Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Discussion papers
https://doi.org/10.5194/bg-2016-100
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-2016-100
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Submitted as: research article 11 Apr 2016

Submitted as: research article | 11 Apr 2016

Review status
This discussion paper is a preprint. It has been under review for the journal Biogeosciences (BG). The revised manuscript was not accepted.

Integrating aquatic and terrestrial biogeochemical model to predict effects of reservoir creation on CO2 emissions

Weifeng Wang1, Nigel T. Roulet1,2, Youngil Kim3, Ian B. Strachan4, Paul del Giorgio5, Yves T. Prairie5, and Alain Tremblay6 Weifeng Wang et al.
  • 1Department of Geography, McGill University, Montréal, QC, H3A 0B9 Canada
  • 2Centre d’Études Nordiques, Université Laval, Québec, QC, G1V 0A6 , Canada
  • 3Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97330, USA
  • 4Department of Natural Resource Sciences, McGill University, Ste Anne de Bellevue, Montréal, QC H9X 3V9, Canada
  • 5Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succ Centre - Ville, Montréal, QC H3C 3P8, Canada
  • 6Environment Production, Hydro - Québec, Montreal, QC H2Z 1A4, Canada

Abstract. There is considerable debate on the role of hydroelectric reservoirs for the emission of CO2 and other greenhouse gases. To quantify CO2 emissions from a newly created reservoir that was formed by flooding the boreal landscape we developed a daily time-step reservoir model by integrating a terrestrial and an aquatic ecosystem model. We calibrated the model using the measurements of dissolved organic and inorganic carbon (C) in a ~ 600 km2 boreal hydroelectric reservoir, Eastmain-1, in northern Quebec, Canada. A major constraint we dealt with is the dearth of basic environmental data for the Boreal region so we took a parsimonious approach for required inputs. We then evaluated the model performance against observed CO2 fluxes data from an eddy covariance tower in the middle of the EM-1 reservoir for the period from 2006 to 2012 and compared internal variables such as water column respiration, chlorophyll-a concentration, and sedimentation rate to measurements from field campaigns during 2006–2008. The model predicted the seasonal and inter-annual variability of CO2 emissions reasonably well compared to the observations. Discrepancies between simulation results and observations usually occurred near ice-off dates when there was large amount of dissolved CO2 under ice-cover. We applied the model to assess the effects of reservoir creation on C dynamics over the estimated “engineering” reservoir lifetime (i.e., 100 years). We found that the reservoir acts as a net C source over its lifetime and simulated CO2 fluxes were 204 g C m−2 yr−1 in the first year after flooding, steeply declined in the first three years, and then steadily decreased to ~110 g C m−2 yr−1 with increasing reservoir age. Sensitivity analyses revealed that the amount of terrestrial organic C flooded and oxygen effects can positively enhance benthic respiration and CO2 fluxes across air–water interface, but the effects on CO2 emissions were not significant. Higher temperatures dramatically stimulate CO2 emissions by enhancing CO2 production in both the water column and the sediment, and extending the duration of the open water period over which emissions can occur. Changing wind speeds had large uncertainties on annual CO2 emissions, given that wind speeds not only affect the gas transfer rate but also the open water period by affecting the surface energy balance. The model is useful for the estimation of CO2 emissions from reservoirs to the atmosphere and could be used to assist the hydro-power industry and others interested in emissions evaluate the role of boreal reservoirs as sources of greenhouse gas emissions.

Weifeng Wang et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Weifeng Wang et al.
Weifeng Wang et al.
Viewed  
Total article views: 676 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
494 154 28 676 60 6 31
  • HTML: 494
  • PDF: 154
  • XML: 28
  • Total: 676
  • Supplement: 60
  • BibTeX: 6
  • EndNote: 31
Views and downloads (calculated since 11 Apr 2016)
Cumulative views and downloads (calculated since 11 Apr 2016)
Cited  
Saved  
Discussed  
No discussed metrics found.
Latest update: 15 Sep 2019
Publications Copernicus
Download
Short summary
Water reservoirs emit greenhouse gases. We developed a 1-dimensional biogeochemical model to predict CO2 emissions from boreal reservoirs. We found that the CO2 emissions are initially high, steeply decline in the first three years, and then steadily decrease with increasing reservoir age, suggesting that flooded terrestrial organic matter has long-term (> 100 years) effects on CO2 emissions. Our model could be used to evaluate the role of boreal reservoirs as sources of greenhouse gas emissions.
Water reservoirs emit greenhouse gases. We developed a 1-dimensional biogeochemical model to...
Citation