocal, so be a little careful here.

Reply: We re-phrased the paragraph concerning the use of vestimentifera as chronometer and are more careful about its validity.

Referee #1: Sec 5.5: many mentions of bacteria: "methane oxidizing bacteria", chemosynthetic bacteria". Unless the authors are sure, these microbes could well be archaean. I suggest using "microbes" instead, or specify if they are archaean or bacteria.
Reply: We refer to publications that have studied the microbes and identified them as bacteria, so we left the section unchanged.

Referee #1: Sec 5.5: (final paragraph): "Preliminary interpretation of our observations suggest that the species diversity is higher in the oil seeps that at other sites..." This statement is premature and unsupportable in its present form. If the authors think that this may be the case, it would be easy enough to quantify with a proper analysis of species present and their abundances. Either do a proper analysis, or drop this statement.

Reply: We omitted the statement.

Referee #1: Sec 5.6: This entire section has several problems, and could, in my opinion, be eliminated. It really is reaching outside the core story and does not add to the central thesis of the paper. The first paragraph on biogeography and teleconnections between Campeche Knolls and other deep-water seep systems, particularly the Florida escarpment, is very speculative, and based on only the thinnest of observations from this study. In fact, as mentioned earlier in my review, the analysis of the benthic community, species present, and community structure, and diversity is not very well developed. A lot more formal analysis could be made of the observations of the community characteristics. Lacking that, this paragraph is unwarranted. The second paragraph on anthropogenic impacts of the benthic community is not germane to the story and can be eliminated in its entirety. The final paragraph on advocating for a priori protection of these locations in any future oil exploration is really advocacy, and not basic science. In my opinion, this is out of scope and should be deleted (the parts of the abstract and conclusions regarding this should also be modified accordingly).

Reply: We agree that the paragraph has several problems and deleted the entire section.

Referee #1: Conclusion: Typo: ‘reanalyzes’ = reanalysis

Reply: Done.

Referee #1: Last sentence, first para: Delete this sentence. Not a main conclusion, and no direct supporting evidence.

Reply: Done.

Referee #1: Last sentence, second para: "over time spans of hundreds of years". Really no direct evidence for this. Change to "over extended timespans"

Reply: Done.

Referee #1: Last sentence, final paragraph: "We call for protective: : :" Advocacy. Delete (see also comment above).

Reply: Done.

Referee #1: Figure 4A. There is no box shown.

Reply: We changed the color of the box to become more visible.

Referee #1: Figure 9A. There is no box shown.

Reply: We changed the color of the box to become more visible.
Referee #1: Figure 11. Cannot see the ROV dive tracks. Possibly the image is too dark.

Reply: We changed the color of the dive tracks to become more visible.

Referee #1: Table 1. Put the stations from the current cruise first (not last). Also add dates for the AUV or ROV dives or other observations. Also, place depth of each location in a separate column.

Reply: Done.

Point-by-point reply to Referee #2

Referee #2: 1. I agree with Reviewer 1 that it seems incongruous for the title to have no mention of the chemosynthetic communities discussed in this study.

Reply: We changed the title to “Massive asphalt deposits, oil seepage, gas venting support abundant chemosynthetic communities at Campeche Knolls, southern Gulf of Mexico”.

Referee #2: 2. The Abstract is too long and detailed to give the reader a concise snapshot of the study and should be condensed from three paragraphs to one.

Reply: We have rewritten the abstract following the recommendations.

Referee #2: 3. It is odd that the tubeworms, which are frequently mentioned in the text and correctly identified as vestimentiferans, are not more specifically called Escarpia sp. until page 17 (late in the Discussion section). The depth at which these tubeworms were found combined with the genetic identification from Raggi et al. 2013 (cited in the manuscript) support the use of this genus in the manuscript. Several other common chemosynthetic megafauna are identified by species name in the text (e.g. Bathymodiolus brooksi, B. heckerae, and Abyssogena southwardae), so it is incongruous for the tubeworms to be identified by “vestimentifera” only.

Reply: We agree with the referee that it is likely that we encountered the genus Escarpia in our study area and applied changes accordingly. However, we found several morphotypes of vestimentifera in our study and feel like being careful with ascribing all to that genus Escarpia until morphological or phylogenetic studies confirm this. Therefore, we did leave the more general description vestimentifera in several instances.

Referee #2: 4. Additionally, this means that the Campeche Knolls tubeworms are definitely a different species from Lamellibrachia luymesi, the species whose age was estimated in Bergquist et al. 2000. That study of the northern GoM species is cited here to estimate that the vestimentiferan-inhabited asphalt flows found in this study could potentially be decades old. The last paragraph of section 5.3 should more accurately state the species discrepancy (they are not merely “likely” a different species from the northern GoM study) and show caution in using this age estimate.

Reply: We agree and re-phrased the paragraph accordingly. We are more careful about the validity concerning the use of vestimentifera as chronometer.

Referee #2: 5. The Results section 4.1 “Gas emissions from the seafloor” may be better incorporated into the manuscript as part of the Methods section. This subsection does describe the results of the multi-beam echosounder surveys, but more importantly it describes how the authors used this information to trace the origin of bubble flares and choose sites for more in-depth AUV and ROV surveys. It then
logically follows that the site descriptions and gas bubble samples obtained from those video surveys that makeup the rest of the Results section were direct results of this decision-making process.

Reply: We incorporated the former section 4.1 into the Material and Method section.

Referee #2: 6. Figure 1 is very helpful in displaying different features of the southern Gulf of Mexico, but the gray and green dots meant to represent probable and definite seeps respectively are hard to distinguish. Although this color scheme is easier to differentiate when the area is magnified in Figure 2, the sites would be better served with different color choices.

Reply: We changed the color of the dots in both Figures 1 and 2 to become better visible.

Referee #2: 7. Figure 3 is clear, but ultimately doesn’t contribute much to the manuscript. The text description of identifying gas bubble plumes from multibeam echosounder seems sufficient to communicate the methods of the study to the reader and explain that plumes were not always traceable to the seafloor.

Reply: We removed the Figure.

Referee #2: 8. The dark blue box in Figure 4A showing the ROV survey area is difficult to distinguish from the background bathymetry.

Reply: We changed the color of the box to become more visible.

Referee #2: Typographical errors:
- Last sentence of first paragraph of Introduction: “bolder” should be corrected to “boulder.”
 Reply: Done.
- Same issue in second paragraph of section 4.2.1 (“bolder” instead of “boulder”)
 Reply: Done.
- Last paragraph of section 4.2.2 (bottom of page 8): “loose buoyancy” should be corrected to “lose buoyancy.”
 Reply: Done.
- Last paragraph of section 5.1: “temporarily and spatially segregated” should be corrected to “temporally and spatially segregated.”
 Reply: Done.
- Last paragraph of section 5.3: I believe the authors meant “slow growth” rather than “low growth.”
 Reply: Done.
- First paragraph of section 5.4: Mictlan Knoll is misspelled as “Mictan Knoll” in the first sentence, and in the third sentence API gravity should be “slightly higher” rather than “slighter higher.”
 Reply: Done.
Point-by-point reply to Referee #3

Referee #3: I have the following minor comments that would marginally improve the manuscript:

4.2.4 – ‘pogonophoran’ has fallen out of favor and I am unfamiliar with Anobturata and it is not in WORMs. Can the authors either provide a reference for Anobturata or use frenulate or monolifera (depending on which it may be – with frenulate the more likely of the two and currently more ‘correct’ (i.e. monophyletic) compared to pogonophoran.)

Reply: We agree and changed it to frenulate.

Referee #3: P13 – “we sketched” suggest “we illustrate”

Reply: Done.

Referee #3: P14 - “As well as oil derived from higher hydrocarbons”– I would suggest changing this to “and likely augmented by degeneration of organic carbon that may include higher hydrocarbons”. As Joye et al. found a mismatch between SRR and AOM. They did not completely contribute the sulfide present to longer chain hydrocarbons.

Reply: Done.

Referee #3: P14 “With estimated life spans” – additional age info is found in Cordes et al. 2007 Marine Ecology 28:160-168 that puts smaller individuals (1.1m) at age estimates of 300 years. This provides further evidence for the long term seepage estimates provided by the authors.

Reply: We thank Referee #3 for the comment and included the reference by Cordes et al. (2007). Contrary to Referee #3, Reviewer #1 and #2 suggested to be more cautious in the age estimates based on vestimentiferan tube length. As we cannot contribute to the controversial opinions of using the tube length as chronometers, we follow the suggestion by Referee #1 and #2 and rephrased the paragraph accordingly.
List of additional changes:

We are grateful for the comments by the referees and included a sentence in the section Acknowledgments.

After submission of the original version of the manuscript, we became aware of two mistakes that we corrected:

The sequence of co-authors was not correct but now follows the alphabetic order between the first and last authors.

We integrated a reference to the PhD thesis of Gopika Suresh and thank her for her ambitious work in the Section acknowledgments.
Seafloor observations at Campeche Knolls, southern Gulf of Mexico: coexistence of asphalt deposits, oil seepage, and gas venting

Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at Campeche Knolls, southern Gulf of Mexico

Heiko Sahling1,2*, Maxim Rubin Blum2, Christian Borowski2, Elva Escobar-Briones3, Elisa Gaytán-Caballero3, Adriana Gaytán-Caballero3, Chieh-Wei Hsu1, Markus Loher1, Ian MacDonald4, Yann Marcon4, Thomas Pape1, Miriam Römer1, Maxim Rubin Blum3, Florence Schubotz1, Daniel Smrzka6, Gunter Wegener2,3, Gerhard Bohrmann1,2

1MARUM and Department of Geosciences at the University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
2MARUM Center for Marine Environmental Sciences, Leobener Str., 28359 Bremen, Germany
3Max-Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
4Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, A. P. 70-305 Ciudad Universitaria, 04510 Mexico City, México
5Florida State University, POB 3064326, Tallahassee, FL 32306, USA
6Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
7Center for Earth Sciences, University of Vienna, Althanstr. 14, 1090 Vienna, Austria

Correspondence to: H. Sahling (hsahling@marum.de)

Abstract. Hydrocarbon seepage is a widespread process at continental margins of the Gulf of Mexico. We used a multidisciplinary approach including multibeam mapping and visual seafloor observations with different underwater vehicles to study the extent and character of complex hydrocarbon seepage in the Bay of Campeche, southern Gulf of Mexico. Our observations showed that seafloor asphalt deposits previously only known from the Chapopote Knoll occur also at numerous other knolls and ridges in water depths from 1230 to 3150 m. In particular the deeper sites (Chapopote and Mictlan Knolls) were characterized by asphalt deposits accompanied by extrusion of liquid oil in form of whips or sheets, and in some places (Tsanyao Yang, Mictlan, and Chapopote Knolls) by gas emission and the presence of gas hydrates in addition. Molecular and stable carbon isotopic compositions of gaseous hydrocarbons suggest their primarily thermogenic origin. Relatively fresh asphalt structures were settled by chemosynthetic communities including bacterial mats and vestimentiferan tubeworms, whereas older flows appeared largely inert and devoid of corals and anemones at the deep sites. The gas hydrates at Tsanyao...
Yang and Mictlan Knolls were covered by a 5 to 10 cm thick reaction zone composed of authigenic carbonates, detritus, and microbial mats, and were densely colonized by 1–2 m long tubeworms, bivalves, snails, and shrimps. This study increased the knowledge on the occurrences and dimensions of asphalt fields and associated gas hydrates at Campeche Knolls. The extent of all discovered seepage structure areas indicates that emission of complex hydrocarbons is a widespread and, thus, important feature in the southern Gulf of Mexico.

