Figure 11: Change in thirty year mean precipitation in HadCM3C simulations (2080s-1860s): a) A1B scenario with interactive vegetation; b) difference between A1B simulations with interactive and fixed vegetation; c) difference between 2C20 simulations with interactive and fixed vegetation; d) difference in the impact of interactive vegetation between A1B and 2C20 simulations. Changes smaller than two standard deviations from the control simulation are masked out (white areas).

Figure 12: Change in thirty year mean evaporation in HadCM3C simulations (2080s-1860s): a) A1B scenario with interactive vegetation; b) difference between A1B simulations with interactive and fixed vegetation; c) difference between 2C20 simulations with interactive and fixed vegetation; d) difference in the impact of interactive vegetation between A1B and 2C20 simulations. Changes smaller than two standard deviations from the control simulation are masked out (white areas).

Supplementary Figure 1: Change in thirty year seasonal mean albedo in HadCM3C simulations scenario (2080s-1860s) showing difference between 2C20 simulations with interactive and fixed vegetation, for a) winter (December-February), b) spring (March-May), c) Summer (June-August) and d) autumn (September-November). Changes smaller than two standard deviations from the control simulation are masked out (white areas).

Supplementary Figure 2: Change in thirty year seasonal mean temperature in HadCM3C simulations scenario (2080s-1860s) showing difference between 2C20 simulations with interactive and fixed vegetation, for a) winter (December-February), b) spring (March-May), c) Summer (June-August) and d) autumn (September-November). Changes smaller than two standard deviations from the control simulation are masked out (white areas).

Supplementary Figure 3: Change in thirty year seasonal mean precipitation in HadCM3C simulations scenario (2080s-1860s) showing difference between A1B simulations with interactive and fixed vegetation, for a) winter (December-February), b) spring (March-May), c) Summer (June-August) and d) autumn (September-November). Changes smaller than two standard deviations from the control simulation are masked out (white areas).

Supplementary Figure 4: Change in thirty year seasonal mean precipitation in HadCM3C simulations scenario (2080s-1860s) showing difference between 2C20 simulations with interactive and fixed vegetation, for a) winter (December-February), b) spring (March-May), c) Summer (June-August) and d) autumn (September-November). Changes smaller than two standard deviations from the control simulation are masked out (white areas).

Supplementary Figure 5: Change in thirty year seasonal mean evaporation in HadCM3C simulations scenario (2080s-1860s) showing difference between A1B simulations with interactive and fixed vegetation, for a) winter (December-February), b) spring (March-May), c) Summer (June-August) and d) autumn (September-November). Changes smaller than two standard deviations from the control simulation are masked out (white areas).

Supplementary Figure 6: Change in thirty year seasonal mean evaporation in HadCM3C simulations scenario (2080s-1860s) showing difference between 2C20 simulations with interactive and fixed vegetation, for a) winter (December-February), b) spring (March-May), c) Summer (June-August) and d) autumn (September-November). Changes smaller than two standard deviations from the control simulation are masked out (white areas).
Supplementary Figure 2
Supplementary Figure 3