**Review Link et al. (2012):** Multivariate benthic ecosystem functioning in the Arctic - Benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea, bg-2012-473

**General comments:**

The manuscript by H. Link and co-authors presents a very fine data set of biogeochemical benthic fluxes data for the Canadian Arctic. It is well written, the title is appropriate and the scientific approach is sufficiently backed up by references to other studies. Regarding the scarcity of such data, it is definitely worth publishing and well placed in *Biogeosciences*. There are some weaknesses, mainly in the structure of the paper and in the way the data is presented, that I will explain in the following. I believe, however, that these weaknesses can be eliminated relatively easily since the data set and its interpretation are generally sound.

**Scientific approach**

With the current fundamental changes affecting the Arctic environment in mind, the authors set out a clear target: using a statistical approach, can they identify environmental factors that allow predicting benthic ecosystem response to environmental change and associated changes in nutrient fluxes across the sediment-water interface. Such changes in benthic biogeochemical fluxes could inverse the role of the seafloor as sink or source for nutrients which, in turn, will change the nutrient budget of the water column and affect marine productivity.

The essential environmental factors controlling the functioning of the benthic ecosystem are the supply of marine and terrigenous organic and inorganic material (quantity and quality) and bottom water oxygen content. While the inorganic material is a major control of sediment properties such as porosity (permeability/oxygen penetration) the organic material is the food source of the benthic community. The level of oxygen controls the way and, to some extent, the efficiency of organic matter breakdown (aerobic vs. anaerobic organic matter degradation, turn-over rates). Fluxes of oxygen and of compounds released from the breakdown of organic and inorganic sedimentary material (nitrogen-containing compounds, silicic acid) could be monitored as well as Mackenzie River run-off and particle load, bottom water oxygen concentration and marine primary productivity (via surface water chlorophyll concentration, for example). So, if one of these fluxes indicative for benthic organic and/or inorganic matter remineralisation, or a combination thereof, would be found to strongly correlate one way or the other with one of the environmental factors one would be able to predict the benthic ecosystem response towards major environmental changes. So far, so good.

However, this fairly clear target gets lost to some extent at the point when a research question and three working hypotheses are introduced towards the end of the introduction chapter. For example, the research question (“*What is the spatial variation of benthic boundary fluxes [...]?*”) is not exactly a research question, the way I understand it, at least, since the answer will be a mere observation rather than providing a new causal relation. A serious research question in this sense would be, for example: *What drives* the spatial variation of benthic boundary fluxes? This could actually be the subtitle for the whole of the discussion during which another question could be raised: “Is oxygen flux a suitable proxy for benthic activity?” skipping the first hypothesis. The remaining two work hypotheses greatly overlap in their focus and could be discussed in conjunction.

I think the authors have made their lives unnecessarily difficult by steering away from a pretty clear target and coming up with the research question and hypotheses, instead. I would therefore suggest skipping the research question and merging two of the hypotheses or, even better, to abandon them altogether. This would allow for a more focussed and straightforward discussion.

**Data presentation**

The presentation of the field data (Figure 2) could definitely be improved (see also detailed comments). The description of the results and the discussion were sometimes hard to follow as the data is not presented in a straightforward spatial context (Fig. 2 contains longitude, only). Some data is not presented in a figure or table, at all. I found myself comparing site numbers in the map (Fig. 1)
with sinking particle flux and $\delta^{13}$C$_{org}$ data from the supplementary file, for example. Contour plots might do a better job in presenting the data. At least the sinking particle flux should be presented this way since it would also illustrate the potential influence of the Mackenzie River plume and where terrestrial contributions could be expected.

