Spatial and temporal variability of N\textsubscript{2}O emissions in a subtropical forest catchment in China

J. Zhu1, J. Mulder1, L. P. Wu2, X. X. Meng2, Y. H. Wang3, and P. D"orsch1

1Norwegian University of Life Sciences, postbox 5003, Ås-1432, Norway
2Chongqing Academy of Environmental Sciences and Monitoring, Qishan Road 252, Chongqing, China
3Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Wan-Shou-Shan, Beijing, 100091, China

Received: 19 September 2012 – Accepted: 9 October 2012 – Published: 29 October 2012
Correspondence to: J. Zhu (jing.zhu@umb.no)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Subtropical forests in South China have received chronically large amounts of atmospheric nitrogen (N) causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N$_2$O). We measured N$_2$O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH \sim 4) at TieShanPing (Chongqing, SW China) and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hill slope (HS) and a hydrologically connected, terraced groundwater discharge zone (GDZ) in the valley bottom. High emission rates of up to 1800 µg N$_2$O-N m$^{-2}$ h$^{-1}$ were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N$_2$O emission was lower in GDZ than in HS, rendering the mesic HS the dominant source of N$_2$O in this landscape. Temporal variability of N$_2$O emissions on HS was largely explained by soil temperature and moisture, pointing at denitrification as a major process for N removal and N$_2$O production. The concentration of nitrate (NO$_3^-$) in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N$_2$O production. The concentration of NO$_3^-$ decreased along the terraced GDZ, indicating efficient N removal, but with moderate N$_2$O-N loss. The extrapolated annual N$_2$O fluxes from soils on HS (0.50 and 0.41 g N$_2$O-N m$^{-2}$ yr$^{-1}$ for a year with a wet and a dry summer, respectively) are among the highest N$_2$O fluxes reported from subtropical forests so far. Annual N$_2$O-N emissions amounted to 8–10% of the annual atmospheric N-deposition, suggesting that forests on acid soils in South China are an important, hitherto overlooked component of the anthropogenic N$_2$O budget.
1 Introduction

The global atmospheric concentration of nitrous oxide (N\textsubscript{2}O), an important greenhouse gas and decomposer of stratospheric ozone, has increased from a pre-industrial level of 270 ppbv to 322 ppbv in 2008 (WMO, 2009). The global source strength is estimated to be 17.7 Tg N yr-1, with agriculture contributing 2.8 (1.7–4.8) Tg N yr-1 and soils under natural vegetation 6.6 (3.3–9.0) Tg N yr-1 (IPCC, 2007; Hirsch et al., 2006). Both, estimates based on bottom-up approaches (Stehfest and Bouwman, 2006) and on observations of the N\textsubscript{2}O atmospheric column (Kort et al., 2011; D’Amelio et al., 2009; Hirsch et al., 2006) suggest that 50–64 % of the atmospheric N\textsubscript{2}O derive from the (sub)tropical zone 0° to 30° N. Much of the N\textsubscript{2}O attributable to this zone is emitted from forest soils (Melillo et al., 2001; Werner et al., 2007a; Rowlings et al., 2012). So far, N\textsubscript{2}O flux data from subtropical forests are scarce making this biome an under-investigated component of the global N\textsubscript{2}O budget.

Large parts of southern China are situated in the humid subtropics and the dominant forest types are evergreen broadleaf and coniferous forest, many of which are found as patches in densely populated areas with intensive agriculture. Due to strong increases in the emission of nitrogen oxides (NO\textsubscript{x}) and ammonia (NH\textsubscript{x}), caused by combustion of fossil fuels and massive fertilizer use, respectively (Xiong et al., 2008; Liu et al., 2011b), these forests receive high amounts of reactive nitrogen (N\textsubscript{r}) by atmogenic deposition, mostly as ammonium (NH\textsubscript{4}+). A recent study of five forested watersheds in South China found various degrees of N saturation (Chen and Mulder, 2007a), i.e. rates of atmogenic N\textsubscript{r} input exceeding uptake by vegetation (Aber et al., 2003) and causing elevated concentrations of nitrate (NO\textsubscript{3}−) in the root zone. Larssen et al. (2011) reported moderate NO\textsubscript{3}− export with stream water in these watersheds, despite low forest productivity, suggesting major unaccounted N sinks in these ecosystems.

One possible fate of excess N may be gaseous emission as nitric oxide (NO), N\textsubscript{2}O or dinitrogen (N\textsubscript{2}) produced during nitrification and denitrification. Known factors controlling N\textsubscript{2}O emissions are availability of inorganic N and degradable organic carbon
(C), soil temperature, soil moisture and soil pH (Parton et al., 1996; Flessa et al., 1995; Smith et al., 2003; Weier et al., 1993; Simek and Cooper, 2002). The monsoonal climate in South China provides favorable conditions for both nitrification and denitrification as much of the annual N input, dominated by NH\(_4^+\), occurs during rain storms in summer when soils are warm and N turnover rates high. Moreover, forests in South China are often found on acidic soils. Acidity has been reported to support high N\(_2\)O/N\(_2\) ratios in denitrification (Liu et al., 2010; Bergaust et al., 2010), which could result in high N\(_2\)O emissions.

Few studies have addressed N\(_2\)O emissions in Chinese subtropical forests. Tang et al. (2006) studied the temporal variation of N\(_2\)O fluxes in a pine, a mixed and an evergreen broadleaf forest on acid soils in the Dinghushan catchment, South China throughout one year and found highest emissions during the hot-humid season. Based on weekly to biweekly measurements, they estimated an annual emission of 3.2 kg N\(_2\)O-N ha\(^{-1}\) which is above the reported average N\(_2\)O emission of 1.2–1.4 kg N ha\(^{-1}\) yr\(^{-1}\) for tropical forests (Stehfest and Bouwman, 2006; Werner et al., 2007b). Fang et al. (2009) reported 2.0 to 2.4 kg N\(_2\)O-N loss ha\(^{-1}\) yr\(^{-1}\) based on monthly measurements along a hillslope in an evergreen broadleaf forest in the same catchment. Lin et al. (2010, 2012) estimated smaller average annual N\(_2\)O emissions of 0.13 and 0.71 kg N ha\(^{-1}\) for pine forests in Hubei province, probably due to the higher pH of these forest soils.