We studied asphalt deposits, oil seepage and gas venting during a multidisciplinary cruise in the Bay of Campeche, southern Gulf of Mexico. We conducted multibeam bathymetric mapping with an autonomous underwater vehicle and performed seafloor observations as well as sampling with a remotely operated vehicle. While previous studies concentrated on the asphalt volcano Chapopote Knoll, we confirmed that asphalt deposits at the seafloor occurred across numerous other knolls and ridges in water depths between 1230 and 3150 m; this is evidence that the outflow of heavy oil is a common component of hydrocarbon seepage of Campeche Knolls. The outflow of heavy oil either created whips or sheets floating in the water that subsequently descended and piled up as meter high stacks at the seafloor over time or spread at the seafloor forming flows ranging from meters to tens of meters in diameter. Unlike seafloor covering asphalts known from other continental margins, those in our study include relatively fresh material. Seafloor observations documented how chemosynthetic communities develop on the asphalts, with bacterial mats and juvenile vestimentiferan tubeworms colonizing the most recent flows.

Gas bubble emissions were an additional widespread component of hydrocarbon seepage at Campeche Knolls. The hydrocarbon gas had thermogenic origin, as indicated by the composition (C1/C2-ratio: 14 to 185) and stable carbon isotopic signature of methane (δ13C-CH4: -45.1 to -49.8 ‰). Gas emissions were detected by multibeam echosounder at water depths as great as 3420 m over Tsanyao Yang Knoll. Gas emissions occurred at sites without large asphalt deposits (Tsanyao Yang Knoll) as well as through old, fragmented asphalts (Mictlan Knoll, Chapopote Knoll). The gas emissions feed gas hydrate deposits at shallow seafloor depth. Gas hydrate formed mounds that were ~10 m wide by several meters high in soft sediments and filled the space within fragmented asphalt. The largest gas hydrate mounds supported dense colonies of 1–2 m long tubeworms that covered areas >100 m². These tubeworms grew with their posterior tubes implanted in a 5 to 10 cm thick reaction zone composed of authigenic carbonates, detritus, and microbial mats that overlie gas hydrate layers that were at least 7 m thick in places. This association between gas hydrates and vestimentifers has been noted in gas seeps at lesser depths, but was developed to an unequaled extent in the Campeche Knolls. Previous studies have documented oil slicks on the ocean surface across many sites in the region. This study found liquid oil emissions in diverse settings. Sites with oil seepage are characterized by oil-soaked sediments, chemosynthetic fauna with associated heterotrophs, and bacterial coatings. Gas bubble emissions and oil seepage occurred independent of asphalt deposits or through old, fragmented asphalts, indicating that presently active hydrocarbon seepage overprints older asphalt deposits. Campeche Knolls are unique in several aspects including the occurrence of recent flows of heavy oil, deep-water hydrocarbon seepage, with many species that are new to science.
I Introduction

Asphalt volcanism in the Campeche Knolls, southern Gulf of Mexico (GoM) has been described as a distinct form of natural hydrocarbon seepage (MacDonald et al., 2004). Heavy oil is extruded and forms lava-like flows that cover ~100 to ~1000 m² of abyssal knolls and ridges (Brüning et al., 2010). The flows consist of high density oil with an abundant asphaltene fraction (MacDonald et al., 2004) with a terrane composition similar to what has been reported from some crude oils in the Campeche Sound (Scholz-Böttcher et al., 2008; Schubotz et al., 2011b). As described by Brüning et al. (2010), the heavy oil is at a transition point between mobile and immobile when it flows; fluid-phase material can spread smoothly over the seafloor and, because its density is initially less than seawater, local bulges and “whips” occur due to buoyancy. Once exposed to seawater, the heavy oil solidifies to brittle layers because of weathering processes and loss of volatile hydrocarbons. Fissures and cracks through the solidified asphalt deposits were observed to develop with time. Fragmentation of brittle asphalt proceeds until cobble-to-boulder sized pieces become buried by sedimentation (Brüning et al., 2010).

Most of the research conducted so far concentrated on the type locality, Chapopote Knoll, which was named after the Aztec word for tar. Because it forms a knoll with a central crater-like depression with extensive hard substrata, the term “asphalt volcano” was introduced for Chapopote Knoll (MacDonald et al., 2004). Chapopote Knoll is suggested to overlie a reservoir-seal system for hydrocarbons. From seismic studies it was inferred that coarse-grained sediments sealed by a thin (100-200 m) veneer of fine-grained sediments within the core of the knoll act as temporal hydrocarbon reservoir (Ding et al., 2008). Ding et al. (2008) speculated that the shallow reservoir plays a role in creating a heavy oil prior to its seafloor discharge: The oil in the region forms from Jurassic source material that has solidified within the hydrocarbon generation window over extended time (Magoon et al., 2001). Processes such as biodegradation, water washing or gas injection in the shallow reservoir could further increase its specific gravity (Tissot and Welte, 1984). However, Schubotz et al. (2011b) did not find evidence for biodegradation in ductile (fresh) asphalts, so the sequence leading to the characteristic asphalt deposition remains speculative.

In Campeche Knolls, oil seepage is widespread as evidenced by sea surface oil slicks detected by synthetic aperture radar satellite images (Fig.1; Williams et al., 2006). The sea surface slicks occur above dozens of knolls and ridges (Ding et al., 2010) and comprise a significant fraction-component of natural seepage in the southwestern Gulf of Mexico (MacDonald et al. 2015). Seismic studies at the knolls and ridges indicate shallow sub-surface hydrocarbon accumulation as well (Ding et al., 2010) but prior to the present study it was unclear whether these systems also produced asphalt deposits at the seafloor.

The natural hydrocarbon seeps at Chapopote Knoll comprise typical seep components that provide habitat for diverse biological communities. For example, in addition to asphalt deposits, there are reports of oil-soaked sediments (MacDonald et al., 2004; Schubotz et al., 2011a, b), gas hydrate occurrences (MacDonald et al., 2004, Schubotz et al., 2011b, Klapp et al., 2010a, b), gas venting (Brüning et al., 2010), and authigenic carbonates (Naehr et al., 2009). The asphalt deposits sustain hydrocarbon-degrading and sulfate-reducing bacteria within their interior (Schubotz et al., 2011b), surface bacterial mats, and vestimentiferan tubeworms that colonize fissures in the asphalt deposits (MacDonald et al., 2004; Brüning et al., 2010). Oil-
Impregnated sediments were found to harbor a complex microbial community that sustained both methanotrophy and methanogenesis (Schubotz et al., 2010a, b). Two species of mytilid mussel (*Bathymodiolus brooksi* and *B. haeckeri*) occurred close to an oil and gas seep, harboring different endosymbiotic communities (Raggi et al., 2013). A novel symbiont related to the hydrocarbon-degrading bacteria genus *Cycloclasticus* was verified in the seep-associated mussel *B. Heckerae* (Raggi et al., 2013).

Subsequent to the initial discovery at Chapopote Knoll (MacDonald et al., 2004) asphalt deposits were found at other continental margin settings as well. In the Santa Barbara Basin off California, asphalt volcanoes about 15 and 20 m high formed 31 to 44 kyr ago (Valentine et al., 2010). These structures occur at water depths of around 150 to 180 m in a region additionally comprising tar mounds at 30 m depths (Vernon and Slater, 1963). In the northern Gulf of Mexico, asphalt mounds about one meter in height and up to several meters in basal diameter exist in the Puma Appraisal Area (Weiland et al., 2008) and the Shenzi Field (Williamson et al., 2008) at water depths of about 1500 m. In addition, more than 2000 asphalt mounds with diameter ranging from less than a meter up to 50 m in diameter were observed on the Angolan margin at water depths between 1350 and 2150 m (Jones et al., 2014). Based on their morphological appearance, their partial coverage by sediments, and the general lack of chemosynthetic organisms growing on the asphalt, the asphalt deposits in other regions seem to be older than those described in the southern GoM (Brüning et al., 2010). Moreover, in contrast to those in the southern GoM, asphalt deposits in the other regions are populated by regular, heterotrophic deep-sea organisms growing on hard substrate. Old asphalt deposits have, therefore, been suggested to foster the deep-sea habitat heterogeneity and provide additional settling grounds for species dispersal, which results in an increase in overall diversity (Jones et al., 2014). The Campeche Knoll asphalt region remains the deepest example known to date. The potential influence of pressure and temperature on emission of asphalt, liquid oil, and gas, and their interaction with microbial and metazoan communities, warrants further investigations. This research coincides with expanded energy exploitation and production potential in the southern Gulf region.

