Interactive comment on “The relative importance of decomposition and transport mechanisms in accounting for C profiles” by B. Guenet et al.

Anonymous Referee #1

Received and published: 10 December 2012

This manuscript presents the results of a modeling exercise aimed at unraveling the vertical transport of soil organic carbon (SOC) in a Haplic Chernozem in the Kursk Region of Russia. Data from a long-term bare fallow experiment site was used to model three theoretical transportation SOC pathways through soil. The author examined the following transportation pathways: 1) diffusion, 2) advection or 3) both diffusion and advection. The transport schemes were coupled to two decomposition models. The innovative approach presented by authors’ compares a bare soil plot which had no organic matter inputs since 1947, with an adjacent control plot which had regular input of fresh organic matter. As validation model results are compared to field measurements.

I must admit I have limited experience in similar carbon transport modeling. Accordingly, I will limit my review to more general comments on the understandability and
focus of the paper. I will begin with some more fundamental issues I have with the paper: Since this paper presents a methodological approach that is quite complex and involved, it imperative that the paper be written extremely clearly. In regards to the clarity of the text:

1. Refine the English – sentences are often awkwardly constructed and can often be written in a clearer and more concise manner. This will improve readability considerably.

2. The text is often difficult to follow as it is cluttered with abbreviations that are often difficult to trace quickly. I recognize however that this may be unavoidable given the nature of the study and the necessity to present different equations.

3. Better use of subtitles. Some subtitles are not very informative (one example: section 4.2 compared with section 4.3)

There are several points which need further clarification / better explanations:
- I was unclear on how the diffusion coefficient was determined in equation 9 and 11? The diffusive transport of gas through a soil is dependent on the soil properties - more specifically the configuration of air filled pore space through which gas travels through it. Is it therefore not necessary to consider the soil moisture contents and evaluate pre-existing diffusion coefficient calculations (i.e. Penman, 1940; Millington and Quirk, 1960; Millington and Quirk, 1961; Moldrup, 1999)

Minor corrections:
- Use numerals for numbers of ten or more. Use words for single-digit numbers (less than 10)
- Subject headings 2.2.1 to 2.2.5 could be a bit more explicit

P.14147 L.14: “layer” should be plural: “layers”

P.14149 L.15: “moderately cold” - this is subjective
P14149 L.15: “horse traction” should be “horse and plow”
P14149 L.16: “using machine at” should be “mechanically plowed to”
P14149 L.21: “used before” should be previously”
P14150 L.6: “floor of the steppe” should be “soil surface”
P14150 L.16: “obtained by” should be “measured using”
P14154 L.15: “Fick’s coefficient” should be “Fick’s diffusion coefficient”
P14154 L.20, 24: “choose” should be “chose”
P14158 L.22, 27: “over estimate” is one word “overestimate”
P14158 L.26-27: remove “lead to largely”
P14159 L.4, 5: “under estimate” is one word “under estimate”
P14159 L.16-17: Awkwardly constructed sentence
P14161 L.25: change “perfectly fit with” “better match”
P14161 L.26: This paragraph fits better in the conclusions. Perhaps at the very end as it gives a bit of a final thought.
P14162 L.7: Not clear to me “...presenting crossing point between the dashed lines...”
P14170 Fig 3: The legend. Considering all graphs here have the same legend, why not only include the legend once instead of one for each graph? Perhaps use the full words instead of the abbreviations. In that case you can remove the last sentence of the figure description.
P14171-114173: Fig4-6: Colors in graphs. Many people print in black and white and in this case it would be difficult to interpret the graphs without color. You could still keep the different colors but make some change the solid lines to dashed lines or use different symbols.
Interactive comment on Biogeosciences Discuss., 9, 14145, 2012.