Estimates of annual N\(_2\)O emissions in forested catchments are fraught by large temporal and spatial variability commonly reported for N\(_2\)O fluxes. Forests in subtropical China are typically found on sloping terrain and mountain ridges, resulting in hydrological gradients known to affect N\(_2\)O emissions. For example, Fang et al. (2009) found that N\(_2\)O emissions increased with soil moisture from hilltop to the bottom of a hill slope. Besides soil moisture, other soil factors, such as pH, texture, vegetation type and productivity may vary along hydrological flow paths, resulting in distinct spatial patterns of N\(_2\)O emissions (Osaka et al., 2006; Lark et al., 2004). Ultimately, soil factors related to topography may shape distinct nitrifier and denitrifier communities with respect to
N$_2$O turnover (Philippot et al., 2009; Dörsch et al., 2012; Wessen et al., 2011; Banerjee and Siciliano, 2012). Thus, understanding of spatial and temporal variability of N$_2$O emission fluxes and their drivers on a landscape level are indispensable for improving regional estimates of N$_2$O emissions.

The objective of the present study was to estimate N$_2$O fluxes in an N-saturated forested catchment in Southwest China and to explore their main drivers in space and time. More specifically, we investigated the seasonal distribution of emission fluxes (dry versus wet season), the role of storm flow conditions for peak N$_2$O emissions and the spatial distribution of N$_2$O emissions along a hydrological flow path on a hill slope (HS) and a groundwater discharge zone (GDZ). We hypothesized the emission strength to be higher in the water-saturated GDZ than on the well-drained HS. To improve flux estimates, a regression model is proposed interpolating temporally discrete N$_2$O measurements on the HS based on continuously recorded soil moisture and temperature.

2 Materials and methods

2.1 Site description

The TSP catchment is a 16.2 ha headwater catchment, 450 m a.s.l., located on a forested ridge about 25 km Northeast of Chongqing city, SW China (29°38′ N 104°41′ E, Fig. 1a). Details on climate, vegetation, and soil characteristics as well as atmogenic N deposition can be found elsewhere (Chen and Mulder, 2007b). The area has a typical subtropical monsoonal climate with a mean annual precipitation of 1028 mm and a mean annual temperature of 18.2 °C (three year average, 2001–2003). 75 % of the rainfall occurs during summer (April to September). Mean annual inorganic N deposition (from 2001–2003) was 4 g m$^{-2}$, 61 % of which occurred in the form of NH$_4^+$-N (Chen and Mulder, 2007b). Data for more recent years show increasing N deposition rates to > 5 g m$^{-2}$ yr$^{-1}$ and confirm the relative importance of NH$_4^+$ (L. Duan, personal communication, 2011). The vegetation is a coniferous-broadleaf mixed forest dominated...
by Masson pine (*Pinus massoniana*) with a well-developed understory of evergreen shrubs. Land use is a naturally regenerated, non-managed secondary forest after the original forest was cut down during 1958–1962.

For the present study, a representative 4.6 ha sub-catchment was selected, consisting of a NE facing hill slope (HS) and a hydrologically connected SE-NW oriented, terraced valley bottom acting as a ground water discharge zone (GDZ) (Fig. 1b). The HS is dominated by acidic, loamy yellow mountain soils (Haplic Acrisols; WRB, 2006), developed from sandstone, the predominant bedrock in the area. The turnover rate of soil organic matter (SOM) is high given the warm and wet climate (Raich and Schlesinger, 1992; Zhou et al., 2008), allowing little organic matter to accumulate (O horizon; 0–2 cm) (Table 1). Soils in the GDZ have developed from colluvium (Cambisols) and were terraced during the 1960s for vegetable cultivation but abandoned shortly after. The soils in the GDZ have a low hydraulic conductivity (Sørbotten, 2011), lack horizontal differentiation (no distinct O horizon) and have high ground water levels. The vegetation in the GDZ consists of sparse shrubs and grasses while trees taller than 2 m are absent. Clay mineralogy on HS and in GDZ is dominated by kaolinite. A recent study showed that considerable interflow occurs along HS during rainfall episodes. Excess water moves laterally in the surface horizons down slope over the argic B horizon, which has a low hydrological conductivity, draining the O/A and AB horizons on HS relatively quickly. Discharge of interflow into GDZ results in high ground water levels and periodic water-logging during summer (Sørbotten, 2011). Major soil characteristics for both locations are summarized in Table 1.

2.2 N₂O flux measurements

N₂O emissions were measured manually by closed chamber technique along two transects in the sub-catchment. Transect T was established perpendicular to the contour lines on the HS stretching from the hill top close to the watershed divide to the hill bottom close to the GDZ. Transect B was established in the GDZ following an elevation gradient of six hydrologically connected terraces (Fig. 1b) towards a flume, which
was used to measure surface runoff from the subcatchment. Permanent micro-plots for N$_2$O emission measurements were established in triplicate at six plots along the T transect on HS (T1 to T5 and B1) and at five plots along the B transect in GDZ (B2 to B6; Fig. 1b) with plot B1 representing the transition between HS and GDZ. Two sampling strategies were applied to explore N$_2$O fluxes. A first measurement campaign during summer 2009 (July to September) with frequent flux measurements explored N$_2$O emission dynamics in response to sudden increase in soil moisture after rainfall episodes. A more regular sampling scheme with biweekly measurements was applied throughout the dry-cool season (November 2009 to March 2010) and during the subsequent summer (from April to August 2010), interrupted by more intensive measurement campaigns after individual rain storms (> 20 mm). For logistic reasons, only a selection of plots (T1, T3, T5, B1, B2, B4 and B6) was monitored during the dry season.

For flux sampling, closed zinc-coated iron chambers (30 cm diameter and 30 cm in height) were inserted approximately 2 cm into the loamy soil while keeping the air pressure constant via a vent tube attached to the top of the chamber (Hutchinson and Mosier, 1981). Four gas samples were taken from a sampling port 1, 5, 15 and 30 min after chamber deployment by a 20-ml plastic syringe. Samples were transferred immediately to pre-evacuated 12 ml-vials crimp sealed with butyl septa (Chromacol, UK), resulting in an overpressure to avoid contamination during shipment. Chamber temperature was recorded by inserting a handheld digital thermometer into the sampling port at beginning and end of chamber deployment. Gas samples were shipped to the Norwegian University of Life Sciences for analysis by ECD-gas chromatography (Model 7890A, Agilent, Santa Clara, CA, US). Carbon dioxide (CO$_2$) and N$_2$O were separated on a 20 m wide-bore (0.53 mm diameter) Poraplot Q column run at 38 °C after passing a packed Heysept column used for back-flushing water. Helium (He 5.0) was used as carrier gas. The ECD was run at 375 °C with 17 ml min$^{-1}$ Ar/CH$_4$ (90/10 vol %) as make-up gas. N$_2$O emission rates (µg N m$^{-2}$ h$^{-1}$) were calculated based on the rate of change in N$_2$O concentration in the chamber, which was estimated from the slope of a linear or a second order polynomial fit of the concentration data against time, the
internal volume of the chamber, the covered soil surface area and the average chamber temperature during deployment. Cumulative \(\text{N}_2\text{O} \) emissions for observation periods in summer 2009 (27 days, 12 July to 8 August) and summer 2010 (106 days, 10 May to 24 August) were calculated assuming a constant flux rate between sampling dates.