**Interpretation**

The biogeochemical fluxes determined in this study, associated processes and principal causes are sufficiently explained. The value of the study lies in the fact that it contributes to explain the well-known but poorly understood patchiness of benthic life frequently observed at the seafloor and that it tries to link environmental factors and the state of the benthic ecosystem. However, I felt a bit let down by the authors when the discussion turns on oxygen flux as a proxy for benthic remineralisation. So, if oxygen flux is not really representative of organic matter remineralisation, what is the alternative? Oxygen flux is a number that can be transferred into organic carbon turn-over rates. These calculated rates may correlate well or poorly with the real rates, which probably depends on the sedimentary setting. Of course, at the current stage, i.e., without a sound empirical data base, the authors are not in the position to present a formula for improved remineralisation rates based on combinations of biogeochemical fluxes. However, if they suggest their colleagues working on benthic biogeochemical processes should consider other fluxes in addition to oxygen, what should they do with these? What to look out for? At the very least, the authors should develop a concept for future work on the matter and give clues where a solution to improved benthic carbon turn-over rates might be found. It would be great if the authors could come up with a reassessment of the suitability of oxygen flux as a proxy for benthic remineralisation based on their findings. Does oxygen flux still give a fairly good idea of organic matter remineralisation on the southeastern Beaufort shelf whereas it appears pretty unreliable in areas with high terrestrial input, for example?

The “Conclusions” are another weak section of the manuscript. Opening the conclusions with a question and answer that cast doubts whether or not the whole study was actually worth the effort is not great. Since many readers will skim through the manuscript and read the abstract and conclusions, only (sad and a bit unethical but we all do it sometimes), it is best to open the conclusions with a one-liner repeating the main target of the study (“In our study of benthic biogeochemical fluxes on Arctic shelves we tried to identify environmental factors that would allow to predict...” or something like that). This should then be followed by the key observation(s) and whatever could be achieved towards reaching the target. Even if the target was not hit 100%, there will always be improvements of current knowledge that should be highlighted and insights as towards which measures have been missing/would be required to reach the target (here: benthic faunal composition, for example). This study also illustrates the general importance of the benthic ecosystem with regard to the role of the sea floor acting as either source or sink of nutrients in the overlying water column. Highlighting this could add a little more relevance and give the final paragraph(s) a twist, e.g., towards current debates on geo-engineering measures such as ocean fertilisation even though this, of course, is considered for very different oceanic settings. Nevertheless, an opportunity to point out the fine balance established in benthic ecosystems and their apparent vulnerability towards anthropogenic or natural environmental change should not go amiss.

**Detailed comments:**

**Abstract**

The abstract is currently fairly long but could easily be streamlined. For example, the hypotheses do not necessarily have to appear in the abstract. The entire section from “to address the following question and hypotheses” to “... drive the overall spatial variation in benthic boundary fluxes” (lines 10 – 17) could be replaced with something like “... aiming to identify the key controlling factors of these boundary fluxes through a statistical approach.” This would save quite a few lines and make the abstract a more straightforward read.
Page 16935, lines 27-28: Sediment pigments and \( ^{13} \text{C}_{\text{org}} \) levels do not (actively) “explain” fluxes of silicic acid as the fluxes do not result from these parameters - rather the opposite. One might say, e.g.: “Fluxes of silicic acid correlate best with ...” – and that is due to...? This relation presumably results from siliceous algae being the main primary producers of pigments and isotopically heavy organic matter?

Page 16936, lines 2-5: “We conclude that it is necessary to consider long-term environmental variability in the prediction of ongoing short-term environmental changes on the flux of oxygen and nutrients in Arctic sediments.” So, is this meant to say, in the long run, short-term variability of benthic boundary fluxes will change? Isn’t this a long-term change in itself? “Short-term” as defined earlier by the authors means “seasonal to annual” variability. This is obviously “ongoing”.

Page 16937, lines 17-19: “Thus, the quality of organic matter at the seafloor will influence the pattern of benthic nutrient remineralisation [...].” In this context, the authors might also be interested in recent complementary findings from the Crozet Islands where both biomass and species distribution of the benthic macrofauna are determined by the amount and the quality of organic matter (unsaturated fatty acid content, in particular) arriving at the seafloor (Wolff et al., 2011).