We conducted an interdisciplinary research campaign to the Campeche Knolls in spring 2015 on board the research vessel *Meteor*. Sites for investigation were developed following a nested approach. We used the information of oil slicks at the sea surface (Williams et al., 2006; MacDonald et al. 2015; Suresh 2013) to systematically identify potential targets with active hydrocarbon seeps. To further focus our activities, we looked for evidence of gas bubble emissions by scanning the water column with ship-based hull-mounted multibeam echosounder. High-resolution bathymetry of the most promising sites was acquired by the SEAL 5000 autonomous underwater vehicle (AUV) mapping. Finally, we conducted seafloor observations and sampling by QUEST 4000m remotely operated vehicle (ROV), concentrating on three sites at depths > 2900m. Specifically, we were interested in disentangling the various seafloor manifestations resulting from the geochemically diverse seepage of heavy oil (leading to asphalt deposits), oil (leading to sea surface slicks) and gas (as bubbles and hydrate deposits). By concentrating on the description of the different environments that we encountered at the hydrocarbon seeps, we provide an overview for more detailed studies that will focus on the geochemistry of different oils, authigenic carbonate composition,
microbiology, and fauna. We additionally show, based on our recent findings and results obtained during three precursor cruises (Bohrmann and Schenk, 2004; Bohrmann et al., 2008; MacDonald et al., 2007), that asphalt deposits are not limited to the type locality Chapopote Knoll, but are inherent to natural hydrocarbon seepage in the entire Campeche Knolls.

2. Geological Setting of Campeche Knolls

Campeche Knolls (Fig. 1) is part of the large South Gulf Salt Province that stretches from the southern land margin across the shelf and Campeche Knolls to Sigsbee Knolls in the north. The Sigsbee Abyssal Plain separates the salt province in the southern GoM from the Mississippi-Texas-Louisiana salt province in the north. Salt tectonism in the southern deep GoM basin is believed to be an analogue to that of the Texas–Louisiana slope (Garrison and Martin, 1973). Because the basins share similar salt deposition histories, it is inferred that most of the salt was deposited during the rifting stage of the Gulf of Mexico in the Late Jurassic, equivalent to the Louann salt of the Texas–Louisiana slope (Salvador, 1991).

Campeche Knolls comprise knolls and ridges that are limited to the west by smooth abyssal seafloor of the salt-free Veracruz tongue (Bryant et al., 1991). The Campeche Canyon, which is not a canyon in erosional sense, formed through the development of separation—the eastern limit of Campeche Knolls intersects the carbonate Campeche Platform. Northward, smooth seafloor separates the Campeche Knolls from the Sigsbee Knolls. The Campeche Knolls is covered by a 5-10 km sediment column that hosts prolific petroleum source rocks, with the most productive being of latest Jurassic and Cretaceous age (Magoon et al., 2001). Most of the sediment thickness results from deposition during Cenozoic times and was controlled by orogenic events in the Mexican region and sea-level changes.

The distribution of oil slicks at the sea surface (Williams et al., 2006; MacDonald et al., 2015; Suresh, 2015) aggregates along the northwestern sector of the Campeche Knolls (Fig. 1). Interpretation of seismic lines and basin modeling carried out by the Mexican petroleum company PEMEX led to the conclusion that the sub-province designated as 4S (Fig. 1) contains the largest allochthonous and autochthonous salt deposits (Cruz-Mercado et al., 2011; Sánchez-Rivera et al., 2011). The actual density of salt bodies increases from southeast to the northwestern region of Campeche Knolls. It is proposed that gravitational forces toward the northwest cause contraction and compression in the northwestern distal part of the system in which structural folds, high-angle reverse faults and numerous allochthonous salt bodies developed since the late Miocene to Recent (Cruz-Mercado et al., 2011; Sánchez-Rivera et al., 2011).

3 Material and Methods

Natural oil slicks at the sea surface were detected by synthetic aperture radar in the region of the southern GoM by Williams et al. (2006). Based on their analyses of repeated observations, they postulated seep locations on the seafloor that could be the origins of the oil slicks. With regard to interpretation limits of the remotely sensed data they distinguished between definite, probable and possible seep locations. Figures 1 and 2 show the inferred seep locations they classified as definite or probable.
We excluded the numerous possible seep locations for clarity and also because many of the possible seeps were located outside of Campeche Knolls, suggesting that the corresponding oil slicks might not be caused by natural oil seepage. Those sea surface patterns might have been caused by other processes, i.e. algae blooms, local wind fields, or anthropogenic activity.

Ship-based hydroacoustic surveys, and dives with an autonomous underwater vehicle (AUV) and a remotely-operated vehicle (ROV) were conducted during cruise R/V Meteor (M 114) on 12 February to 28 March 2015.

The multibeam echosounder (MBES) Kongsberg EM122 operating at 12 kHz was used for bathymetric mapping. Together with water column imaging. The bathymetric data acquired during this cruise were combined with bathymetry data collected during two earlier cruises to the Campeche Knolls with R/V Sonne in 2003 (SO 174; Bohrmann and Schenk, 2004) and R/V Meteor (M67/2; Bohrmann et al., 2008) good bathymetric coverage was acquired in the entire northwestern sector of the Campeche Knolls (Fig. 2).

We additionally examined the water column data of the MBES systematically for evidence of gas emissions along the entire cruise track of M 114 (Fig. 2, inset). Water column imaging for the detection of gas bubble plumes was conducted with the Fledermaus Midwater software program (company: Quality Positioning Services B. V., The Netherlands) by manually analyzing each swath. Gas bubble plumes cause high backscatter in the water column (Fig. 3). In this paper we assume that all acoustic anomalies were related to gas venting and will refer to them as “flares” (such anomalies are commonly termed gas flares due to their appearance in echosounder records). Flares were traced through the water column by analyzing swath by swath, which results in a threedimensional representation of the bubble streams. We detected numerous gas bubble flares, of which some could be traced completely from the water column down to the seabed. Most flares, however, were only observed in the mid-water column and the point of origin at the seabed could not be traced. In those instances, we projected the flares down to the seafloor and give this point as coordinates. We assume that this lack of backscatter from gas bubbles in great water depths results from the pressure dependence of the backscatter strength (Greinert et al., 2006). Further in-depth studies are required to confirm this.

For the objectives of this study, we linearly projected flares from mid-water depths to the seabed and assumed that bubbles were escaping the seafloor around these sites. We defined survey areas at the seafloor that included the putative gas emission sites and conducted AUV-based microbathymetric mapping and ROV-mounted horizontally scanning sonar to locate gas...
emission sites. This approach proved to be very efficient and resulted in the discovery of various seep manifestations at five
knolls and ridges called: Tsanyao Yang Knoll, Mictlan Knoll, Chapopote Knoll, UNAM Ridge, and Knoll 2000 (locations are
shown in Fig. 2).

High-resolution bathymetry data were acquired with the MBES Kongsberg 2040 during dives with the AUV SEAL 5000 at
an altitude of 80 m. The bathymetry data acquired during this cruise were combined with bathymetry data collected during
two earlier cruises to the Campeche Knolls with R/V Sonne in 2003 (SO 174; Bohrmann and Schenk, 2004) and R/V Meteor
(M67/2; Bohrmann et al., 2009b). Ship-based and AUV-based bathymetry data were processed with MB-Systems (Caress and
Cheyes, 2014). All ship-based bathymetric data were integrated into a swath map (Fig. 2). Water column data were not recorded
during SO 174 and M 67/2.

The Kongsberg 675 kHz Type 1071 forward-looking sonar on ROV QUEST 4000m was used for the localization of bubble
plumes following the method described in Nikolovska et al. (2008). Seafloor images shown in this study were taken either
with the digital Inside Pacific Scorpio 3.3 mega-pixel still camera or frame-grabbed (Adobe Premiere Pro) from video footage
gained with the Imitec Pacific Zeus 3CCD HDTV video camera.

In order to characterize geochemically the different hydrocarbon components, gas bubbles (clear and oil-coated) and oil drops
released from the seafloor were captured with the pressure-tight Gas Bubble Sampler (GBS) at four different knolls and ridges
(Supplementary Table 1). Two bubble streams were sampled at Tsanyao Yang Knoll whereas at all other sites investigated
only one bubble stream was sampled. Gas bubble samples were not recovered from Knoll 2000. Repeated sampling was
conducted at Mictlan Knoll during different dives and at different heights above the seafloor. Oil drops were captured together
with chimney-like structures at Marker M114-5 at a site similar in appearance to that shown in Fig. 7 D. The samples were
analyzed for molecular compositions and δ13C-CH₄ signatures according to Pape et al. (2010) and Römer et al. (2012).

Biological samples were taken by push corer, scoop net, manipulator, or baited trap with the help of the ROV. However,
taxonomic identification of species is far from complete.

Underwater navigation of AUV and ROV was achieved by use of the Ixsea Posidonia ultra short baseline system. Spatial data
were integrated into the Arc-GIS program (ESRI) and maps were produced by combined usage of the Arc-GIS and Adobe
Illustrator programs.

Camera sled surveys were conducted during cruises SO 174 (Bohrmann and Schenk, 2004), M 67/2 (Bohrmann et al., 2008),
and “Chapopote III” with R/V Justo Sierra in 2007 (MacDonald et al., 2007). Three different camera systems were used for
taking video images (M 67/2 and Chapopote III) and photographs (SO 174) at the seafloor. The locations of camera sled
observations given in Table 1 are approximated based on ship position.

4 Results
4.1 Gas emissions from the seafloor

Extensive multi-beam echosounder (MBES) surveys during cruises SO 174, M 67/2, and M 114 provided a good bathymetric coverage in the entire northwestern sector of the Campeche Knolls (Fig. 2). The bathymetric map shows that knolls and ridges form separated seafloor structures in the north, whereas the morphology in the south is more complex, with coalescing ridges and domes.

We additionally examined the water column data of the MBES systematically for evidence of gas emissions along the entire cruise track of M 114 (Fig. 2, inset). We detected numerous gas bubble flares, of which some could be traced completely from the water column down to the seabed. Most flares, however, were only visualized in the mid-water column and the point of origin at the seabed could not be traced (Fig. 3). We assume that this lack of backscatter from gas bubbles in great water depths results from the pressure dependence of the backscatter strength (Greinert et al., 2006). Further in-depth studies are required to confirm this.

For the objectives of this study, we linearly projected flares from mid-water depths to the seabed and assumed that bubbles were escaping the seafloor around these sites. We defined survey areas at the seafloor that included the putative gas emission sites and conducted AUV-based micro-bathymetric mapping and ROV-mounted horizontally scanning sonar to locate gas emission sites. This approach proved to be very efficient and resulted in the discovery of various seep manifestations at five knolls and ridges called: Tsanyao Yang Knoll, Mictlan Knoll, Chapopote Knoll, UNAM Ridge, and Knoll 2000 (locations are shown in Fig. 2).