2.3 Soil sampling and analysis

Soil samples were taken on 15 October 2009 from the eleven plots used for \(\text{N}_2\text{O} \) flux measurements, and analyzed for pH, total organic carbon (TOC) and total nitrogen (TN). Samples at plots T1 to T5 and B1 were taken from the O- (0–2 cm), A- (2–8 cm), AB- (8–20 cm) and B- (20–40 cm) horizons. In GDZ (plots B2 to B6), where an organic horizon was absent, the homogeneous 0–20 cm and 20–40 layers were sampled. Denitrification characteristics of the soils, investigated in a laboratory study, are reported elsewhere (Zhu et al., 2012). Briefly, the instantaneous denitrification rate (IDR; expressed in nmol \(\text{N}_2\text{O} \)-N g\(^{-1}\) dw soil h\(^{-1}\)) in soils from the different plots was estimated from the \(\text{N}_2\text{O} \) accumulation rate in acetylene-treated, anoxic soil slurries at 20°C in the presence of ample \(\text{NO}_3^-\)N (2 mM). The soils’ ex situ potential for \(\text{N}_2\text{O} \) loss (in nmol \(\text{NO}_3^-\)-N g\(^{-1}\) dw soil) was estimated as the amount of \(\text{NO}_3^-\)-N respired to \(\text{N}_2\text{O} \) before \(\text{N}_2\text{O} \) reductase was fully expressed and rapid \(\text{N}_2\text{O} \) reduction to \(\text{N}_2 \) occurred. This amount was generally < 10% of the added \(\text{NO}_3^-\)-N but varied with landscape position from which the soil samples were taken (Zhu et al., 2012). IDR declined rapidly below the A horizon (Table 1), indicating low denitrification activity in the deeper horizons. Therefore only data from the O and A horizons of HS and the 0–20 cm layer of GDZ are presented here.

Soil pH (\(\text{H}_2\text{O} \)) was measured in a suspension of 10 g dry weight (dw) soil in 50 ml de-ionized water with an Orion SA720 pH-meter connected to an Orion ROSS Ultra pH Electrode. The contents of TOC and TN in the soil were measured in the fine earth fraction (< 2 mm), obtained after drying at 105°C and sieving, using an element analyser (Vario EL III, Elementar Analysensysteme GmbH, Germany) at the Research Center
of Eco-environmental Science, Chinese Academy of Science (RCEES, CAS). In addition, soil samples from the horizons and layers of all plots were collected three times (15 October 2009, 22 January 2012 and 29 April 2010) to measure KCl-extractable nitrate (NO$_3^-$) and ammonium (NH$_4^+$). Soil samples were extracted by shaking 10 g dw equivalents of fresh soil with 50 ml of 2 M KCl for 1 h. The concentrations of NO$_3^-$ and NH$_4^+$ in the filtered extract were determined using FIA (San$^{++}$, Skalar, the Netherlands) at RCEES, CAS.

Ceramic suction cup lysimeters (P80; Staatliche Porzellanmanufaktur, Berlin) and Macrorhizon soil moisture sampler (Rhizosphere Research Products, The Netherlands) were installed at each plot on HS and GDZ, respectively. On HS, lysimeters were installed in triplicate in the A- (4–5 cm), the top of the AB- (10 cm), the bottom of the AB- (20 cm) and in the B-horizon (40 cm). At GDZ, one Macrorhizon was installed at each of three depths (30, 60 and 100 cm). Soil water from HS was sampled from 11 November 2009, while groundwater was sampled from 5 August 2009; both were sampled at weekly intervals until spring 2010 and on each N$_2$O flux measurement date in summer 2010. Soil water from triplicate lysimeters per soil depth on HS was pooled prior to analysis. Concentrations of NO$_3^-$ and NH$_4^+$ in lysimeter water were measured in each sample during wet-warm seasons and in pooled samples (four weeks) during the dry-cool season, using ion chromatography (DX-120 for NH$_4^+$ and DX-500 for NO$_3^-$, DIONEX, USA) at the Chongqing Academy of Environmental Sciences and Monitoring, China.

Soil bulk density (BD) of surface horizons/layers was measured from intact soil cores (100cc steel cylinders) sampled in triplicate at two depths (3.5–7.2 cm and 10–13.7 cm), corresponding to the A and AB horizons, respectively (Sørbotten, 2011).

Soil temperature (ST) and volumetric moisture (VM) at 10 cm depth were recorded every 10 min by TDR probes (Hydra Probe II) installed at plots T3 and B1 on 11 October 2009 and stored by a data logger (Campbell CR200). Soil water filled pore space (WFPS) was calculated using BD at depth of 10.0–13.7 cm, assuming a soil particle density (PD) of 2.65 g cm$^{-3}$ as:
WFPS(%) = \frac{VM}{1 - \left(\frac{BD}{PD}\right)} \times 100 \quad (1)

Groundwater level (GWL) was monitored in PVC tubes, with a 30-cm nylon filter at the lower end, and installed at each plot along the B-transect in GDZ (B1 to B6). The PVC tubes were covered with a perforated lid to prevent pressure differences with the atmosphere. GWL was measured daily from Jul. 2009 to the beginning of August 2009 during a period of heavy rainstorms and on dates of N\textsubscript{2}O measurements thereafter.

Meteorological data (air temperature (AT), precipitation (precip) and relative humidity (RH)) were obtained every 5 min from a weather station (WeatherHawk 232, USA), at the roof of the TSP Forest Bureau situated 1 km south of the catchment. Vapor pressure deficit (VPD) was calculated from Eq. (2) (ASCE, 2005) as:

\[VPD = \left(\frac{RH}{100} - 1 \right) \times 0.6108 \times \exp(17.27 \times AT(AT + 237.3)) \quad (2) \]

2.4 Statistical analysis

Cumulative N\textsubscript{2}O emissions for each of 11 plots for summer 2010 (106 days) were analyzed together with soil parameters in the top soil (depth-weighted for O and O horizons on HS and from 0–20 cm in GDZ; Table 1) by Principal Component Analysis (PCA). Bulk density, cumulative N\textsubscript{2}O flux, NH\textsubscript{4}+ sw and NO\textsubscript{3}- sw were normalized using minus reciprocal, natural logarithmic, natural logarithmic and sinusoidal transformation, respectively.

