Supplementary material: Calculation of Fe(II) Half Lifes

The calculation of Fe(II) half lifes was done following the models of Santana-Casiano et al. (2005, Model I) and Trapp and Millero (2007, Model II) at 4°C.

In Model I, the inorganic species taken into account are Fe^{2+}, Fe(OH)^+, Fe(OH)_2, $\text{Fe(CO}_3\text{)}$, $\text{Fe(CO}_3\text{)}_2$, and $\text{Fe(CO}_3\text{)}(\text{OH}^-)$.

In Model II, the inorganic species taken into account are Fe^{2+}, Fe(OH)^+, Fe(OH)_2, and $\text{Fe(CO}_3\text{)}_2$.

Input variables include ionic strength (I), pH, and dissolved inorganic carbon, all obtained by CTD or shipboard measurements. CO_3^{2-} is calculated using data of alkalinity and total dissolved inorganic carbon and the set of constants by Mehrbach et al (1973) after Dickson and Millero (1987). H_2O_2 concentrations were measured on board (Bucciarelli et al., in prep.). The water dissociation constant K_w is calculated as a function of temperature (T) and ionic strength (I) (Millero et al., 1987). The OH$^-$ concentration (free scale) is then given by $K_w [\text{H}^+]^{-1}$.

The overall rate of oxidation of Fe(II) is given by:

$$\frac{d[\text{Fe(II)}]}{dt} = -[\text{Fe(II)}]\left[\sum_i \alpha_i k_{i,O_2} + [\text{H}_2\text{O}_2]\sum_i \alpha_i k_{i,H_2O_2} + [\text{O}_2^-]\sum_i \alpha_i k_{i,O_2^-}\right]$$

for Model I. The superoxide concentrations are assumed to equal $[\text{O}_2]/1000$ (Santana-Casiano et al., 2005).
And by:

\[
\frac{d[Fe(II)]}{dt} = -[Fe(II)] \left(\sum_i \alpha_i k_{i,O_2} + \sum_i \alpha_i k_{i,H_2O_2} \right)
\]

(3)

for Model II. Here the oxidation by the anion superoxide is assumed inside the oxygen contribution.

\[k_{i,O_2}, \ k_{i,H_2O_2}, \text{ and } k_{i,O_2}^{-}\]

are the oxidation rate constants of the individual species for oxidation by oxygen, hydrogen peroxide (the stoichiometry factor of 2 is already considered in data from Gonzalez-Dávila et al., 2005), and superoxide, respectively.

The distribution coefficient of each inorganic Fe(II) species in seawater is given by:

\[
\alpha_i = \frac{K'_{i}[i]}{1 + \sum_i K'_{i}[i]}
\]

(1)

where \([i]\) is the inorganic ligand concentration and \(K'_{i}\) is the conditional stability constant for each species.

Finally, the Fe(II) half life is given by:

\[
t_{1/2} = \frac{\ln(2)}{k_{O_2}' + k_{H_2O_2}' + k_{O_2}^{-}'}
\]

(4)

where \(k_{O_2}' = \sum_i \alpha_i k_{i,O_2}\), \(k_{H_2O_2}' = \sum_i \alpha_i k_{i,H_2O_2}\), and \(k_{O_2}^{-}' = \sum_i \alpha_i k_{i,O_2}^{-}\) for Model I, and by:

\[
t_{1/2} = \frac{\ln(2)}{k_{O_2}' + k_{H_2O_2}'}
\]

(5)

for Model II.
1. Calculation of K_i'

For both models, the conditional stability constants for each species (K_i') are calculated as a function of T and I using the equations given by Trapp and Millero (2007, corrected via pers. com.):

$$\log_{10} K_i' = \log_{10} K_i + AI + BI^{0.5} + C I^2 + \frac{D}{T} + E \ln(T)$$ \hspace{0.5cm} (16)

with

<table>
<thead>
<tr>
<th>Species</th>
<th>$\log K_i$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(OH)(^+)</td>
<td>-218.186</td>
<td>0.5</td>
<td>-1.1</td>
<td>-0.02</td>
<td>10120.8</td>
<td>33.1239</td>
</tr>
<tr>
<td>Fe(OH)(_2)</td>
<td>-267.22</td>
<td>0.47</td>
<td>-1.93</td>
<td>-0.03</td>
<td>12411.4</td>
<td>40.8906</td>
</tr>
<tr>
<td>Fe(CO(_3))(^-)</td>
<td>26.2876</td>
<td>0.7</td>
<td>-2</td>
<td>-0.031</td>
<td>-2029.8</td>
<td>-2.4676</td>
</tr>
<tr>
<td>Fe(CO(_3))(_2)</td>
<td>6.7908</td>
<td>0.029</td>
<td>-2.287</td>
<td>-0.026</td>
<td>-88.68</td>
<td>0.1116</td>
</tr>
</tbody>
</table>

For the species Fe(CO\(_3\))OH, $\log K = 8.90$ at 25ºC and the same temperature coefficient as for Fe(CO\(_3\))\(_2\) is used (González-Dávila et al., 2005).