4.2 Site descriptions

4.2.1 Tsanyao Yang Knoll (about 3400 m water depth)

Tsanyao Yang Knoll is a dome approximately 400 m high and 6 km wide (Fig. 4A), which we named after Prof. Tsanyao Yang from the Department of Geosciences, National University of Taiwan. “Frank” Yang dedicated his life to study mud volcanoes and hydrocarbon seeps on- and offshore Taiwan; he sadly passed away while we were conducting this present study at sea.

Flares connected to the seafloor at water depths as great as to 3500 m were recorded at the plateau-like summit (Fig. 4A). Figure 4B shows the ROV dive track within a depression about 150 to 200 m wide and 30 m deep. Here, we discovered spectacular gas-hydrate exposures at three sites (Site 1, 2, and 3) at depths of about 3420 m. In contrast to the knolls and ridges further south, we did not observe during the dives wide-spread asphalt deposits at Tsanyao Yang Knoll.

The gas hydrates were found in mounds that were 1-2 m high and 3-10 m wide at their bases and that were densely colonized by vestimentiferan tubeworms probably of the genus Escarpia (Fig. 4A). The mounds had regular borders of gravel- to boulder-sized rock clasts and shells that separated seep-influenced from normal deep-sea sediments. Occasionally, in some locations, clusters of living vesicomyid clams (Abyssogena southwardae) were observed in the transition zone. In several
instances, the mounds were dissected, exposing 1-2 m hanging walls of gas hydrate with vigorous gas bubble streams observed being emitted from the base (Fig. 3.1. B). Exposed hydrate preserved a fabric of frozen bubbles, which indicated rapid formation (Suess et al., 2001). Some bubble-fabric gas hydrate formed from rising bubbles when they attached to the vertical wall due to adhesion or were captured by overhanging structures. Many bubble streams were composed of transparent bubbles forming white gas hydrates but some streams contained oil-coated bubbles forming blackish-colored hydrates. We additionally observed dense hydrate cropping out over most of the visible exposed wall fracture, as exemplified in Fig. 3.1. B. Most of the hydrate was white, but blackish-stained hydrate was also observed.

The outermost 5 to 10 cm thick layer of the mounds were composed of authigenic carbonates entangled with the posterior parts of the vestimentiferan tubes and other detritus. For convenience, we term these tubeworm parts the “rhizosphere” in the following. Fleshy, thick microbial mats were attached to the carbonates in the lower portion of the rhizosphere. We hypothesize that the carbonates were formed under anoxic conditions in the interior of the rhizosphere. A flourishing ecosystem of seep-typical fauna (e.g. living mytilid mussels, gastropods, Alvinocaris sp. shrimp) occupied the top of the carbonates at the base of the vestimentiferan tubes (Fig. 3.1. C). The vestimentiferan tubes were densely overgrown by colonies of epifaunal suspension feeders (e.g. hydrozoans and anemones).

At site 3, we observed a mound composed of reworked sediment components and gravel to pebble-sized rocks (Fig. 3.1. D). An exposed lens-shaped chunk of hydrate (1.5 m wide and 0.5 m high) was present at the top of the mound (Fig. 3.1. E). The upper part of the hydrate showed a dense fabric while the lower part was porous suggesting that it formed from frozen gas bubbles (Fig. 3.1. F). The two hydrate fabrics were separated by a layer that looked like organic material. Ice worms (cf. Hesiocoea methanicola) were observed living in the bubble-fabric hydrate.

4.2.1.2 Mictlan Knoll (about 3100 m water depth)

Mictlan Knoll features the characteristics of an asphalt volcano (sensu MacDonald et al., 2004) with a crater-like summit area on top of an approximately 250 m high circular knoll that is about 10 km wide at its base (Fig. 6.5. A). This knoll contained diverse and widespread structures related to heavy oil seepage. We named it Mictlan, which means underworld in the Aztec language.

The MBES surveys revealed evidence for gas emission along the crater rim. We conducted five ROV dives in different areas of the crater-crestal region (Fig. 6.5. B) and illustrate our findings with images from four sites: Hydrate Hill, Marker M114-5, Marker M114-1, and “fresh asphalts.”

Hydrate Hill is a 30 m high elevation with a densely populated vestimentiferan tubeworm field (cf. Escarpia spp.) on its top that was 20 to 30 m wide (Fig. 6.6. A-C). At the summit, gas escaped the seafloor and gas hydrates formed beneath an overhanging protrusion consisting of carbonates and vestimentifera. Exposed rocks at the base of the hill looked like fragmented asphalts (Fig. 6.6. C) but no samples were recovered. We therefore suggest that the entire hill is an accumulation of asphalt talus that is covered at its summit by authigenic carbonates and vestimentifera.
At Marker M114-5, we observed 1-2 m sized asphalt humps with small colonies of vestimentiferan tubeworms that were less than one meter long. Remarkably, at this site viscous oil was slowly seeping (about one drop every few minutes) through slender, white-coated chimneys some 10 to 30 cm in height (Fig. 2D). In the area around Marker M114-5 about 10 sites with chimney clusters were observed.

At Marker M114-1, oil seepage occurred through a flat-topped mound about 1 m high and tens of meters wide, which was composed of fragmented asphalt and soft sediments. The mound surface was covered by a highly patchy community of 50 cm long vestimentiferan tubeworms, mytilid bivalves (Bathymodiolus brooksi), bacterial mats, and various epizoic groups of suspension feeders such as sponges, hydrozoa, and anemones (Fig. 2E, F). Oil drops escaped the sediments at a low rate (a drop every few minutes). Rising drops remained at first attached to the seafloor by elongating threads and only eventually broke loose, leaving behind strands of oil that floated or adhered to the nearby organisms. Oil was released from the sediments also during sampling of sediments and organisms collected with the ROV and the sample material was heavily soaked with oil when recovered aboard ship.

In the area denoted as “fresh asphalts” (Fig. 6B) we observed a fascinating variety of structures that provide insight into the mechanism involved in heavy oil deposition at the seafloor. Although the extrusion process of heavy oil was not directly observed by us at the seafloor, the resulting flow structures are illustrative. Based on our observations, two main types of heavy-oil emission and post-emission behavior may be distinguished. The first type includes extrusion of heavy oil forming strands or sheets that float into the water due to positive buoyancy while they remain attached to the seabed owing to cohesion (Fig. 7A-C). Over time, the strands and sheets apparently lose buoyancy and pile up on the seafloor forming decimeter to meter-high accumulations. The second type comprises extrusion of oil that is heavier than seawater and spreads on the seabed following gravity (Fig. 7D-F). These flows solidify over time and, subsequently, accumulate sediments on their surface as illustrated in Figs. 7E and F. Dimensions of flows observed in this study ranged between decimeter and tens of meters in diameter.

4.2.3 Chapopote Knoll (about 2900 m water depth)

Flare mapping with the ship-based MBES system revealed that plumes interpreted to be due to gas emission at this site were widespread along the crater rim (Fig. 8A). Flares were rather dispersed; consequently, we mapped areas with gas emissions rather than individual emission sites. Subsequent ROV dives focused on the 50 m wide flow of the main asphalt field and a location that had been named the “bubble site” during previous visits (Fig. 8B; Brüning et al., 2010).

First analysis of results obtained during our return visit in 2015 revealed that the appearance of the main asphalt field was little altered from what was observed during the first exploration in 2006 (Brüning et al. 2010). The extent of the flow and distributions of bacterial mats and vestimentiferan tubeworm remained largely unchanged. While expanding the mapped area in the course of this study, it became apparent that the main asphalt flows terminated on soft sediments in the north and west (Fig. 9A), but overlaid older flows characterized by fragmented asphalts (Fig. 9B) toward the south and east. Noting
significant sediment cover on older asphalts, we conjecture that the main asphalt flow represents the most recent stage of several flow events. The “bubble site” is located on a ridge several meters high that is formed of fragmented asphalts with soft sediments interspersed between the flow breccia. Gas bubbles escaped the seafloor and gas hydrates were present below a seafloor protrusion (Fig. 10 C, D). Recovered sediments and rocks were heavily impregnated with oil. The fauna comprised mytilid bivalves including Bathymodiolus heckeri, B. brooksi, vestimentiferan tubeworms, and a variety of organisms attracted by the seep system, such as Munilopsis geyeri and Alvinocaris maricola crustaceans (Gaytán-Caballero, 2009), gastropods and sponges (Fig. 10 D, E). A few meters away from the “bubble site”, oil drops or oil-coated bubbles were released from the seafloor (Fig. 10 F) and dark orange, oil coated hydrate masses were exposed.

4.2.4 Knoll 2000 (about 1850 m water depth)

Knoll 2000 is an elongated feature next to a ridge with two faint flares that originated at the eastern flank of the knoll (Fig. 11). During an ROV dive authigenic carbonates and dark-stained sediments with whitish patches, putatively interpreted to be bacterial mats, were observed (Fig. 11 E, F). Some of the authigenic carbonates were dark-stained and may contained asphalt. The recovery of pogonophoran frenulate tubeworms (Siboglinidae; AnobturataFrenulata) in whitish-stained sediments (Fig. 11 E) was noteworthy because species of this group were not observed at the other sites investigated in this study. However, because of their thin tubes, the tubeworms eluded detection at the seafloor during the dive. Gas bubble emissions were not observed during the one ROV dive to Knoll 2000.

4.2.5 UNAM Ridge (about 1230 m water depth)

UNAM ridge is an approximately 500 m high ridge named after the Universidad Nacional Autónoma de México in appreciation of the collaborative effort to study the deep-water hydrocarbon seeps off Mexico. This was the shallowest site visited during this study. At least five flares were detected above the crest (Fig. 11). Two ROV dives revealed evidence for an active, albeit senescent seep system. Remarkably, soft corals and other hard-ground suspension feeders were found to settle on iron/manganese-stained carbonates and weathered asphalts (Fig. 11 A). The occurrence of vestimentiferans tubeworms was limited to a few bushes. Recumbent tubeworms were dominant (Fig. 11 B), which is generally considered as an indicator for a senescent community. Iron/manganese-stained carbonates were observed along with debris of mytilid shells (Fig. 11 C). The most active seep site was situated on the side of a pockmark-like depression and comprised a relatively small bubble stream with only few specimens of living mytilid mussels on carbonates (Fig. 11 D). On a small 20 cm high and 1 m wide
sediment mound we observed a white, hydrate-like texture through a drape of sediment suggesting that gas hydrates may have existed in the sediments.