To explore the seasonal drivers of the N\textsubscript{2}O emission flux, log-transformed average N\textsubscript{2}O emission rates on HS (average of 4 plots, T1, T3, T5 and B1, which had full N\textsubscript{2}O flux datasets including the dry season) were subjected to stepwise multiple linear regression (MLR) with ST, WFPS (average of daily ST and WFPS obtained from TDR at both T3 and B1 from 12 October 2009 onwards), as well as pore water NO\textsubscript{3} sw and NH\textsubscript{4} sw as independent variables. The resulting empirical relation was used to
interpolate the N$_2$O flux on HS between measurement dates and to estimate annual N$_2$O emission.

Missing values for ST and WFPS (from 1 May to 11 October 2009) were estimated on a daily basis, using a statistical model based on MLR, using meteorological parameters (average air temperature, rainfall and average VPD) and average ST and WFPS observed at plot T3 and B1 in the period 11 October 2009 to 24 December 2010.

Paired t-test was applied for the comparison of different plots and the two landscape elements. All statistical analyses were conducted with Minitab 16.1.1 (Minitab Inc.).

3 Results

3.1 Weather, soil moisture and soil temperature

Rainfall distribution during the wet season (April to October) differed between the two years (Fig. 2). Summer 2009 (1054 mm) was wetter than summer 2010 (850 mm) and precipitation occurred mostly as intensive rainstorms (up to 385 mm during 41 h between 3 and 5 August 2009). In contrast, precipitation was more evenly distributed in the summer 2010. Only 117 mm rain fell in the dry-cool season from November 2009 to March 2010. Soil WFPS at 10 cm depth on the mid slope (T3, mean WFPS 55.8 %) was significantly smaller than at the foot slope of HS at the transition to GDZ (B1, mean WFPS 70.0 %) (Fig. 3a), most likely reflecting convergence of interflow from HS at B1. In winter, WFPS was relatively stable with values around 56.7 % for T3 and 68.5 % for B1. In contrast, large variations in WFPS were observed in spring and summer, driven by precipitation, and subsequent drainage and evapotranspiration. In plot T3 (HS), but not in plot B1 (transition to GDZ), WFPS decreased significantly in late summer 2010 (July through September), indicating drier conditions on the upper part of HS as described earlier for this site (Mulder et al., 2005). Soil temperature at 10 cm depth varied seasonally between 10 $^\circ$C and 25 $^\circ$C with no significant difference between T3 and B1,
although the drier T3 plot tended to have somewhat higher soil temperatures during the wet season (Fig. 3b).

The GWL in GDZ varied between +15 cm (above surface) and < −100 cm (below surface), with highest values at B5 and lowest at B1 (Fig. 4). The heavy rainstorm between 3 and 5 August 2009 resulted in a rapid increase of the GWL. The GWL reached its lowest values from late summer onwards, but increased in early spring, due to increased precipitation in March and April 2010. In general, GWL ranged in the order B1 > B2 = B3 = B4 > B5 > B6 and was most stable close to the outlet (plots B5 and B6), whereas GWL was only occasionally detectable (> −100 cm depth) at plots B1, B2 and B3 (Fig. 4).

3.2 N₂O fluxes

Emission fluxes of N₂O showed a pronounced seasonal pattern with highest values during summer (warm-humid season) and generally low emission rates during winter (dry-cool season) (Fig. 5). During summer, N₂O emission rates varied 2–3 orders of magnitude, with highest values immediately following precipitation events (compare Figs. 2 and 5) when WFPS was high (Fig. 3a). In summer 2010, with its more even distribution of rainfall, peak N₂O emissions were smaller (450 µg m⁻² h⁻¹) than in summer 2009 (1730 µg N m⁻² h⁻¹) (Fig. 5). Cumulative N₂O emissions in summer 2009 (27 days) and in summer 2010 (106 days) were greater on HS (including B1) than in GDZ (B2–B6) in both periods (Fig. 6). Averaged on a daily basis, N₂O fluxes on HS were higher in summer 2009 (6.4 mg N m⁻² d⁻¹) than in summer 2010 (3.2 mg N m⁻² d⁻¹). The average N₂O emissions were smaller in GDZ, emitting 3.2 mg N₂O-N m⁻² d⁻¹ and 1.8 mg N₂O-N m⁻² d⁻¹ in 2009 and 2010, respectively. The spatial variability within the plots was high particularly on HS (Fig. 6) and no significant differences in cumulative N₂O emissions were found between plots within the same landscape element. The spatial pattern in cumulative N₂O flux for the plots within one transect was not consistent for the two summer periods (Fig. 6).
3.3 Spatial variation in soil factors controlling N$_2$O emissions

Surface soil had a greater bulk density in GDZ than on HS (Table 1) even though there were exceptions (plots B4 and B5). The pH of the surface soil was significantly higher in GDZ than on HS (Table 1). For TOC, TN and C/N the opposite was the case, reflecting the lack of an organic surface layer in GDZ. Values for NO$_3^-$ ex and NO$_3^-$ sw were significantly higher on HS than in GDZ. In the O-horizon, TOC and TN were higher at T2 and T4 than at other plots on HS. Plot B6 was highest in GDZ with respect to these variables. The concentration of NO$_3^-$ in soil water (NO$_3^-$ sw) was high in winter and early spring and decreased sharply at the start of the growing season in early April, probably due to biological uptake of N and dilution by ample rainfall at the end of March 2010 (Fig. 7). During winter, NO$_3^-$ sw showed consistent differences among plots on HS with highest values at plot T1 and lowest at plot T2, whereas concentrations were lower and more uniform throughout summer, fluctuating with precipitation events. There were consistent differences in NO$_3^-$ sw in GDZ, with concentration levels decreasing in the order B2 = B4 > B3 > B5 > B6. At B3, B5 and B6, NO$_3^-$ sw concentrations were below 5 mg N l$^{-1}$ during most of the year with the greatest values at the end of the dry season (February and March 2010). The concentration of NH$_4^+$ in soil water (NH$_4^+$ sw) was small, with values amounting to less than 10 % of total inorganic N in solution, except for plots B2 and B6, and there was no seasonal pattern in any of the plots (data not shown). No correlation was found between NH$_4^+$ sw and NO$_3^-$ sw in soil water.

