\textit{n}-Alkane lipid biomarkers in loess: post-sedimentary or syn-sedimentary?
- Supplementary -

Michael Zech1,2,3*, Sebastian Kreutzer2,4, Thomas Goslar5, Sascha Meszner6, Tobias Krause1,2,6, Dominik Faust6, and Markus Fuchs2

1Department of Soil Physics and Chair of Geomorphology, University of Bayreuth, 95440 Bayreuth, Germany
2Department of Geography, Justus-Liebig-University Giessen, 35390 Giessen, Germany
3Terrestrial Biogeosciences, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
4Geographical Institute, Geomorphology, University of Bayreuth, 95440 Bayreuth, Germany
5Poznan Radiocarbon Laboratory, ul. Rubiez 46, 61-612 Poznan, Poland
6Department of Geography, Chair of Physical Geography, Dresden University of Technology, 01069 Dresden, Germany

Abstract. With this supplementary details on the luminescence dating on quartz fine grain separates of the Gleina section are provided.

1 Materials and Methods

1.1 Sample Collection

Samples for luminescence dating were collected during nighttime using a red headlamp ($\lambda = 640 \pm 20$ nm). After carefully cleaning the wall and removing the daylight affected layer the samples were directly collected into opaque bags. Samples for dose rate determination were taken from the surrounding 30 cm of the OSL samples.

1.2 Sample Preparation

The samples were first wet sieved (200 μm, 90 μm, 63 μm). The fraction $< 63 \mu$m was treated with H$_2$O$_2$ (10\%) and HCl (10\%) to remove any organic material and carbonates respectively. The fine grain fraction (4-11 μm) was subsequently separated settling the Stokes’ law. To obtain the quartz fraction the samples were further etched for six or nine days in three day pre-treated H$_2$SiF$_6$ (34\%) and subsequently washed in HCl (10\%) and rinsed in water (Fuchs et al., 2005; Berger et al., 1980). The purity of the quartz extracts was tested by IR stimulation (IRSL/OSL ratio $< 1\%$). The sample preparation was carried out under subdued red light ($\lambda = 640 \Delta 20$ nm) conditions.

1.3 Instrumentation

Luminescence measurements were carried out on Risø DA-15/DA-20 TL/OSL readers in Heidelberg and Bayreuth. Each machine was fitted with an EMI 9235QB15 UV sensitive photomultiplier tube. For luminescence detection in the ultra-violet (UV) region a 7.5 mm Hoya U-340 (290-370 nm) filter was used. Luminescence were stimulated with blue (LED, $\lambda = 470 \Delta 30$ nm) and infrared light (LED, $\lambda = 870 \Delta 40$ nm). The 90Sr/90Y β-sources deliver between 2.7 Gy min$^{-1}$ and 9.1 Gy min$^{-1}$. All measurements were performed on aluminum discs. For each aliquot 2 mg of sample material per disc ($> 10^6$ grains/disk) was used.

For artificially bleaching (1) a Dr. Hönl SOL2 solar lamp (cooled cooper-plate; UVILEX glass-filter) for the combined preheat and dose recovery tests and (2) a self-designed bleaching unit (Osram Duluxstar 24W/827) for the a-value estimation were used.

1.4 Protocol Parameters and D_e determination

For luminescence measurements a standard single-aliquot regenerative dose (SAR) protocol (Murray and Wintle, 2000) was applied. The measurements were performed at elevated temperatures (125 $^\circ$C) using preheat temperatures of 220 $^\circ$C and 240 $^\circ$C held for 10 s. A consistent cutheat of 160 $^\circ$C was used for all measurements. Each machine was fitted with an EMI 9235QB15 UV sensitive photomultiplier tube. For luminescence detection in the ultra-violet (UV) region a 7.5 mm Hoya U-340 (290-370 nm) filter was used. Luminescence were stimulated with blue (LED, $\lambda = 470 \Delta 30$ nm) and infrared light (LED, $\lambda = 870 \Delta 40$ nm). The 90Sr/90Y β-sources deliver between 2.7 Gy min$^{-1}$ and 9.1 Gy min$^{-1}$. All measurements were performed on aluminum discs. For each aliquot 2 mg of sample material per disc ($> 10^6$ grains/disk) was used.