4.3 Seafloor observations by camera sled

In addition to the findings during M 114, camera sled deployments during the preceding cruises SO 174, M 67/2, and "Chapopote III" revealed evidence for the presence of asphalts and chemosynthetic communities at seven further knolls and ridges (as summarized in Table 1 and Figure 2). We realized that the identification of asphalts on the basis of images alone is ambiguous because the appearance of iron/manganese-stained carbonates is similar to that of weathered asphalts as shown in Figs. 11 A, C and Fig. 12 B, respectively. Nevertheless, the camera sled observations suggest that natural hydrocarbon seepage is widespread in the area of the Campeche Knolls.

4.4 Gas composition and isotopes

Hydrocarbons analyzed from all gas bubble samples collected with the Gas Bubble Sampler from Tsanyao Yang Knoll, Mictlan Knoll, Chapopote Knoll, and UNAM Ridge were dominated by methane with a C1/C2-ratio varying between 14 and 185 (Fig. 12). The methane stable carbon isotope composition (δ13C-CH4) ranged between -45.1 and -49.8‰ V-PDB. The oil drop sample revealed a relative CH4-depletion (C1/C2 = 2) compared to the gas samples and the δ13C-CH4 value (-56.4‰ V-PDB) was more negative.

5 Discussion

5.1 Natural hydrocarbon seepage in the Campeche Knolls

The region of Campeche Knolls comprises evidence of abundant natural hydrocarbon seepage. This was already evident by the widespread presence of oil slicks at the sea surface (Williams et al., 2006, MacDonald et al., 2015, Suresh, 2015). Knolls and ridges in Campeche Knolls are generally the seabed expressions of salt diapirism that causes hydrocarbons to accumulate and, eventually, to migrate though the sediments to the seafloor (Ding et al., 2008; 2010). More than 50 knolls and ridges in our study area exhibited single or multiple oil slick origins (Fig. 2), which suggests that it is a prolific natural oil seepage area as the salt province in the much better studied northern Gulf of Mexico (GoM; e.g. MacDonald et al., 1993; 1996). In Campeche Knolls, hydrocarbon seepage occurs in water depths down to about 3500 m, which is considerably deeper than
seeps discovered at the middle-lower continental slope in the northern GoM (~2750 to ~970 m; Roberts et al., 2010). Only the seeps at the Florida Escapement are located in comparable water depths at 3300 m (Paull et al., 1984; Cordes et al., 2007b).

While prior previous to this study f o c u s e d o n seafloor observations were only performed at Chapopote Knoll, we documented summarize in this study hydrocarbon seepage at the seafloor at five sites by ROV observations (including Chapopote Knoll) and, in addition, at seven sites by camera sled surveys at knolls and ridges (Fig. 2, Table 1). These sites range from depths around 1100 m in the south to 3420 m in the north of the study area. At all twelve sites we found evidence of natural hydrocarbon seepage as indicated by the presence of chemoautotrophic communities, authigenic carbonates, or asphalt deposits, confirming that hydrocarbon seepage is a widespread process in the region of Campeche Knolls. All of the twelve sites are located at the seafloor below sea surface oil slicks detected by satellite imagery (Williams et al., 2006). However, it should be noted that we only studied the seafloor close to oil slicks and that our method is biased, i.e. it does not provide a correlation between sea surface slicks and seafloor seepage.

Asphalt deposits were visually identified at seven sites (UNAM Ridge, Chapopote Knoll and Mictlan Knoll; Sites 1, 3, 6, and 7; Table 1) and they probably also occur at four more sites (Knoll 2000, Site 2, 4, and 5; Table 1). This clearly shows that seepage of heavy oil, which is a particular type of hydrocarbon seepage, is an intrinsic property of Campeche Knolls (Fig. 2). A possible reason for this is that the crude oil in the Campeche salt province is generally heavy (Magoon et al., 2001) in terms of API gravity (American Petroleum Institute gravity). For now we can only speculate on the mechanisms that lead to the expulsion and deposition of heavy oil on the seafloor, but we assume it is a combination of salt tectonic movements and high gas content that lead to the rise of this heavy oil to the seafloor, where it is then subjected to postdepositional weathering processes.

Out of the about ten sites with asphalt deposits at the seafloor, only three knolls (Chapopote Knoll, Mictlan Knoll, and Site 3; Table 1) exhibit features characteristic of “asphalt volcanism” (sensu MacDonald et al., 2004) that forms conical mounts with crater-like depressions and extensive hard substrata. The other sites either form ridges or the asphalts are associated with more complex morphologies. Tsanyao Yang Knoll is a noteworthy exception, because we did not find indications for the presence of extensive asphalt deposits, although seepage of oil was observed. The fact that we did not observe large asphalt deposits might be the result of too limited survey effort. Alternatively, we speculate that the absence of asphalt deposits at Tsanyao Yang Knoll are related to its unique shape as it is the only flat-topped knoll analyzed in this study. Its morphology resembles that of “passive type” salt diapirs (Ding et al., 2010), where salt intruding very close to the seafloor caused bending up of hydrocarbon-bearing strata to the seabed. The structural framework of passive type salt diapirs may not provide the necessary shallow hydrocarbon reservoir typical for the other knolls and ridges (Ding et al., 2008; 2010). During our investigations it became clear that in most instances gas venting, oil seepage, and flows of heavy oil (leading to asphalt deposits) were temporally and spatially segregated. Oil and gas seepage occurred separated from asphalt occurrences (e.g. at Mictlan Knoll) but also through fractures in asphalts that probably act as conduits for gas/oil migration (e.g. at Hydrate Hill, Marker M114-5, Marker M114-1, and the “bubble site” at Chapopote). Different chemical compositions of oil and gas result in different manifestations at the seafloor that we discuss in the following section.
5.2 Geochemical characterization of gas, hydrate and oil

In order to characterize the origin of hydrocarbons generated in the deep subsurface below the emission sites, we analyzed bubble-forming gas escaping the seafloor. Compared to the other hydrocarbon-containing organic substances discharged at the Campeche Knolls (e.g. oil, heavy oil), rapidly emitted vent gas is believed to be less affected by alteration in the course of upward migration in the sediment and, thus, can provide insight into the chemical characteristics of the subsurface reservoir of light hydrocarbons. Considering the molecular compositions of light hydrocarbons (expressed as C$_1$/C$_2$-ratios) and stable carbon isotopic signatures of methane (δ^{13}C-CH_4) most samples plot within or close to the empirical field proposed for a thermocatalytic origin (Fig. 13). The variability of δ^{13}C-CH_4 values in gas bubbles was noticeably small ($\Delta\delta^{13}$C-CH_4 = 4.7 ‰ V-PDB), given the fact that sampling was conducted at four different knolls and ridges positioned some tens to hundreds of kilometers distant to each other. In contrast, C$_1$/C$_2$-ratios appear to be more variable with highest values determined for apparently pure gas bubbles from Hydrate Hill at Mictlan Knoll (185, GeoB19336-15) and lowest values for oil-coated bubbles at Tsanyao Yang Knoll (14, GeoB19337-2). A variety of possible post-genetic processes can affect the distributions of light hydrocarbons, e.g., abiotic molecular fractionation during migration (Leythaeuser et al., 1980), admixture with oil-derived components or secondary methane (Milkov and Dzou, 2007), and microbial oxidation of methane and non-methane hydrocarbons (Hoehler et al., 1994; Joye et al., 2004; Kniemeyer et al., 2007). However, the causes for the variations in C$_1$/C$_2$-ratios observed in this study remain unexplained.

Methane in the gas bubbles sampled during this study was enriched in 13C relative to that in oil samples (δ^{13}C-CH_4 = -50.3 ‰), which were either collected during this study (one sample) or in the course of previous studies (Fig. 12; MacDonald et al., 2004; Schubotz et al., 2011b). The variability in the δ^{13}C-CH_4 and C$_1$/C$_2$-ratios of the oil samples either reflects site-specific properties of the oil source or indicates alteration processes during migration to variable extents. More negative values δ^{13}C-CH_4 of the oil samples in general may result from admixture by microbial produced 13C-depleted secondary methane from the oxidation of higher short-chained hydrocarbons at shallow sediment depth (Milkov and Dzou, 2007; Schubotz et al., 2011b). We failed to sample gas hydrates during this study, but shallow hydrates were collected from two sites at Chapopote Knoll during previous investigations (MacDonald et al., 2004; Schubotz et al., 2011b). Hydrate-bound methane in these studies was depleted in 13C by > 3 ‰ compared to methane in bubbles collected in our study. It should be stressed, that sampling was conducted in different years and not at exactly the same sites. Nevertheless, δ^{13}C-CH_4 differences between gas bubbles and hydrates within Chapopote Knoll are an interesting result, as hydrate deposits close to the seafloor are considered to form from gas bubbles (see below) without significant isotopic fractionation of methane (Bourry et al., 2009; Pape et al., 2010; Sassen et al., 2004). The difference in δ^{13}C of > 3 ‰ between methane in bubble streams and in shallow hydrates at Chapopote Knoll, therefore, suggests some contribution of microbial-generated methane to the hydrate.
5.3 Gas venting, hydrate occurrence, and the vestimentifera-gas/hydrate habitat

Gas emissions are integral parts of submarine seep systems in various geological settings worldwide but hydrate-containing mounds overgrown by dense vestimentiferan tubeworm fields probably belonging to the genus *Escarpia*, to our knowledge, unique to Campeche Knolls. Massive hydrate deposits close to the seafloor are considered to result from gas bubble migration through the sediments (Hueckel et al., 2004; Smith et al., 2014). Part of the gas can be sequestered as gas hydrate at shallow sediment depths, in case the crystallization force overcomes the effective overburden stress (Torres et al., 2004). Shallow hydrate deposits typically form a mounded topography of soft sediment at the seafloor as observed at Hydrate Ridge (Cascadia Margin; Suess et al., 2001; Sahling et al., 2002) and Bush Hill in the northern GoM (MacDonald et al., 1994). At Hydrate Ridge, intensive anaerobic oxidation of methane (AOM) in sediments overlying hydrates results in production of hydrogen sulfide that is consumed by sulfide-oxidizing bacteria that form mats draping the mounds (Boetius et al., 2000; Tredue et al., 2003). Sulfate reduction coupled to the degradation of higher-order hydrocarbons brought along with oil propagating in the sediments was additionally proposed to occur in the northern GoM (Formolo et al., 2004; Joye et al., 2004).