We used PCA to assess the relationship between soil parameters and the cumulative N$_2$O flux in summer 2010 (Fig. 8) at each plot (Fig. 6). The plots divided into two groups (T1 to T5 and B1 as one group (HS); the others as the second group (GDZ)). The first two components of PCA explained 63.9 % of the total variation in N$_2$O emission flux, with most of the physicochemical parameters (pH, bulk density, TOC, TN, NO$_3^-$ ex, NO$_3^-$ sw and NH$_4^+$ ex) and the ex situ potential for N$_2$O loss contributing to the first component (50.3 %). The second component (13.6 %) included NH$_4^+$ sw. The initial denitrification rate (IDR) contributed to both components, but had relatively small effect
on the N\textsubscript{2}O flux compared to other parameters. Total organic carbon (TOC) and most of the variables associated with the availability of N (TN, NO\textsubscript{3}\textsubscript{ ex}, NO\textsubscript{3}\textsubscript{ sw} and NH\textsubscript{4}\textsubscript{ ex}) were positively correlated with soil N\textsubscript{2}O flux, whereas soil pH and BD were negatively correlated with N\textsubscript{2}O flux. Also, IDR and the ex situ potential for N\textsubscript{2}O loss were positively correlated with N\textsubscript{2}O flux, whereas NH\textsubscript{4}\textsubscript{ sw} concentration in soil water did not correlate with N\textsubscript{2}O flux.

3.4 Temporal variation of seasonal drivers for N\textsubscript{2}O emission

In summer, peak N\textsubscript{2}O emission was associated with rainfall resulting in high WFPS values. Emission of N\textsubscript{2}O on HS was highest at WFPS values between 63\% and 72\% (averages at 10 cm soil depth for T3 and B1, respectively) and appeared somewhat lower at values larger than 75\% (Figs. 3a and 5). Figure 5 illustrates the large interannual variation of N\textsubscript{2}O flux between a wet year with intensive rainfall episodes (2009) and a relatively dry year (2010) with only one episode with precipitation > 50 mm day-1 (82 mm in 9 h on 5 July 2010). The N\textsubscript{2}O flux on HS was weakly, but negatively correlated with NO\textsubscript{3}\textsubscript{ sw} ($p = 0.064$) whereas no correlation was found with NH\textsubscript{4}\textsubscript{ sw} ($p = 0.659$). At individual sites in GDZ, the N\textsubscript{2}O flux was weakly, but negatively correlated with GWL, i.e. higher N\textsubscript{2}O flux occurred when GWL was low. Low soil temperature (ST) together with low WFPS seemed to be the main constraints for N\textsubscript{2}O emission activity in winter (Figs. 3 and 5). Stepwise multi-linear regression (MLR) indicated that ST and WFPS were the only significant variables explaining temporal variability of N\textsubscript{2}O emissions (Eq. 3) on HS; NO\textsubscript{3}\textsubscript{ sw} and NH\textsubscript{4}\textsubscript{ sw} concentrations did not add significantly and were excluded by the MLR. The residuals of the simulated values were normally distributed (not shown), suggesting unbiased fitting of the equation:

$$\ln(N\textsubscript{2}O_{\text{HS}}) = -4.80 + 0.0881 \text{WFPS} + 0.178 \text{ST}$$

$R - S(\text{adj}) = 68.9\%$

Since no data for ST and WFPS before 11 October 2009 was available, we used MLR to derive an equation that links ST and WFPS to meteorological data. The resulting
regression models, presented in Eqs. (4) and (5) were then used to estimate the missing values prior to 11 October 2009:

\[
ST = 7.84 + 0.579AT + 1.20\text{VPD} \\
R - S\sigma(\text{adj}) = 67.4\% \tag{4}
\]

\[
WFPS = 63.2 + 0.209\text{precip}_5 + 1.84\text{VPD}_5 \\
R - S\sigma(\text{adj}) + = 58.8\% \tag{5}
\]

where \(\text{precip}_5\) is the day-weighted 5-day average precipitation prior to the date for which the computation was done (calculated as \(1.0 \times \text{precip}_{\text{day}(0)} + 0.8 \times \text{precip}_{\text{day}(-1)} + 0.6 \times \text{precip}_{\text{day}(-2)} + 0.4 \times \text{precip}_{\text{day}(-3)} + 0.2 \times \text{precip}_{\text{day}(-4)}\)) and \(\text{VPD}_5\) the day-weighted 5-day average vapor pressure deficit calculated analogously. The selected weights explained the observations best. The residuals of the model simulations were normally distributed (not shown). Eq. 3 was used to estimate \(\text{N}_2\text{O}\) emissions using measured and, for the period prior to 11 October 2009, simulated values for ST (Eq. 4) and WFPS (Eq. 5). Measured and simulated values are shown in Fig. 9.

3.5 Annual \(\text{N}_2\text{O}\) flux

Annual \(\text{N}_2\text{O}\) emissions on the HS were calculated on a daily time step from equation 3 for two 1-yr periods (May 2009–April 2010 and January 2010 to December 2010), both years sharing the same winter period (Fig. 5), when \(\text{N}_2\text{O}\) emissions were small. The first annual period represents a relatively wet summer, whereas the second period a relatively dry summer. Annual \(\text{N}_2\text{O}\) fluxes for HS were 0.50 and 0.41 g N m\(^{-2}\) for the two years, respectively. The \(\text{N}_2\text{O}\) emission occurring during the first 5 days after the largest rainfall episode (4 to 5 August 2009) contributed 15.8% to the annual \(\text{N}_2\text{O}\) emission of the first period. Emissions during the cool-dry season (November 2009 to March 2010) contributed 11.5% to the annual flux of \(\text{N}_2\text{O}\).
4 Discussion

N_2O emission rates recorded after the heavy rainstorm in 2009 (up to 1730 μg N_2O-N m$^{-2}$ h$^{-1}$; Fig. 5) are the highest found for forest ecosystems so far and exceed rates reported for (sub)tropical forests which typically vary between 11 to 600 μg N_2O-N m$^{-2}$ h$^{-1}$ (Liu et al., 2011a; Zhang et al., 2008; Silver et al., 2005; Ishizuka et al., 2005; Koehler et al., 2009; Rowlings et al., 2012; Kiese and Butterbach-Bahl, 2002).

