Interactive comment on “The critical factors that affected the distribution of aboveground biomass in the alpine steppe and meadow, Tibetan Plateau” by J. Sun et al.

J. Sun et al.

jiansunofcas@gmail.com

Received and published: 13 December 2012

Dear Referee,

Thank you for your helpful comments and suggestions on our manuscript. We have modified the manuscript accordingly, and detailed corrections are listed below point by point:

1) Fig.2 (B) & (C): X-axis is OK? Please revise the numbers to X-axis VS Y-axis. We have revised the X-axis VS Y-axis of the Fig.2 carefully according to your suggestion.

2) Fig. 3: Confusing. Please show the Table in these data.
The Fig. 3 has been converted to Table 2, it was shown in end of manuscript.

3) Fig. 4: I think latitude and clay are not environmental factors.

The viewpoint of referee was accurate, when the indicator - latitude was used in the small-scale or field plot. In our manuscript, we considered that the latitude could be taken as an environmental factor for the latitude was related to the water-heat gradient in the large-scale or regional scale. Meantime, the clay affects the soil water content, and then affects the distribution of aboveground biomass, thus we classified the indicator-clay into environmental factors in this paper.

Thank you,

Yours,

Jian Sun & Gengwei Cheng

2012/12/10

Interactive comment on Biogeosciences Discuss., 9, 14559, 2012.
Fig. 1.
Table 2: The correlations between AGB with environmental factors

<table>
<thead>
<tr>
<th>AGB</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Altitude</th>
<th>MAT</th>
<th>MAP</th>
<th>Moisture</th>
<th>Clay</th>
<th>Silt</th>
<th>Nitrogen</th>
<th>SOC1</th>
<th>SOC2</th>
<th>SOC3</th>
<th>Iam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson Correlation</td>
<td>.620**</td>
<td>.645**</td>
<td>-.616**</td>
<td>-.177</td>
<td>.397</td>
<td>.081</td>
<td>.507</td>
<td>.506</td>
<td>.620**</td>
<td>.570**</td>
<td>.720**</td>
<td>.465**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0</td>
<td>0</td>
<td>0.131</td>
<td>0.382</td>
<td>0</td>
<td>0.8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>74</td>
</tr>
<tr>
<td>Alpine steppe</td>
<td>Pearson Correlation</td>
<td>.503**</td>
<td>.389*</td>
<td>-.418*</td>
<td>0.071</td>
<td>0.092</td>
<td>0.303</td>
<td>0.132</td>
<td>0.342</td>
<td>0.502**</td>
<td>.433**</td>
<td>.432**</td>
<td>.417*</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0.002</td>
<td>0.019</td>
<td>0.011</td>
<td>0.079</td>
<td>0.094</td>
<td>0.412</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>36</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).