In our study, we found vestimentiferan tubeworms growing on hydrate deposits, which has not been observed before in such a clear association. In order to illustrate the relevant processes, we showed illustrate the two different situations encountered at Tsanyao Yang Knoll and Mictlan Knoll in Fig. 1413. At both knolls, gas bubbles percolated through the mounds and we propose that continuous gas supply from below drives hydrate formation in the shallow sub-surface. At Tsanyao Yang Knoll, hydrate formed as massive layers in the sediments within the mound (Fig. 54 B) whereas for Mictlan Knoll we speculate that hydrates occupy voids between fragmented asphalt (Fig. 76 A-C). In both cases, hydrates serve as methane reservoir (e.g. Sahling et al., 2002) from which methane and other short-chained hydrocarbons are constantly diffusing towards the overlaying seawater. We further propose that AOM dominates in the rhizosphere which is a distinct 5-10 cm thick layer consisting of the posterior tubes of the vestimentiferan tubeworms. Vestimentiferan tubeworms can release sulfate through their posterior tubes (Datta Gupta et al., 2006, 2008) and we therefore suggest that the rhizosphere in particular is supporting AOM. Due to the fact that AOM efficiently produce alcalinity necessary for carbonate precipitation, we propose that vestimentifera in the southern GoM largely rely on sulfate produced by sulfate-reduction coupled to methane oxidation. This is further supported by the composition of the gas that forms the hydrate, which is dominated by methane (Fig. 42 B). The geochemistry in the southern GoM is in contrast to that for vestimentifera in the northern GoM, which rely on sulfate produced by sulfate-reduction coupled to methane oxidation and likely augmented by degeneration of organic carbon that may include higher hydrocarbons as well as oil derived higher hydrocarbons (e.g., Joye et al., 2004). We favor the concept that regard the vestimentifera as ecosystem engineers (sensu Cordes et al., 2003; 2005) that play a pivotal role for this particular gas/hydrate habitat as they intensify chemical turnover processes within the rhizosphere and the space at and in between the tubes provides habitat for numerous other seep-typical species. Moreover, the thick blanket of the rhizosphere shields gas hydrate from direct contact with seawater and may impede its dissolution, thereby preserving the driver of AOM.

With regard to our discovery of the vestimentifera-gas/hydrate habitat, we attempted to characterize differences in environmental parameters in the Campeche Knolls and in areas where bacterial mats drape soft sediments covering hydrates.
First, seeps in the southern GoM occur at greater water depth (~3000 m) than the hydrate mounds at Hydrate Ridge (~780 m) and at Bush Hill in the northern GoM (~540 m). The higher pressure at greater water depth in conjunction with very vigorous gas bubble emission, could lead to more voluminous and more rapid formation of gas hydrate close to the seafloor. In addition, the deep-water physical environment is more stable compared to that at the upper slope, where temperature is higher and pressure changes are considerably larger (MacDonald et al., 1994, 2005). Further, with respect to the mature vestimentiferan communities and authigenic carbonates within the rhizosphere we speculate that gas seepage at our study sites was stable on extended timescales of hundreds of years. Vestimentifera are considered as long-living organisms, with estimated lifespans of 170-250 years for 2 m long species in the northern GoM (Bergquist et al., 2000; Cordes et al., 2007a). Although the vestimentiferan species present in the southern GoM probably belong to the genus *Escaurpia* and are, thus, likely different from those in the northern GoM, it is likely possible that slow growth is a general characteristic of vestimentifera at seeps and that the vestimentifera observed in our study (with tube length of ~2 m) are of similar age as well. Further, independent support comes from a modeling study that suggested timescales of 100 to 500 years for the formation of a few cm thick authigenic carbonate crust (Luff et al., 2004).

5.4 Heavy oil flows leading to asphalt deposits and asphalt as habitat

Our ROV-based observations revealed numerous examples for voluminous asphalt deposits at Chapopote Knoll and Mictlan Knoll. Their formation has been explained by a model proposed by Brüning et al. (2010), which takes the API gravity into account. Oil that floats in the water while still being attached to the seafloor has an API gravity slightly higher than 10°API, which corresponds to a density close to sea water. This places it at the boundary between heavy oil (10–12 to 20°API) and very heavy oil (<10–12°API), that are mobile and immobile at reservoir conditions, respectively (Tissot and Welte, 1984). Oil whips and sheets were observed (Fig. 57 A–C) indicating seepage of heavy oil, that is slightly positive buoyant (>10°API) but sufficiently cohesive to remain attached to the point of extrusion. In contrast, the extensive asphalt deposits must have been negatively buoyant (<10°API) when they exited because they clearly flowed at the seafloor (Figs. 57 D–E, Fig. 60 J–A). Incorporation of sediments in, and accumulation of sediments onto flowing asphalts will also contribute to their negative buoyancy. Formation of asphalt deposits, thus, depends on the viscosity of the extruded heavy to very heavy oil (<10°API) and the duration it is exposed to weathering processes at the seafloor that lead to a transition from mobile to immobile, i.e. the viscosity is high enough to allow the ascent through the sediment, but after emission at the seafloor, it rapidly becomes immobile, probably due to an increase in viscosity due to the loss of volatile compounds. In spite of this, additional possibly post-depositional processes lead to a decrease in bulk density, which can be deduced from observations at the main asphalt field at Chapopote Knoll. Pure gas hydrate, which typically exhibits a specific density less than seawater (ca. 0.9 g cm⁻³), was present below and within fresh asphalts (Schubotz et al., 2011b; Klapp et al., 2010a, b) and asphalt pieces floated up when extracted from an intact flow (Brüning et al., 2010). The elevated gas content might be explained by post-depositional hydrate formation and gas invasion into the pore space of the asphalts resulting from gas supply from...
below. However, with respect to the considerable difference in δ13C signatures between hydrate methane below the asphalts (-54.8 ‰; Schubotz et al., 2011b) and the vent gas methane (-46.5 ‰; Fig. 13) it is unlikely that these gases share the same source. A possible interpretation for the more negative δ13C-signature ofhydrate-bound methane could be that microbial methane is produced in sufficient amounts in shallow, hydrocarbon-soaked sediments below or within the asphalts.

As we did not observe active extrusion of heavy oil during the ROV dives, discharge rates of heavy oil at the seafloor (weeks to years?) remain unknown. The heavy oil apparently serves as energy source for chemosynthesis-based organisms like whitish bacterial mats and vestimentiferan tubeworms that generally depend on the supply of reduced sulfur compounds (Hilario et al., 2011; Teske & Nelson, 2006). If the outflow of heavy oil is a slow process, chemosynthetic organisms may grow while the oil is still in motion. Alternatively, the chemosynthetic organism may settle after deposition. Chemosynthetic organisms may thrive on reduced sulfur compounds contained in the heavy oil or on sulfide produced during microbial oil degradation coupled to sulfate reduction (Schubotz et al., 2011b).

Based on their distribution at the seafloor exemplified in Fig. 27 D, E, we suppose that predominantly relatively young ejections, such as whips and sheets in the water column, and those in the central parts of asphalt flows, are populated by whitish bacterial mats. Moreover, the spatial extent of bacterial mats at the main asphalt field at Chapopote Knoll during this study in 2015 was very similar to that observed during its initial documentation in 2006 (Brüning et al., 2010) demonstrating considerable ecosystem stability for many years over a decade. This is remarkable as we observed holothurians, galatheid crabs, and myriads of small crustaceans probably inferred to be grazing on the bacteria. This indicates a high primary production by chemosynthetic microbes. At more distal parts of the most recent asphalt deposits, bacterial mats were absent, while tubeworms occurred nestling in fissures (Fig. 27 E and Fig. 10 A). Considering the relatively low growth rates of vestimentiferan tubeworms (Bergquist et al., 2000), we propose that even the most recent asphalt deposits discovered in this study already have existed for decades. The ostensible absence of bacteria on asphalt surface and the presence of vestimentifera growing posteriorly into the substrate suggest that the sulfide source progresses towards deeper parts of the asphalts with time. This would be in line with our concept of successive stages represented by bacteria and tubeworms, respectively.

The most common asphalt deposits in our study were in an “inert stage”. It was devoid of any macro- or megafauna and ranged in terms of appearance from solid asphalt flows to partly to entirely fragmented asphalt deposits (e.g. Fig. 11 B). We suggest that most probably these asphalt flows do no longer serve as habitats for chemosynthesis-based bacteria or tubeworms anymore because a greater portion of volatiles has already escaped to the water column. Furthermore, it is worth noticing we point out that authigenic carbonates were virtually absent (Fig. 11 A). This observation suggests that microbial degradation of heavy oil does not produce sufficient alkalinity for authigenic carbonate formation. Based on our findings we may refer to the asphalt deposits without visible chemosynthetic fauna prevailing in Campeche Knolls as the being in an “inert stage”. Heterotrophic suspension feeders that are common in other regions with asphalt deposits (Weiland et al., 2008; Williamson et al., 2008; Valentine et al., 2010; Jones et al., 2014) were also absent on the inert stage at Campeche Knolls. In our study area soft corals attached to asphalts were only found at the shallowest site investigated, UNAM ridge at 1230 m water depth (Fig. 11 A). Therefore, the paucity
of suspension feeders in the region of the Campeche Knolls might be caused by a limited food supply at the deep-water asphalt deposits Mictlan Knoll and Chapopote Knoll (3420 to 2900 m water depth, respectively).

In contrast to seafloor asphalt deposits in other regions (Weiland et al., 2008; Williamson et al., 2008; Valentine et al., 2010; Jones et al., 2014), those in the Campeche Knolls are sourced by geologically recent emissions of heavy oil. However, given that lobate flow patterns are still discernible for asphalts in the Santa Barbara Basin 31 to 44 kyr after seafloor deposition (Valentine et al., 2010), asphalt deposits sourced by emission of heavy oil in the Campeche Knolls may have existed for tens to probably hundred thousands of years while being fragmented and draped by sediments. The Campeche Knolls asphalts provide a natural laboratory to study their more recent genesis as well as their alteration through time.