Temporal variability (Fig. 5) exceeded spatial variability in both landscape elements (HS and GDZ). However, small-scale (within-plot) variability of the cumulated N_2O flux over the active season was high as seen from the high standard errors in Fig. 6 (particularly for HS). Probably this small scale variability was blurring existing trends in flux strength between plots along HS. High small-scale spatial variability of N_2O emissions is often reported for forests soils (Robertson and Klemedtsson, 1996; Bowden et al., 1992; Werner et al., 2007b) and commonly attributed to small-scale variation in mineral N availability, litter quality and soil moisture. We arranged the plots along transects perpendicular to the contour lines in the two landscape units as we expected that gradients in WFPS on HS and in GWL in GDZ would affect N_2O emissions by controlling aeration, substrate level and ultimately microbial activity (Garten et al., 1994). However, we did not find any consistent relationship between cumulative N_2O emission and plot position in neither of the two landscape elements. Concentrations of NO_3^- on HS were similar at all plots during the warm-wet season (Fig. 7a) and did not correlate with N_2O emissions. NO_3^- availability was higher than in other studies (e.g., Koehler et al., 2009; Zhang et al., 2008) and appeared to be none-limiting for N_2O production on the HS, probably explaining the lack of a directional gradient in cumulative N_2O emissions as reported by others (Nishina et al., 2009; Fang et al., 2009). Surprisingly, the clear difference in WFPS between the mid slope position T3 and the foot slope position B1 (Fig. 3a) in spring and early summer did not result in significantly different cumulative N_2O emissions in neither year (Fig. 6). This was probably due to the fact
that soil moisture was measured at 10 cm depth (in the upper AB-horizon), rather than in the zone of maximum denitrification activity, located in the uppermost soil layers (O and A horizons; Zhu et al., 2012). Soil moisture data records for 5 cm depth were incomplete due to sensor problems, but comparing existing data and bulk densities at 5 cm depth suggests that WFPS was more similar in the uppermost soil layer (data not shown). The pronounced decrease in WFPS at T3 (but not B1), later in summer, markedly reduced N$_2$O emissions as compared with B1 (insert Fig. 5). Together, this indicates that hydrology on HS had some impact on N$_2$O emission rates most probably through controlling denitrification.

In GDZ, decreasing NO$_3^-$ concentrations along the hydrological flow path (Fig. 7b) suggested strong N retention; however, no correlation was found between cumulative N$_2$O emissions and average NO$_3^-$ sw at GDZ plots. There was a weak trend of decreasing cumulative N$_2$O emissions with increasing average GWL along the hydrological flow path in the GDZ (with the exception of B3) during summer 2009, when GWL was very dynamic (Fig. 6a). No such pattern was seen in the hydrologically more stable summer of 2010 (Fig. 6b). In general, GWL fluctuations are likely to interact with NO$_3^-$ in controlling N$_2$O emissions, as rise of GWL can transport NO$_3^-$ into C-Richer upper soil layers and create anoxia favorable for denitrification. At the same time, the residence time of N$_2$O in the soil profile increases, due to decreasing diffusion, promoting reduction of N$_2$O to N$_2$. Conversely, a drop in GWL may relief gaseous diffusion constraints leading to release of N$_2$O from the soil. In summer 2010 (insert in Fig. 5), for instance, N$_2$O emission rates were lowest at B6 until GWL dropped about 10 cm in the middle of July (Fig. 4), resulting in a single N$_2$O emission peak while returning to low levels quickly thereafter. Similar N$_2$O dynamics have been observed in rice paddies (e.g. Qin et al., 2010). We found a positive correlation between dissolved N$_2$O (data not shown) and NO$_3^-$ sw in groundwater in both summers, indicating that N$_2$O production is overall NO$_3^-$ limited in GDZ and likely coupled to N removal.

We found clear differences in N$_2$O source strength and environmental controls when comparing HS and GDZ; average cumulative N$_2$O emission in GDZ was roughly half
of this at HS in both summers (Figs. 5 and 6), which was surprising, as we expected GDZ to behave as a riparian zone with elevated denitrification activity. Riparian zones are commonly considered as “hot spots” for N$_2$O emissions, because they receive dissolved N (DON, NO$_3^-$) from surrounding slopes while providing optimal conditions for denitrification (DOC, anoxia) (Groffman et al., 2000; Hefting et al., 2003). However, unlike common riparian zones which typically develop soils rich in organic matter, the GDZ studied here is formed by formerly cultivated terraces on colluvial deposits. Soils are dense and have low hydrological conductivities, resulting in low productivity and low TOC contents (Table 1). Laboratory incubations revealed that the GDZ soils had instantaneous denitrification rates (IDR) similar to HS soils, despite their markedly lower TOC contents (Zhu et al., 2012). This indicated a similar N removal potential in GDZ as compared with HS. However in their study, Zhu et al. (2012) also found that denitrifying communities on HS and in GDZ differed functionally with respect to their product stoichiometry, with the GDZ communities being more efficient in reducing NO$_3^-$ all the way to N$_2$. Thus, the lower N$_2$O/N$_2$ ratio, and consequently the reduced N$_2$O emission rate, in GDZ may be attributed to a number of site-specific factors, directly or indirectly affecting denitrifier functioning and stoichiometry: (1) pore water at GDZ had lower NO$_3^-$ concentrations (Figs. 7b and 8) which may decrease the N$_2$O/N$_2$ ratio by forcing denitrifiers to utilize N$_2$O as an additional electron acceptor, (2) diffusion of N$_2$O in soil is slow in dense GDZ soils, resulting in higher dissolved N$_2$O concentrations in pore water (data not shown) which support denitrifier communities to express N$_2$O reductase and (3) soil pH at GDZ was 0.5–0.6 units higher than at HS, which directly (Bergaust et al., 2010) or indirectly (Liu et al., 2010; Simek and Cooper, 2002; Dörsch et al., 2012) lowers N$_2$O/N$_2$ ratios.

Even though the N$_2$O emission flux was differently regulated in the two landscape elements, denitrification controls seemed to prevail over nitrification controls during the active periods. This is in agreement with the N$_2$O stoichiometry of the two processes; the N$_2$O/NO$_3^-$ ratio of nitrification is generally $< \sim 1\%$ in moderately acid soils but may be higher in strongly acid soils, due to chemodenitrification of NO$_2^-$ (Mørkved et al.,
Nitrification rates in the acidic forest soils of SW China are low (Cai and Zhao, 2009) and unlikely to be high enough to support the magnitude of N\textsubscript{2}O emissions rates observed in both summers. We conducted an in situ 15NO-3 labeling experiment in summer 2010 at two positions along the HS to be reported elsewhere (Zhu et al., 2012) and found that 70–100% of the emitted N\textsubscript{2}O derived from the labeled soil NO\textsubscript{3}- pool. Denitrification as the predominant process for N removal and N\textsubscript{2}O production on HS is further supported by the finding that N\textsubscript{2}O concentrations measured in soil air were negatively correlated with p_{O_2} ($R^2 = 0.40$, $p < 0.05$, data not shown).