Page 16938, lines 18-22: Should the authors want to keep working hypotheses I suggest merging hypotheses (3) and (4), which can be done without loss of meaning. For example: “(3) Different combinations of environmental conditions that vary either on a long-term (decadal) or short-term (seasonal to annual) scale determine individual fluxes as well as the spatial variation in benthic boundary fluxes.”

2 Material and methods

This section appears generally okay, sampling methods and lab procedures are described in sufficient detail. As I am not into statistics to the same extent as the authors, I cannot reliably judge the appropriateness of the methods applied.

Page 16939/40, lines 28 and 1-3: “Six additional sub-cores of 2.4 cm diameter and 8 cm and 1 cm length were taken for determining sediment pigment concentration and water content and sediment solid phase composition, three sub-cores each, respectively (Table 1). Samples from the sediment surface (0 to 1 cm sediment depth) of additional sub-cores were stored in...” A bit confusing; better: “Six additional sub-cores of 2.4 cm diameter were taken, three of 8 cm and 1 cm length, respectively, for determining sediment pigment concentration, water content and sediment solid phase composition (Table 1). The surface samples (0 to 1 cm) were stored in...”

Page 16940, lines 11-16: “Chl a and phaeopigment concentrations were analysed fluorometrically ... after acidification. Chl a and total pigment concentration (Chl a + phaeopigments) were determined.” Replace “analysed” with “determined” and delete the sentence: “Chl a and total pigment ... were determined.”

Page 16940, lines 20-22: “The dried solid fraction was homogenised and the water content used to correct the analyses for the presence of sea salt.” - Which analyses were corrected for the presence of sea salt? I don’t quite understand what was done, here. Does this simply mean that the weight
difference between wet and dry sample was converted to seawater content for the calculation of porosity using an average seawater density? Please, clarify.

Page 16942, line 1: “... bottom water collected by the rosette ...” – A rosette is not mentioned before, but supposedly the authors mean the water was collected by a rosette of Niskin bottles fitted to the CTD?

Page 16942, lines 8-10: “During incubations, oxygen concentration never decreased by more than 25% in order to avoid anoxic conditions and biogeochemical transformations.” – I suppose this means that oxygen concentrations were not allowed to decrease by more than 25%? Did you top up the oxygen when concentrations dropped below a certain level?

Page 16944, lines 7-9: “Changes in porosity of sediments depends on the sedimentation rate, which is generally about 1 mm yr$^{-1}$ in the study area (...) and can therefore also be considered long-term.” – The value for the average sedimentation rate alone does not allow concluding that porosity changes long-term, only. Various factors determine porosity: grain-size distribution, primarily, but also composition and compaction. The latter, of course, does depend on sedimentation rates to a large extent. However, I can easily imagine settings where porosity varies while the sedimentation rate remains the same and vice versa, and this may even occur on short time scales. Varved sediments show changing porosity with annual frequency, for example. Similarly, blooms of large diatoms may change porosity on a seasonal basis. In these cases, changes in porosity are due to changes in sediment composition, or source, rather than a change in sedimentation rate. I would think that in the given setting, with low sedimentation rates, compositional changes, i.e. changes in sediment sources, are more important a factor for sediment porosity than sedimentation rate. The sedimentation rate may vary synchronously; however, it is not the ultimate cause for a change in porosity.

What is the main sediment source? I would expect predominantly riverine supply at some of the sites studied (690, 680, 390). Since the Mackenzie River supposedly shows strong seasonal changes in runoff, like most arctic/subarctic rivers, the quality of the delivered sediment and, hence, porosity might also vary short-term. Having said all this, I do actually agree that changes in porosity do actually reflect rather long-term variability at least at the more distal sites. However, the authors cannot argue with the sedimentation rate to define porosity as a long-term changing proxy.

How about referring to the long-term trends in Mackenzie run-off, for example? (data available online, e.g., at [http://www.eoearth.org/article/Freshwater_discharge_in_the_Arctic](http://www.eoearth.org/article/Freshwater_discharge_in_the_Arctic)) Then, again: since river-controlled $\delta^{13}$C$_{org}$ is categorised as “other” environmental factor, perhaps porosity should be seen as such, as well?