5.5 Oil seepage and oil-soaked sediments as habitat

Because oil seepage is an integral component of the hydrocarbon seepage system at Campeche Knolls, as revealed by numerous oil slicks at the sea surface (Fig. 1), we concentrated on identifying oil seepage sites at the seafloor. In general, oil may rise as oil-coated gas bubbles or as oil drops (De Beukelaer et al., 2003; Leifer and MacDonald, 2003). Oily bubbles are difficult to identify visually during ascent through the water column, as they can appear as opaque as pure gas bubbles. Therefore, oil might have been a significant component of the observed gas bubble streams. Only in a few instances, the coating of gas bubbles was dark and the hydrate forming from the bubbles was dark-stained. In contrast, release of oil drops was clearly observed and occurred in association with two different seafloor manifestations: white-coated chimneys (Fig. 76 D) and oil-soaked sediments inhabited by Bathymodiolus heckerae (Fig. 109 F). These observations demonstrate that a seep system of oil exists next to a seep system of heavy oil leading to asphalt deposits. Seepage of oil was associated with old asphalt deposits (sediment-covered asphalt mounds and fragmented asphalt pieces) at three sites (Marker M114-1 and M115-5 at Mictlan Knoll; bubble site at Chapopote Knoll) suggesting that the oil migrated through the sediments along preexisting pathways.

At Chapopote Knoll and Mictlan Knoll biological communities were physically exposed to oil (Figs. 76 F, 109 F). As found in the northern GoM, degradation of oil-derived components in sediments, like non-methane hydrocarbons, can be performed by sulfate-reducing bacteria (belonging to the δ-proteobacteria group) while producing hydrogen sulfide (e.g. Joye et al., 2004; Kniemeyer et al., 2007). This is used as energy source for chemosynthesis-based organisms such as mat-forming, sulfide-oxidizing bacteria and vestimentifera living in symbiosis with chemosynthetic bacteria. The two mytilid species studied in our area harbor symbionts that are capable of oxidizing sulfides as well as methane (Raggi et al., 2013). In addition, the mussel Bathymodiolus heckerae from the “bubble site” at Chapopote Knoll evidenced a unique symbiosis with a proteobacterium of the genus Cycloclasticus that is supposed to degrade hydrocarbons (Raggi et al., 2013). This symbiosis is unique to that site where the animals are virtually bathed in oil.

Preliminary interpretation of our observations at Mictlan Knoll (Fig. 7 D-F) and Chapopote Knoll (Fig. 10 D-F) suggest that the species diversity in the oil seeps is higher than at other sites characterized by gas emissions or asphalt deposits alone.
therefore, speculate that combined gas and oil emissions along with the presence of hard substrates including old fragmented asphalts provide a biogeochemical environment that promotes habitat heterogeneity and, thus, the observed species diversity.

5.6 Chemosynthetic communities at Campeche Knolls and future energy exploration
The natural hydrocarbon seeps of Campeche Knolls are unique in that they are located in deep waters and comprise a combination of heavy oil, oil and gas emissions. Comprehensive studies on the faunal composition are lacking so far, but our findings and previous phylogenetic results suggest a relationship of the community at Campeche Knolls and that associated to a seep system at the Florida Escarpment also situated in deep water (Cordes et al., 2007; Paull et al., 1984). These habitats share similar or identical species, including: Vesicomyid clam_ Abyssogena southwardae (Krylova et al., 2010), mytilid bivalves_Bathymodiolus bavayi, _B. heckerae, _vestimentiferan tubeworms genetically similar to _Escarpia laminata (Raggi et al., 2013), and crustacean decapods_Munidopsis guaymas, _Giallovinia suaedae (Gaytán-Caballero, 2009). The Campeche Knolls is yet another example of deep-water seeps that is important to consider in terms of biogeography of chemosynthetic communities. There is an intriguing, but up to now not well understood, connectivity between western and eastern Atlantic seep communities often referred to as the Atlantic equatorial belt province (Cordes et al., 2007). Further studies on the taxonomic composition of the deep-water Campeche Knolls fauna could shed light on questions of larval dispersal and connectivity with other deep-water seeps such as those off Barbados (Olu et al., 1996) and western Africa (Olu et al., 2010). The ecosystem in the Campeche Knolls is so far only marginally affected by human activity, including our own scientific research. We limited our impact by only retrieving small amounts of samples preferentially taken by ROV manipulator. During our ROV seafloor operation, we observed anthropogenic litter (mainly plastic bags) on the seafloor in about ten instances (Fig. 15). Although we believe that these do not pose severe threats on the seep communities, the litter shows that there is hardly any untouched ecosystem left on earth.

Future exploration for oil, however, can have a major impact on chemosynthetic ecosystems through mechanical disturbance by anchors to hold drilling rigs in position and pipelines. With the oil exploration shifting further off-shore to greater water depths, the unique ecosystems may be in danger in the future. We, therefore, call for protective policies when it comes to exploration activities at or near chemosynthesis-based ecosystems in Campeche Knolls. Energy exploration and production actively avoids sites containing shallow gas and similar hazards, so protection of Campeche Knoll sites would be consistent with existing industry practices. Moreover, drilling operations that encounter asphalts at the seafloor or in the subbottom will face significant challenges. So, future expansion of the Mexican ultra-deep energy industry will require ongoing scientific research.

6 Conclusion
Natural oil seepage is inherent to Campeche Knolls, as revealed by our new findings obtained during cruise M114 in 2015, and by a reanalyzes of seafloor images gathered during previous cruises. Unique to Campeche Knolls is the widespread occurrence of asphalt deposits, which was definitely confirmed at seven sites. The flow structures of heavy oil encountered at Chapopote Knoll and Mictlan Knoll are noteworthy, as they represent more recent asphalt deposits when compared to those described from other continental margin settings. The recently discharged asphalts sustain chemosynthetic organisms such as bacterial mats and vestimentifera as well as a suite of heterotrophic organisms that warrant further taxonomic studies. Based on our preliminary observations, and in contrast to the asphalt deposits at other continental margins, those at the deeper Campeche Knolls (>2900 m water depth) are generally not utilized by sessile, filter-feeding organisms that attach to hard substrates. This might be caused by limited food availability at the deep-sea sites investigated.

Seepage of oil and gas bubbles co-occurs next to the asphalt deposits. Most intriguing was our finding of vigorous gas bubble streams forming hydrate mounds (Tsanyao Yang Knoll) or percolating through old, fragmented asphalts leading to hydrate precipitation in the voids between the asphalt breccia (Mictlan Knoll). The hydrates likely serve as shallow methane reservoir underlying dense communities of vestimentiferan tubeworms, which then act as ecosystem engineers, facilitating AOM and preserving the hydrate. We further suggest that the tubeworms rhizosphere intense microbiologically-mediated turnover processes are probably taking place that facilitated the precipitation of authigenic carbonates. Our observation of the closely associated hydrate and vestimentiferan tubeworm is unparalleled, but this relationship and the involved biogeochemical processes could also be relevant in other hydrocarbon settings with shallow hydrate deposits. The healthy-appearing vestimentifera growing on hydrate suggest considerable stability of these habitats over extended time-spans of hundreds of years, required for establishment of the slow-growing vestimentifera and formation of authigenic carbonates.

Oil drops escaped the seafloor through small chimney-like structures, or, together with gas bubbles, through a mixture of fragmented, old asphalt and sediments. In the latter case, sediments were heavily impregnated by oil. The seep-associated communities appeared very diverse, with two chemosynthetic mussel species and various other heterotrophic organisms. We call for protective policies to avoid negative impacts by future oil exploration on the natural hydrocarbon seeps, which provide habitats for unique deep-water ecosystems in the Campeche Knolls.

Author contribution
Maxim Rubin Blum, Gerhard Bohrmann, Christian Borowski, Chieh-Wei Hsu, Markus Loher, Ian MacDonald, Yann Marcon, Miriam Römer, Heiko Sahling, Florence Schubotz, Daniel Smrzka, and Gunter Wegener conducted the ROV dives as scientific advisors on which this present study is largely based on. Chieh-Wei Hsu, Markus Loher, and Miriam Römer detected the gas emissions by hydroacoustic means. Thomas Pape analyzed the gas. Adriana Gaytán-Caballero assisted in taxonomic determination of fauna at sea. Elva Escobar-Briones supported the application procedure to acquire the Mexican research
permission and supervised the participation of three Mexican scientists and students in the cruise. Heiko Sahling prepared the manuscript with contributions of all co-authors.

Acknowledgement

We are grateful to the Mexican authorities for granting permission to conduct the research in the southern Gulf of Mexico (permission of DGOPA: 02540/14 from 5 November 2014). We thank the master and crew of R/V Meteor for their highly professional assistance at sea. Thanks to MARUM AUV SEAL 5000 and ROV QUEST 4000m teams for providing and handling of the indispensable equipment at sea. Various people have contributed to the successful cruise, we namely thank Monika Breitzke, Stefanie Buchheister, Christian Ferreira, Patrizia Geprägs, Jan-Derk Groeneveld, Elvira Jiménez Guadarrama, Ingo Klaucke, Sven Klüber, Esmeralda Morales Dominguez, Gopika Suresh, Marta Torres, Monika Wiebe, Paul Wintersteller, and Jennifer Zwicker. We thank three anonymous reviewer and Daniel Orange for their constructive comments that improved the manuscript. The cruise was core funded by the German Research Foundation (DFG – Deutsche Forschungsgemeinschaft) through the cruise proposal “Hydrocarbons in the southern Gulf of Mexico”. Additional support was provided through the DFG-Research Center / Excellence Cluster “The Ocean in the Earth System”.

Literature

Nikolovska, A., Sahling, H., and Bohrmann, G.: Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the Black Sea, Geochemistry Geophysics Geosystems, 9, Q10010, 2008.