For artificially bleaching (1) a Dr. Hönl SOL2 solar lamp (cooled cooper-plate; UVILEX glass-filter) for the combined preheat and dose recovery tests and (2) a self-designed bleaching unit (Osram Duluxstar 24W/827) for the a-value estimation were used.

For data analysis the luminescence software Analyst 3.24b was used. The rejection criteria such as recycling ratio, palaeodose error and test dose error were set to 10\%. The threshold of the recuperation rate was 5\%.
For D_e determination the mean and the standard error from 12 aliquots per sample were calculated using the first 0.2 s of the shine-down curve (40 s) for signal integration after subtracting the background from the last 4 s. The ensure an easy-to-bleach fast-component (e.g. Bailey et al., 1997) domination of the natural quartz signal, for two samples the continuous wave (CW) signal curves were transformed to pseudo linearly modulated (pLM) curves (e.g. Bulur, 2000). The CW to pLM transformation and the component separation of the pLM-OSL curves were carried out using the statistical programming language R (R Development Core Team, 2012) and the R package Luminescence (Kreutzer et al., accepted). The components (fast, medium, slow) of the fitted first-order kinetic function were identified by their photoionisation cross-section (e.g. Singarayer and Bailey, 2003; Jain et al., 2003).

1.5 Dosimetry

For the dose rate calculation the U and Th concentrations were determined using tick-source α-counting (e.g. Zöller and Pernicka, 1989) and ICP-MS for K respectively. The dose rate was calculated using the conversion factors from (Adamiec and Aitken, 1998). The cosmic dose rate was calculated after (Prescott and Hutton, 1994). The α-effectiveness (a-value) for every sample was deduced following the procedure suggested by Mauz et al. (2006) and Lai et al. (2008) using an external mono energetic 241Am α-source (Littlemore Alpha Irradiation Type 721/B, 3.7 MeV, $1.25 \text{ Gy min}^{-1}, < 10^{-2} \text{ mbar}$) after artificial bleaching for 6 h. The a-values were calculated as mean and standard error out of up to 12 aliquots per sample.

A water content of $20 \pm 5\%$ was assumed for all samples based on the dating experience of the Saxonian Loess Region.

2 Results and discussion

2.1 OSL characteristics

The results of the combined preheat and dose recovery tests after artificially bleaching for sample BT838 and BT842 are shown in Fig. 1. The mean and the standard deviation of three aliquots per preheat temperature is shown. Within a 10% error all preheat temperatures between 180 °C and 280 °C are applicable. Nevertheless, the given dose was best reproduced for temperatures of 220 °C and 240 °C.

Similar sample behavior was found during the preheat plateau tests (Fig. 2) on natural aliquots. The mean and the standard deviation of three aliquots per preheat temperature is shown. Between 200 °C and 280 °C both samples show a preheat plateau, indicating that the chosen protocol parameters are suitable for D_e determination.

To obtain the natural D_e of the samples, growth curves were constructed. Typical growth and shine-down curves (inset) are shown in Fig. 3 for sample BT838 (a) from the upper part and sample BT844 (b) from the lower part of the profile. The shine-down curves showing bright and fast decaying luminescence signals in the UV band. The growth curves were best fitted with an exponential plus linear function (EXP+LIN) with sufficient recycling ratios even in higher.
Fig. 3. Typical growth curves and shine-down curves (insets) of sample BT838 (a) and BT844 (b). The growth curves were fitted with an exponential plus linear function. For sample BT844 seven regenerations points and two recycling points (at ca. 100 Gy and ca. 400 Gy) were used.

dose regions (Fig. 3b). Our results indicate no signal saturation at least up to ca. 300 Gy for the fine grain quartz separates.

For the purpose of component separation of the natural luminescence signal the pLM curves (Sec. 1.4 supplementary) were best fitted with a 3-component function (equation: Kittis and Pagonis, 2008). The results for sample BT838 and BT844 are shown in Fig. 4. Both investigated samples show a dominant easy-to-bleach fast-decaying signal component (component 1, red curve) suggesting that the latent luminescence signal was most probably reset during transport.