Page 16944, lines 15/16: “... are considered as “other” environmental factors.” – The authors need to be consistent with their definition of “other” for $\delta^{13}$C$_{org}$ and phaeopigment concentrations. I also found “intermediate-term” (Abstract, line 23) and “medium” (Table 3 incl. captions) associated to these factors.

Results

This chapter is generally good apart from the visual presentation of the field data (see general comments on figures/data presentation above and below).

Discussion

There is no need for the headlines of the subchapters repeating each working hypothesis. They could be shortened to, for example:

4.1 Spatial variation of benthic boundary fluxes – and its causes,
4.2 Oxygen flux as proxy for benthic activity,
4.3 Combinations and variability of environmental factors controlling biogeochemical fluxes.
As suggested in the general comments, restructuring of the discussion might make these chapters unnecessary, anyway.

Page 16949, line 1: “Benthic activity is most often derived from sediment oxygen demand...” – This translates into: the higher the oxygen demand in the sediment, the higher the benthic activity. I suppose, that’s not exactly what the authors mean to say? How about: “Benthic activity is closely linked to bottom water oxygen concentration (...) and assumed to decrease with increasing depth and distance from the continental source of particles and carbon nutrients.”

Page 16949, lines 4-7: “... benthic remineralisation function is more complex than oxygen fluxes.” – ?? I suppose, the authors mean that oxygen flux is not a simple function of benthic remineralisation (of organic matter).

Page 16950, line 1: Where is the “Tuktoyaktut Peninsula”? Please, add to map (Fig. 1).

Pages 16950/51, lines 29 and 1/2: “... is probably explained by the presence/absence of efficient oxidative barriers at the top of the sedimentary column, such as oxygen and Mn-oxides (...).” – How does oxygen work as an “efficient oxidative barrier”? (Delete comma after “column”.)

Page 16953, lines 10-13: “Sampling sites in the Cape Bathurst Polynya and on the western Mackenzie slope were also distinct from all deeper sites with respect to silicic acid and ammonium release. Clearly, oxygen uptake alone cannot describe the spatial pattern of benthic ecosystem functioning in our region.” – Is it possible that there is input of terrestrial biogenic silica? Or is there a difference in bottom water pH and/or salinity between the deeper and the shallower sites? These factors could affect silicate solubility (see, e.g., Loucaides et al., 2008).

Page 16953, line 18: “Such effects have been related to particular species” of macrofauna? Holothurians?

Page 16953, lines 25/26: “... – whatever factors influence the spatial pattern of benthic nutrient remineralisation.” – Now, I thought this is what this study is all about. This sounds as if the authors were not able to identify any factors. Delete or replace with something like: “... – independent of which factors are mainly controlling the spatial pattern of nutrient remineralisation.”

Page 16954, lines 17-20: “The faunal composition, which has important effects on ammonium release by sediment oxygenation and bioturbation, might be one of these lacking measurements (...).” – Further factors are likely to be sediment mineralogy and pore-water pH. Ammonium might be adsorbed onto clay minerals, for example (Müller, 1977). Clay mineralogy and amounts certainly vary with distance from the Mackenzie delta. Since “faunal composition” is a bit vague, the authors might want to give an example such as holothurians selectively feeding on fresh phytodetritus or on more refractory sedimentary organic matter (FitzGeorge-Balfour et al., 2010). It might be worth pointing out that a change in benthic macrofauna as a response to modified organic matter supply represents an important feedback and would have to be considered in assessments of biogeochemical flux dynamics under future environmental change scenarios.

Page 16955, lines 5-20: This section needs clearing up. Perhaps remind the reader first that Chl a concentrations do correlate with silicic acid whereas phaeopigment concentrations, other than expected, do not. Then discuss the reasons for the correlation or missing correlation, respectively. “Possibly, the input of terrigenous phaeopigment-loaded material from the Mackenzie is higher towards the western part of the Mackenzie plume (...).” – Up to this point, I was not aware of the fact that phaeopigments might have a terrestrial source! Since potential decoupling of phaeopigment and marine-derived Chl a concentrations is quite an important issue, this should be introduced early on (in the introduction).