We found large temporal variability in N\textsubscript{2}O fluxes. MLR identified soil temperature and moisture as the main drivers, explaining 68.9% of the temporal variability of N\textsubscript{2}O emission fluxes on HS. Such high coefficient of determination with only two variables (soil temperature and WFPS) is remarkable as most studies conducted in forest ecosystems find much lower degree of explanation by ancillary variables (Morishita et al., 2011; Gu et al., 2011). As shown in Fig. 9, the resulting regression model captured reasonably well both the seasonal distribution of emission fluxes and the transient emission peaks after rainfall events on HS except for the first measurement point. Peak N\textsubscript{2}O emissions (Fig. 5) were triggered by spikes in WFPS (Fig. 3a) occurring after big rain episodes, resulting in a highly skewed distribution of N\textsubscript{2}O fluxes as found in many other studies (Khalil et al., 2007; Venterea et al., 2009). Low soil temperature, together with relatively low WFPS throughout winter resulted in low N\textsubscript{2}O fluxes. This implies that N\textsubscript{2}O emission flux can be estimated fairly well from discontinuous flux measurements when continuous data on soil temperature and WFPS are available. However, it is important to sample fluxes closely around major rain fall events in summer as they contribute disproportionally to overall emissions. Too long interval between samplings may result in over- or under-estimation of the cumulative flux (Parkin, 2008).

Annual N\textsubscript{2}O emissions for the TSP catchment were estimated for the HS only, since 96.4% of the area consists of hill slopes, rendering GDZ emissions a minor component of the overall N\textsubscript{2}O budget. Annual fluxes showed considerable variation between the wet year 2009 with several intensive rain episodes (0.50 g N\textsubscript{2}O-N m-2 yr-1) and the
dryer year 2010 with more evenly distributed precipitation (0.41 g N₂O-N m⁻² yr⁻¹). The average annual N₂O emission flux in TSP (0.45 g N m⁻² yr⁻¹) is at the high end of annual N₂O emission fluxes (0.005–0.47 g N m⁻² yr⁻¹) reported for unfertilized forestland in China (Cai, 2012) and even comparable to the high end of reported N₂O fluxes in tropical rainforests where temperatures are high throughout the year (Dalal and Allen, 2008). Expressed as a fraction of the annual atmogenic N-deposition, N₂O-N emission amounted between 8 and 10 % of the incoming inorganic N. This “emission factor” is remarkably high when compared to the IPCC Tier 1 factor for cultivated land (1 %) and pinpoints the prominent role of acid subtropical forests as a secondary source of anthropogenic N₂O which should be taken into account for regional N₂O budgets.

Acknowledgements. This study was supported by the Norwegian research council (Nordklima program 193725/S30: “N₂O emissions from N saturated subtropical forest in South China”) and the Chinese Academy of Sciences (No. KZCX2-YW-GJ01 and GJHZ1205). We are grateful for technical support by Zhang Guanli at the Chongqing Academy of Environmental Sciences, Zhang Xiaoshan at the Research Center for Eco-environmental Sciences, Chinese Academy of Sciences and T. Fredriksen at the Norwegian University of Life Sciences. We also thank Duan Lei at the Tsinghua University for providing N deposition data and L. E. Sorbotten and J. Stolte (both Norwegian Institute for Agricultural and Environmental Research, Norway) for data on soil hydrology and assistance in the field.

References

ASCE: The ASCE standardized reference evapotranspiration equation, Environmental and Water Resources Institute of the American Society of Civil Engineers, 2005.

Fang, Y. T., Gundersen, P., Zhang, W., Zhou, G. Y., Christiansen, J. R., Mo, J. M., Dong, S. F., and Zhang, T.: Soil-atmosphere exchange of N\textsubscript{2}O, CO\textsubscript{2} and CH\textsubscript{4} along a slope of an evergreen broad-leaved forest in southern China, Plant Soil, 319, 37–48, 2009.

Sørbotten, L.: Hill slope unsaturated flowpaths and soil moisture variability in a forested catchment in southwest China, Master thesis, Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Aas, 64 pp., 2011.

Zhu J., Mulder J., Bakken L., and Dörsch P.: The importance of denitrification in N$_2$O emission from N-saturated forests of SW China; results from in situ 15N labeling experiments, Biogeochemistry, submitted, 2012.
Table 1. Characteristics of top soil of individual plots on the hill slope (HS) and in the groundwater discharge zone (GDZ)

<table>
<thead>
<tr>
<th>Plot</th>
<th>Horizon/layer</th>
<th>pH (H₂O)</th>
<th>TOC</th>
<th>TN</th>
<th>C/N</th>
<th>BD a</th>
<th>NH₄⁺ ex</th>
<th>NO₃⁻ ex</th>
<th>NH₄⁺ sw</th>
<th>NO₃⁻ sw</th>
<th>IDR b</th>
<th>Ex situ potential of N₂O loss b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>g cm⁻³</td>
<td>μg N g⁻¹</td>
<td>dw soil</td>
<td>mgN l⁻¹</td>
<td>nmol N₂O-N g⁻¹ dw soil h⁻¹</td>
<td>nmol NO₃⁻ g⁻¹ dw soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>T1 O</td>
<td>3.96</td>
<td>226.1</td>
<td>8.7</td>
<td>26.1</td>
<td>–</td>
<td>49.6</td>
<td>37.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8.4</td>
<td>523</td>
</tr>
<tr>
<td>T1 A</td>
<td>3.78</td>
<td>10.7</td>
<td>0.5</td>
<td>20.4</td>
<td>0.78</td>
<td>21.5</td>
<td>59.6</td>
<td>0.11</td>
<td>15.66</td>
<td>–</td>
<td>12.2</td>
<td>552</td>
</tr>
<tr>
<td>T2 O</td>
<td>3.74</td>
<td>354.5</td>
<td>15.7</td>
<td>22.6</td>
<td>–</td>
<td>81.9</td>
<td>23.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>16.7</td>
<td>2336</td>
</tr>
<tr>
<td>T2 A</td>
<td>3.84</td>
<td>15.0</td>
<td>0.8</td>
<td>19.4</td>
<td>0.72</td>
<td>34.4</td>
<td>12.7</td>
<td>0.75</td>
<td>14.86</td>
<td>–</td>
<td>13.3</td>
<td>1056</td>
</tr>
<tr>
<td>T3 O</td>
<td>4.07</td>
<td>220.2</td>
<td>9.9</td>
<td>22.2</td>
<td>–</td>
<td>85.9</td>
<td>35.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>40.4</td>
<td>1924</td>
</tr>
<tr>
<td>T3 A</td>
<td>4.13</td>
<td>12.1</td>
<td>0.6</td>
<td>19.1</td>
<td>0.73</td>
<td>59.6</td>
<td>20.1</td>
<td>0.15</td>
<td>13.33</td>
<td>–</td>
<td>31.4</td>
<td>1624</td>
</tr>
<tr>
<td>T4 O</td>
<td>3.74</td>
<td>326.0</td>
<td>13.4</td>
<td>24.3</td>
<td>–</td>
<td>89.2</td>
<td>29.1</td>
<td>–</td>
<td>26.5</td>
<td>0.17</td>
<td>6.4</td>
<td>460</td>
</tr>
<tr>
<td>T4 A</td>
<td>3.76</td>
<td>14.3</td>
<td>0.7</td>
<td>20.6</td>
<td>0.47</td>
<td>32.1</td>
<td>13.0</td>
<td>0.07</td>
<td>13.51</td>
<td>–</td>
<td>16.3</td>
<td>1556</td>
</tr>
<tr>
<td>T5 O</td>
<td>3.67</td>
<td>218.1</td>
<td>10.1</td>
<td>21.6</td>
<td>–</td>
<td>55.3</td>
<td>33.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>26.5</td>
<td>1706</td>
</tr>
<tr>
<td>T5 A</td>
<td>3.75</td>
<td>6.5</td>
<td>0.4</td>
<td>17.2</td>
<td>0.76</td>
<td>25.8</td>
<td>17.4</td>
<td>0.07</td>
<td>13.42</td>
<td>–</td>
<td>14.7</td>
<td>1394</td>
</tr>
<tr>
<td>B1 O</td>
<td>3.99</td>
<td>234.9</td>
<td>11.1</td>
<td>21.1</td>
<td>–</td>
<td>83.0</td>
<td>25.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>40.8</td>
<td>1236</td>
</tr>
<tr>
<td>B1 A</td>
<td>4.02</td>
<td>6.05</td>
<td>0.3</td>
<td>17.6</td>
<td>0.42</td>
<td>23.3</td>
<td>6.6</td>
<td>0.17</td>
<td>13.85</td>
<td>11.3</td>
<td>11.3</td>
<td>1014</td>
</tr>
<tr>
<td>GDZ a</td>
<td>0–20 cm</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>4.46</td>
<td>14.5</td>
<td>0.9</td>
<td>15.6</td>
<td>1.57</td>
<td>3.6</td>
<td>6.30</td>
<td>1.25</td>
<td>6.25</td>
<td>1.8</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>4.31</td>
<td>12.8</td>
<td>0.7</td>
<td>18.6</td>
<td>1.67</td>
<td>2.8</td>
<td>2.56</td>
<td>0.01</td>
<td>1.51</td>
<td>12.3</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>4.38</td>
<td>23.1</td>
<td>1.6</td>
<td>14.5</td>
<td>0.69</td>
<td>7.9</td>
<td>1.62</td>
<td>0.02</td>
<td>5.44</td>
<td>21.0</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>4.42</td>
<td>11.8</td>
<td>0.8</td>
<td>14.4</td>
<td>0.63</td>
<td>2.9</td>
<td>2.39</td>
<td>0.02</td>
<td>0.66</td>
<td>20.1</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>4.80</td>
<td>40.5</td>
<td>2.8</td>
<td>14.7</td>
<td>1.01</td>
<td>4.3</td>
<td>0.59</td>
<td>1.12</td>
<td>0.20</td>
<td>28.0</td>
<td>357</td>
<td></td>
</tr>
</tbody>
</table>

TOC: total organic carbon; TN: total nitrogen; C/N: ratio of TOC and TN; BD: bulk density; NH₄⁺ ex and NO₃⁻ ex: average 2M KCl-extractable NH₄⁺ and NO₃⁻; NH₄⁺ sw and NO₃⁻ sw: dissolved NH₄⁺ and NO₃⁻ in soil water and groundwater in summer 2010 (11 May–26 September); IDR: instantaneous denitrification rate in anoxic soil slurries with ample NO₃⁻.

Ex situ potential of N₂O loss: nmol NO₃⁻ g⁻¹ dw soil denitrified before maximum N₂O reduction to N₂ was observed in anoxic soil slurries with ample supply of NO₃⁻.

a Data from Sørbotten (2011) obtained using 100 cm³ steel cylinders in three replicates for A horizon for each sampling plot.

b Data from Zhu et al. (2012).
Fig. 1. Location of the Tieshanping (TSP) forest catchment, Chongqing, China (a) and plot layout in the TSP catchment (b). Plots T1 to T5 constitute transect T on the hill slope (HS); plots B1 to B6 constitute transect B in the ground water discharge zone (GDZ). Increasing plot number denote decreasing elevation along the transects. Plots T5 and B1 are at the intersection of HS and GDZ.
Fig. 2. Daily average air temperature and daily precipitation at TSP. The temperature data from 5 September to 18 September 2009, 29 November 2009 to 16 January 2010 and 29 January to 8 February 2010 were missing. Shaded area indicates the dry-cool season.
Fig. 3. Soil water filled pore space (WFPS, a) and soil temperature (ST, b) at 10 cm depth at plots T3 and B1. Shaded area indicates the dry-cool season.
Fig. 4. Groundwater level (GWL) in GDZ. The lower panel indicates plots and dates at which the groundwater level was below the bottom of the monitoring well. Shaded area indicates the dry-cool season.
Fig. 5. Mean N\textsubscript{2}O flux (\(n = 3\)) at the plots on the hill slope (HS) and in the ground water discharge zone (GDZ). Standard errors are not shown to maintain readability of the figure. Shaded area indicates the dry-cool season.
Fig. 6. Cumulative N$_2$O fluxes (g N$_2$O-N m$^{-2}$) during summer 2009 (a, from 12 July to 8 August, 27 days) and 2010 (b, from May 10 to 24 August, 106 days) at individual plots ($n = 3$). Error bars represent standard error.
Fig. 7. NO$_3^-$ concentration (mg N L$^{-1}$) in soil pore water at 5 cm depth at each plot of HS (a) and of groundwater at 30 cm depth in GDZ (b), respectively. NO$_3^-$ values from some of the HS plots during summer 2009 are missing because samplers were damaged by worms. Shaded area indicates the dry-cool season.
Fig. 8. Principal component analysis of cumulative N$_2$O fluxes and soil parameters (Table 1) at TSP. Before analysis, the N$_2$O flux and several of the parameters were transformed, whereas others (TOC: total organic carbon; TN: total nitrogen; C/N: the ratio of TOC and TN; IDR: instantaneous denitrification rate; ex situ potential of N$_2$O loss (see text for explanation); NH$_4^+$ ex and NO$_3^-$ ex: 2M KCl-extractable NH$_4^+$ and NO$_3^-$) were not. The transformations were as follows: N$_2$O flux: ln (cumulative N$_2$O flux from each plot in summer 2010; Fig. 6); BD: −1/(bulk density); NH$_4^+$ sw: ln (dissolved NH$_4^+$) in soil water; NO$_3^-$ sw: sin(dissolved NO$_3^-$ in soil water). Red points indicate the individual plots.
Fig. 9. Observed and simulated average N_2O flux at hill slope (HS). The shaded area denotes the dry-cool season.