Figure 1. Geomorphological setting of the southern Gulf of Mexico based on shaded GEBCO bathymetry. Campeche Knolls and Sigsbee Knolls are located within the sub-province 4S, which is part of the South Gulf Salt Province (outlined in blue) as suggested by Cruz-Mercado et al. (2011). Locations of definite (green dots) and probable (gray purple dots) oil slick origins at the sea surface according to Williams et al. (2006) and the extent of the respective study area (outer rectangle) are shown.
Figure 2. Swath bathymetry draped over GEBCO bathymetry of the Campeche Knolls and cruise track of M 114 (inset). Indicated are oil slick origins as inferred from oil slicks at the sea surface according to Williams et al. (2006) classified as definite (green dots) and probable (grey purple dots). Seafloor locations of hydrocarbon seepage sites investigated in this study are also shown (open circles/stars, number in brackets). Specifics of those sites are given in Table 1.
Figure 3. Screenshot of a multibeam swath showing a hydroacoustic flare that is caused by a plume of rising gas bubbles.
Figure 43. (A) Ship-based swath bathymetry of Tsanyao Yang Knoll [see Fig. 2 for location], flare locations (red dots), and the area shown in (B) (box). (B) ROV QUEST Dive 361 track and the main study sites plotted on AUV swath bathymetry.
Figure 84. Seafloor images taken at Tsanyao Yang Knoll during ROV QUEST Dive 361. (A) Vestimentiferan tubeworm bushes on a dissected fractured mound (arrow). Scale bar 50 cm in foreground. (B) Gas bubble plume (arrow) rose through the gap of a dissected fractured mound. Hydrates formed at the hanging walls. Scale bar 50 cm. (C) Close-up of the mound surface percolated with bubbles emitted into the water column by bubbles (arrows) from the same spot. Gas hydrate occurred below a layer of authigenic carbonates with mytilids, vestimentifer, gastropods, and shrimps on top. Scale bar 10 cm. (D) Mound with outcropping exposed gas hydrate (arrow) detailed in (E, F). Scale bar 50 cm. (E) Lens-shaped, outcropping exposed gas hydrate composed of bubble-fabric hydrate below and dense hydrate above the arrow. Scale bar 50 cm. (F) Bubble-fabric hydrate inhabited by ice worms (cf. Hesiocaeca methanicola). Scale bar 1 cm. All images courtesy of MARUM.
Figure 65. Maps of Mictlan Knoll (see Fig. 2 for location): (A) AUV-based bathymetry draped over ship-based bathymetry and positions of flares (red dots). The box defines the area illustrated in (B). (B) ROV QUEST dive tracks and main study sites plotted on AUV-based bathymetry.
Figure 76. Seafloor images taken at Mictlan Knoll during ROV QUEST Dives 357 (A-D) and 360 (E-F). (A) Hydrate below overhanging vestimentiferan tubeworms (arrow). Scale bar 50 cm. (B) Gas bubble stream (arrow) rose through the hydrates and vestimentifera shown in (A). Scale bar 5 cm. (C) Fragmented asphalt, authigenic carbonates (arrow), and vestimentifera. Scale bar 50 cm. (D) Oil drops released through white-coated chimneys. Scale bar 20 cm. (E) Flourishing ecosystem (mytilids, vestimentifera with epizoic suspension feeders, bacterial mats) next to oil-soaked sediments shown in (F). (F) Viscous oil drops emanated from the sediments leaving strands behind (arrow). Scale bar 20 cm. All images courtesy of MARUM.
Figure 87. Seafloor images taken at Mictlan Knoll during ROV QUEST Dives 357 (B, C), 363 (A, E), and 364 (D-F). (A-C) Oil whips and sheets (arrows) floating in the water. Old whips and sheets apparently lost buoyancy and pile-up at the seafloor. (D-F) Flow structures of heavy oil. Scale bar all images 50 cm. All images courtesy of MARUM.
Figure 98. Maps of Chapopote Knoll (see Fig. 2 for location): (A) AUV-based bathymetry draped over ship-based bathymetry and approximate positions areas of flares (yellow). The box shows the area in (B). (B) ROV QUEST dive tracks and main study sites plotted on AUV-based bathymetry.
Figure 109. Seafloor images taken at Chapopote Knoll during ROV QUEST Dives 354 (C, E), 362 (A, F), and 365 (B, D).

(A) Main asphalt field with vestimentifera bordering a bacterial mat (arrow) on soft sediments. Scale bar 50 cm. (B) Fragmented Older flow characterized by fragmented asphalt. Scale bar 50 cm. (C) Catching hydrate-coated bubbles at the bubble site. Scale bar 10 cm. (D) Gas hydrate outcrop (arrow) with mytilids, gastropods, galatheid crab. Note bubble fabric of exposed hydrate. Scale bar 50 cm. (E) Sponges, hydrozoans, mytilids at the bubble site. Scale bar 50 cm. (F) Oil drops and oil whips (arrows) close to the bubble site. Scale bar 50 cm. All images courtesy of MARUM.
Figure 11. Ship-based bathymetry of Knoll 2000 and UNAM Ridge (see Fig. 2 for location), locations of flares (red dots) and ROV QUEST dive tracks (black, green).
Figure 1211: Seafloor images taken at UNAM Ridge (A-D) and Knoll 2000 (E-F) during ROV QUEST dives 352 and 353, respectively. (A) Soft coral and other suspension feeders on iron/manganese-stained authigenic carbonates. (B) Recumbent vestimentiferans. (C) Authogenic carbonates and mytilid shells. (D) A few living mytilids attached to carbonates (foreground) and a 1 m wide circular depression. (E) Pogonophoran Frenulate tubeworms were recovered from samples of whitish-stained sediments (arrow) next to carbonates inhabited by suspension feeders (Actinoscyphia sp., anemones, sponges). (F) Whitish patches at seafloor interpreted to be bacterial mats on dark-stained sediments. Scale bar all images 50 cm. All images courtesy of MARUM.
Figure 13. Molecular (C1/C2) vs. stable C isotopic composition of methane (δ13C-CH4) sampled by Gas Bubble Sampler at Tsanyao Yang Knoll (blue), Mictlan Knoll (red), Chapopote Knoll (yellow), and UNAM Ridge (green) and a single oil-associated gas sample (Mictlan Knoll) collected during this study with the GBS. Stars indicate samples analyzed in this study, dots and squares are values according to results for methane in hydrates and oil collected during previous campaigns (MacDonald et al., 2004; Schubotz et al., 2011b). Classification according to the “Bernard diagram” modified after Whiticar (1990). Gas samples studied herein are plotted close to the empirical field of thermogenic methane.
Figure 1413. Sketch depicting the interpreted vestimentifera-gas/hydrate habitat encountered at (A) Tsanyao Yang Knoll and (B) Mictlan Knoll. Drawing not to scale. The mounds at Tsanyao Yang Knoll were a few meter wide whereas Hydrate Hill at Mictlan Knoll was about 30 m in diameter. AOM = anaerobic oxidation of methane (green).
Figure 15. Seafloor images showing anthropogenic litter next to (A) vestimentum clam *Abyssogena southwardae* at Tsanyao Yang Knoll and (B) carbonates at UNAM Ridge. Scale bar 50 cm. All images courtesy of MARUM.
Table 1. Summary of evidence for hydrocarbon seepage in the southern Gulf of Mexico based on Summary of AUV SEAL, ROV QUEST 4000m, and camera-sled observations obtained during cruises R/V Sonne cruise 174, R/V Meteor cruise 67/2, R/V Justo Sierra cruise Campeche III, and R/V Meteor cruise 114/2. The positions marked with an asterisk are based on ship positions.

<table>
<thead>
<tr>
<th>Seafloor Structure</th>
<th>Location</th>
<th>Depth</th>
<th>Tools Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsanyao Knoll</td>
<td>22°23.55'N; 93°57.85'W</td>
<td>2420 m</td>
<td>M 114/2 ROV Dive 358 (15 Mar 2015)), AUV Dive 69 (24 Feb 2015), Dive 361 (19 Mar 2015), Dive 364 (22 Mar 2015).</td>
</tr>
<tr>
<td>Mictlan Knoll</td>
<td>22°1.4'N; 93°14.9'W</td>
<td>3180 m</td>
<td>M 114/2 ROV Dive 355 (11 Mar 2015), Dive 357 (14 Mar 2015), Dive 360 (18 Mar 2015), Dive 363 (23 Mar 2015).</td>
</tr>
<tr>
<td>UNAM Ridge</td>
<td>19°55.90'N; 94°20.89'W</td>
<td>1230 m</td>
<td>M 114/2 ROV Dive 351 (04 Mar 2015), Dive 352 (05 Mar 2015).</td>
</tr>
<tr>
<td>Knoll 3000</td>
<td>20°11.2'N; 94°36.20'W</td>
<td>1860 m</td>
<td>M 114/2 ROV Dive 351 (08 Mar 2015).</td>
</tr>
<tr>
<td>L</td>
<td>20°4.95'N; 83°15.95'W</td>
<td>1300 m</td>
<td>R/V Justo Sierra camera survey, Site L189 (18 Sep 2007).</td>
</tr>
<tr>
<td>Site</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Depth (m)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>L87</td>
<td>20°19.55'N; 93°59.15'W</td>
<td>20°19.55'N; 93°59.15'W</td>
<td>1780 m</td>
</tr>
<tr>
<td>L86</td>
<td>20°22.02'N; 93°54.28'W</td>
<td>20°22.02'N; 93°54.28'W</td>
<td>1780 m</td>
</tr>
<tr>
<td>L97</td>
<td>21°11.45'N; 93°53.40'W</td>
<td>21°11.45'N; 93°53.40'W</td>
<td>2335 m</td>
</tr>
<tr>
<td>L94</td>
<td>19°54.917'N; 93°56.366'W</td>
<td>19°54.917'N; 93°56.366'W</td>
<td>1100 m</td>
</tr>
<tr>
<td>L86</td>
<td>21°39.5'N; 93°26.1'W</td>
<td>21°39.5'N; 93°26.1'W</td>
<td>2980 m</td>
</tr>
<tr>
<td>L84</td>
<td>21°25'N; 93°22'W</td>
<td>21°25'N; 93°22'W</td>
<td>2400-2440 m</td>
</tr>
<tr>
<td>L84</td>
<td>21°23.8'N; 93°23.3'W</td>
<td>21°23.8'N; 93°23.3'W</td>
<td>2400-2440 m</td>
</tr>
<tr>
<td>L83</td>
<td>21°23.98'N; 93°26.25'W</td>
<td>21°23.98'N; 93°26.25'W</td>
<td>2920 m</td>
</tr>
<tr>
<td>L82</td>
<td>21°53.95'N; 93°26.25'W</td>
<td>21°53.95'N; 93°26.25'W</td>
<td>2920 m</td>
</tr>
<tr>
<td>L81</td>
<td>20°01.12'N; 94°26.20'W</td>
<td>20°01.12'N; 94°26.20'W</td>
<td>60 m</td>
</tr>
</tbody>
</table>