“Phaeopigment-enriched sediments could then represent diatom-poor organic matter input, and would therefore not lead to increased silicic acid release.” Sediments cannot (actively) “lead to
increased [...] release” and organic matter input is not diatom-poor. Suggestion: “Thus, sediments may contain increased concentrations of partly terrigenous phaeopigments but low concentrations of diatom-derived silicic acid and Chl a.”

Page 16955, lines 21-24: “In summary, ...” – This paragraph can be removed from here. It does not exactly summarise the previous paragraphs (no mention of NOx or phosphate, for example) but contains a conclusion which, furthermore, overlaps with the content of the following chapter.

Figures

Figure 1: It would be good to have the surface circulation (major currents) in the map so that one can see how terrestrial organic matter supplied by the Mackenzie River is potentially shifted around. Perhaps, highlighting the area where predominantly terrigenous material is deposited (including sites 680, 690 and 390) might be a good option, as well.

Figure 2: These plots are very small; unless this figure covers nearly the full width of a printed page it will be really tough to read. The figure is supposed to illustrate where in the investigated area biogeochemical fluxes are positive (from water column to sediment) or negative. However, the plots are not easy to take in. Having water depth on a horizontal axis is quite unusual, for example, and the site numbers labelling each data triplet are missing. Although the range of the individual data sets at each site would drop out, I would think that contour plots overlying the map of the area would serve the purpose better.

Finally:
During some literature/web research for this review, I came across a paper by Scudlark and Church (1989) with a remarkably similar scientific approach albeit carried out in a salt marsh. Nevertheless, the authors might be interested to have a look at this paper.

Technical comments:

Page 16935, line 15: ”And (4) A combination...” – Should this text passage be kept delete “And” or replace capital “A” with small “a”.

Page 16936, line 20: insert “et al.” after “Ebenhöh“

Page 16936, line 24: replace “But ...” with “However, ...”, delete comma after “increasing”

Page 16940, line 2: “… sediment pigment concentration and water content and sediment solid phase composition ...” - Replace first “and” with comma.

Page 16940, lines 19-20: “Porosity was determined by comparison of weight of wet and dried sediment. Porosity was calculated using a dry sediment density of 2.65 g cm\(^{-2}\) (Berner, 1980).” - Density is given in g cm\(^{-3}\)!

Page 16940, line 23: “For stable isotope composition analysis, grounded sediments were acidified ...” - Replace “grounded” with “ground”.

Page 16940, line 24: “… dilute HCl (1N) solution …” Replace “(1N)” with “(1M)” for ‘molar’ (also on p. 16941, lines 7, 9, 13); ‘N’ for ‘normal’ is a bit old-fashioned (and only valid for HCl). What’s the actual concentration of the diluted solution, then?

Page 16940, line 25: Replace “rinced” with “rinsed”.


Page 1691, line 1: Replace “Spectrometry” with “Spectrometer”.

Page 1691, line 3: “... with respect to the V-PDB standard for carbon.”


Page 1694, lines 13/14: “This is likely due to the seasonal and spatial dynamic of primary production and carbon fluxes ...” – Delete “likely”, replace “dynamic” with “dynamics”.

Page 1694, lines 3/4: “Over a period of several decades, the upward migration of the sedimentary redox boundary can generate a surficial peak of metal-oxides ...”

Page 1694, lines 19-23: “Predicting variables allowed in the model were: sediment surface Chl a concentration, sediment surface phaeopigment concentration, sediment surface porosity, sediment surface manganese-oxides concentration, sediment surface iron-oxides concentration, sediment surface $\delta^{13}$C$_{org}$, bottom water oxygen concentration and vertical flux of POC.” – How about: “Predicting variables allowed in the model were: concentrations of Chl a, phaeopigment, manganese oxide and iron oxide in the sediment surface, sediment surface porosity and $\delta^{13}$C$_{org}$ as well as bottom water oxygen concentration and vertical flux of POC.” That saves a line! Save another one similarly on pages 16945/6, lines 29 and 1-4, respectively.