2. Calculation of k_{i,o_2}

For Model I, the following equations are used (rate constants in M\(^-1\) s\(^-1\)).

$$\log k_{Fe^{2+},o_2} = 0.544 - 5861\left(\frac{1}{T} - \frac{1}{298.15}\right)$$ \hspace{0.5cm} (5)

$$\log k_{FeOH,o_2} = 2.38 - 5861\left(\frac{1}{T} - \frac{1}{298.15}\right)$$ \hspace{0.5cm} (6)

$$\log k_{Fe(OH)_2,o_2} = 6.06 - 5861\left(\frac{1}{T} - \frac{1}{298.15}\right)$$ \hspace{0.5cm} (7)

$$\log k_{Fe(CO_3)^-,o_2} = 0.6 - 5861\left(\frac{1}{T} - \frac{1}{298.15}\right)$$ \hspace{0.5cm} (7)

$$\log k_{Fe(CO_3)_2,o_2} = 3.69 - 5861\left(\frac{1}{T} - \frac{1}{298.15}\right)$$ \hspace{0.5cm} (8)
For Model II, the following equations are used (rate constants in M\(^{-1}\) min\(^{-1}\)).

\[
\ln k_{Fe^{2+},O_2} = 21 + 0.4I^{0.5} - \frac{5562}{T}\tag{5}
\]

\[
\ln k_{FeOH\cdotO_2} = 17.1 + 1.5I^{0.5} - \frac{2608}{T}\tag{6}
\]

\[
\ln k_{Fe(OH)\cdotO_2} = -6.3 + 3.8I^{0.5} - \frac{6211}{T}\tag{7}
\]

\[
\ln k_{Fe(CO)\cdotO_2} = 31.4 + 5.6I^{0.5} - \frac{6698}{T}\tag{8}
\]

3. Calculation of \(k_{i,H_2O_2}\)

For both models, the following equations are used (rate constants in M\(^{-1}\) s\(^{-1}\)) from Gonzalez-Davila et al (2005).

\[
\ln k_{Fe^{2+},H_2O_2} = 38.0 - \frac{9529}{T}\tag{17}
\]

\[
\ln k_{FeOH,H_2O_2} = 24.2 - \frac{2757}{T}\tag{18}
\]

\[
\ln k_{Fe(OH)\cdotH_2O_2} = 44.4 - \frac{6658}{T}\tag{19}
\]

\[
\ln k_{Fe(CO)\cdotH_2O_2} = 33.2 - \frac{6757}{T}\tag{20}
\]

These equations explicitly correct for the effects of temperature on decay rates and because their experiments were done in seawater (I=0.74), no further corrections for relatively minor ionic strength differences were made. This treatment assumes that competition between O\(_2\) and H\(_2O_2\) is negligible (cf. Gonzalez-Davila et al., 2006), and
that pseudofirst-order decay constants are additive. We further assume that aside from the effect of pressure on K_w, the effect of pressure on other equilibrium and rate constants is negligible.

4

4. Calculation of k_{i, O_2}

For Model I, the following equations are used (rate constants in M$^{-1}$ s$^{-1}$).

$$\log k_{Fe^{2+}, O_2} = 3.84 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right)$$ (5)

$$\log k_{FeOH^+, O_2} = 4.96 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right)$$ (6)

$$\log k_{Fe(OH)_2^+, O_2} = 12.18 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right)$$ (7)

$$\log k_{Fe(CO)_2, O_2} = 2.94 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right)$$ (7)

$$\log k_{Fe(CO)_2(OH), O_2} = 9.6 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right)$$ (8)

$$\log k_{Fe(CO)_3, O_2} = 2.54 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right)$$ (9)
References

2 Dickson, A.G. and Millero, F.J., A comparison of the equilibrium constants for the
dissociation of carbonic acid in seawater media, Deep-Sea Res. I, 34, 1733-1743,
1987.

4 Gonzalez-Davila, M., Santana-Casiano, J.M. and Millero, F.J., Oxidation of iron (II)

6 Gonzalez-Davila, M., Santana-Casiano, J.M. and Millero, F.J., Competition between O$_2$
and H$_2$O$_2$ in the oxidation of Fe(II) in natural waters, J. Sol. Chem., 35, 95-111,
2006.

8 Mehrbach, C., Culberson, C.H., Hawlay, J.E. and Pytkowicz, R.M., Measurement of the
apparent dissociation constants of carbonic acid in seawater at atmospheric

10 Millero, F.J., Sotolongo, S. and Izaguirre, M., The oxidation kinetics of Fe(II) in

12 Santana-Casiano, J.M., Gonzalez-Davila, M. and Millero, F.J., Oxidation of nanomolar
levels of Fe(II) with oxygen in natural waters, Environ. Sci. Technol., 39, 2073-
2079, 2005.

14 Trapp, J.M. and Millero, F.J., The oxidation of iron(II) with oxygen in NaCl brines, J.