D_e distributions for sample BT838 and BT844 are shown in Fig. 5. For all samples the scatter in the D_e distribution was narrow (c_e ca. 5%) and in accordance within errors of the measured aliquots. These results indicate that the chosen number of aliquots was sufficient to obtain the true D_e.

2.2 Dosimetry

Results of the nuclide concentration and dose rate (\dot{D}) values are given in Tab. 1. The obtained \dot{D} values range from 3.1 ± 0.2 Gy ka$^{-1}$ (BT836) to 3.5 ± 0.2 Gy ka$^{-1}$ (BT842). These values are typical for the Saxonian Loess Region (Kreutzer et al., 2012) and consistent within errors.
Fig. 4. Typical natural pLM fitting data of sample BT838 (a) and BT844 (b) are shown on a log x-axis. Details see main text. Note: On the x-axis the transformed variable \(u \) in s is shown instead the real stimulation time \(t \). In the lower part of the figure the component to sum curve contribution is given.

Fig. 5. Typical \(D_e \) distribution of sample BT838 (a) and BT844 (b). Details see main text.

Table 1. Nuclide concentration and dose rate (\(\dot{D} \)) values (quartz, 4-11 \(\mu \)m)

<table>
<thead>
<tr>
<th>Sample</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>K (%)</th>
<th>a-value</th>
<th>(\dot{D}_{koxm}) (Gy ka(^{-1}))</th>
<th>(\dot{D}_{total}) (Gy ka(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT835</td>
<td>2.39 ± 0.28</td>
<td>11.32 ± 0.93</td>
<td>1.82 ± 0.09</td>
<td>0.042 ± 0.001</td>
<td>0.17 ± 0.01</td>
<td>3.29 ± 0.18</td>
</tr>
<tr>
<td>BT836</td>
<td>3.39 ± 0.28</td>
<td>8.48 ± 0.93</td>
<td>1.75 ± 0.09</td>
<td>0.025 ± 0.001</td>
<td>0.17 ± 0.01</td>
<td>3.10 ± 0.17</td>
</tr>
<tr>
<td>BT837</td>
<td>3.73 ± 0.28</td>
<td>9.24 ± 0.93</td>
<td>1.61 ± 0.08</td>
<td>0.051 ± 0.001</td>
<td>0.15 ± 0.01</td>
<td>3.38 ± 0.19</td>
</tr>
<tr>
<td>BT838</td>
<td>3.92 ± 0.22</td>
<td>8.62 ± 0.71</td>
<td>1.59 ± 0.08</td>
<td>0.031 ± 0.001</td>
<td>0.14 ± 0.01</td>
<td>3.15 ± 0.17</td>
</tr>
<tr>
<td>BT839</td>
<td>3.43 ± 0.21</td>
<td>8.58 ± 0.70</td>
<td>1.84 ± 0.09</td>
<td>0.039 ± 0.001</td>
<td>0.13 ± 0.01</td>
<td>3.29 ± 0.18</td>
</tr>
<tr>
<td>BT840</td>
<td>3.46 ± 0.36</td>
<td>8.53 ± 0.85</td>
<td>1.84 ± 0.09</td>
<td>0.051 ± 0.001</td>
<td>0.12 ± 0.01</td>
<td>3.41 ± 0.19</td>
</tr>
<tr>
<td>BT842</td>
<td>3.85 ± 0.39</td>
<td>9.69 ± 1.30</td>
<td>1.90 ± 0.10</td>
<td>0.040 ± 0.001</td>
<td>0.11 ± 0.01</td>
<td>3.54 ± 0.20</td>
</tr>
<tr>
<td>BT844</td>
<td>3.60 ± 0.26</td>
<td>8.51 ± 0.86</td>
<td>1.81 ± 0.09</td>
<td>0.034 ± 0.001</td>
<td>0.11 ± 0.01</td>
<td>3.23 ± 0.18</td>
</tr>
</tbody>
</table>

Note: A water content of 20% ± 5% was assumed.
References

R Development Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria, 2012.