Page 1694, line 4: replace “But ...” with “However, ...

Page 1694, line 15: Insert comma after “2009”.

Page 1694, lines 21-24: “... the influence of the Mackenzie Delta increases interannual variability of benthic oxygen uptake at its plume” – A delta does not have a plume, a river has. Suggestion: “This indicates increased interannual variability of benthic oxygen uptake in the realm of the Mackenzie River plume whereas the spatial distribution of benthic oxygen uptake as, e.g., in the Cape Bathurst Polynya is likely controlled by changes in marine primary productivity.”

Page 1695, lines 4-7: “Second, primary production in the Cape Bathurst Polynya area has a higher diatom contribution (Ardyna et al., 2011) which allows for an leading to increased fresh silicic shell export (Simpson et al., 2008). Indeed In fact, Sampei et al. (2011) ...” – Delete “fresh”. Silicate doesn’t go off easily, anyway.

Page 1695, line 13: replace “(> 1 cm)” with “(< 1 cm)”.

Page 1695, lines 23/24: “... more available fresh organic matter”.

Page 1695, line 25: “The generally low flux of nitrite flux reflects its role ...”

Page 1695, line 14: “... can be explained by either a lost loss of the sediment capacity of the sediment to adsorb remobilised phosphate or ...”

Page 1695, line 18: “Sulack” (text) or “Sulaka” (references)?

Page 1695, line 20: Replace “sote” with “site”; insert “organic” after “fresh”.

Page 1695, line 3: Insert “our” before “experiments”.

Page 1696, line 9: Swap “benthic” and “polar”.

Page 1695, line 20: Replace “sote” with “site”; insert “organic” after “fresh”.

Page 1695, line 3: Insert “our” before “experiments”.

Page 1696, line 9: Swap “benthic” and “polar”.
Page 16952, line 11: Delete “a” after “accompanied by”.

Page 16952, lines 12-15: “When considering all fluxes synchronously, site 390 can be well separated from 690, these two are different from the lower Mackenzie Shelf (site 260 and 680), which finally can be separated from the Cape Bathurst Polynya site (110 and 140) and the deeper Beaufort slope sites (235 and 345) in their remineralisation functioning (see also Fig. 3).” – This definitely needs some serious rephrasing!

Page 16952, lines 12-15: “Although sediment oxygen consumption is widely used to described as a proxy for benthic remineralisation function (...) our results confirm this hypothesis* and show that other important fluxes resulting from differences in benthic remineralisation including six major fluxes are not dominated by strictly related to (?) the oxygen flux.” (*Note: The headline is not the first sentence of the text.)

Page 16954, line 28: “...indicates a degradation of organic matter...” – Delete “a”.

Page 16955, line 4: “The similarity of the dbRDA plot and the PCA plot shows, that the environmental variables...” – Insert “s”, delete comma.

Page 16956, lines 15/6: “Assuming the importance of biological activity for phosphate (...), nitrogen derivatives (...) and silicic acid (...) release, high Chl a concentrations at the seafloor not only provides the fresh matter for bacterial degradation, but it also stimulates...” – High chlorophyll concentrations do not provide anything, fresh marine organic matter (phytodetritus) high in chlorophyll does (provide food/energy for bacteria and macrofauna). Rephrase, delete “but”.

Page 16957, line 1: “About 40% of the total variation in benthic remineralisation function could not be explained...” – Delete “function”.

Page 16959 (References), lines 6-13: correct order: shift Anschutz et al. (2000) to the top.

Page 16972, Table 4 and caption, line 5: Replace “d13C” with “$^{13}$C”.

Page 16974, Figure 2, caption, line 6: “(values above the plane represent release, below the plane uptake)” can be deleted (repetition).


References in this review:


