Production and consumption mechanisms of N_2O in the Southern Ocean revealed from its isotopomer ratios

N. Boontanon1,2, S. Watanabe3, T. Odate4, and N. Yoshida2,5

1Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
2SORST project, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
3Japan Marine Science and Technology Center, 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
4National Institute of Polar Research, Kaga 1-chome, Itabashi-ku, Tokyo, 173-8515, Japan
5Department of Environmental Science and Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan

Received: 6 October 2010 – Accepted: 11 October 2010 – Published: 27 October 2010

Correspondence to: N. Boontanon (ennbt@mahidol.ac.th)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The distribution of dissolved N$_2$O in the Southern Ocean at 140° E was measured during the austral summer (February–March 2002) in the framework of the 43rd Japanese Antarctic Research Expedition (JARE-43). Surface-dissolved N$_2$O was undersaturated (about 94% saturation), and the calculated mean sea-air flux rate was $-3.68 \pm 2.57 \mu$mol m$^{-2}$ d$^{-1}$. The vertical distributions tested exhibited N$_2$O maxima at around 150–300 m (ΔN$_2$O, 7.90–8.51 nM) below the chlorophyll-rich layer, which coincided with the layer of minimum oxygen. These observations strongly suggest that N$_2$O production and consumption are related to apparent oxygen utilization (AOU). In the deeper layer, the presence of anoxic microsites within particles, together with the horizontal and vertical movement of cold water around Antarctica, is one of the parameters that govern the intramolecular distribution of the isotopic composition of N$_2$O. The N$_2$O isotopic compositions in the maximum layer were +7.3 to +8.2‰ for δ^{15}N$_{\text{bulk}}$ and +43.5 to +46.2‰ for δ^{18}O associated with the coupling of nitrification and denitrification production mechanisms. Site preference decreased from an average 17‰ at the surface to the ΔN$_2$O maximum and slightly increased with depth up to 24‰ at the deeper region. The influence of deep Southern Ocean N$_2$O on the global N$_2$O budget is estimated to be about 46.2 ± 5.3 Mg N$_2$O-N d$^{-1}$, which represents the amount that can escape to the atmosphere and thus contribute to emissions into the world’s oceans.

1 Introduction

Recently, considerable attention has been focused on the emission of biogenic trace gases from ecosystems, since they contain a significant amount of greenhouse gases, such as carbon dioxide, methane, and nitrous oxide. Nitrous oxide (N$_2$O) is a very effective heat-trapping gas in the atmosphere because it absorbs outgoing radiant heat in infrared wavelengths that are not captured by the other major greenhouse gases,
such as water vapor and CO$_2$. By absorbing and reradiating this heat back toward the Earth, N$_2$O contributes only slightly (5–6%) to overall greenhouse warming (Bouwman, 1990). However, it plays a significant role in the destruction of the ozone layer in the stratosphere (Crutzen, 1970). The annual input of N$_2$O into the atmosphere is estimated to be \sim14 Tg N$_2$O-N yr$^{-1}$, and the oceans are believed to contribute more than 17% of the total annual input (Watson et al., 1992). Thus, measurement of the N$_2$O budget at a global level may provide important information on greenhouse gas effects.

As a major component of the world's oceans, the Southern Ocean has several unique characteristics, including the circumpolar homogeneous nature of its physical and chemical variables, the immense expanse of cold surface water, and the pronounced seasonal variation at the surface compared to other ocean basins (Lutjeharms, 1990). N$_2$O is produced by the biological processes of nitrification and denitrification (Dore et al., 1998; Knowles et al., 1981; Rysgaard et al., 1993; Svensson, 1998; Ueda et al., 1993). Depending on the redox conditions, N$_2$O is produced from inorganic nitrogenous compounds (NH$_3$ or NO$_3^-$), with subsequently different isotopic fractionation factors. The isotopic signatures of N$_2$O confer constraints on the relative source strength, and the reaction dynamics of N$_2$O biological production pathways are currently under investigation. Furthermore, isotopomers of N$_2$O contain more easily interpretable biogeochemical information as to their sources than obtained from conventional bulk 15N and 18O measurements (Yoshida and Toyoda, 2000). Here, we describe the results of the first isotopomer studies of dissolved N$_2$O in the Southern Ocean, one of the most productive seas in the world, in order to examine the origins of N$_2$O in sea water and to estimate the inventory of N$_2$O with respect to the atmosphere.
2 Materials and methods

2.1 Study sites and samplings

Samples were collected in the framework of the 43rd Japanese Antarctic Research Expedition (JARE-43) during the 2002 Marine Science Cruise on the R/V *Tangaroa* from 6 February to 7 March 2002. The purpose of the expedition was to study the biogeochemical cycles and biological processes of the Southern Ocean and their roles in the global environment. The production and consumption of dissolved N$_2$O in Southern Ocean ecosystems was investigated by collecting seawater samples at stations 1 (open water), 5 (marginal ice zone), and 8 (previous ice zone; Fig. 1). Water samplings were carried out at the indicated depths using a CTD water sampler (SBE 32 24 × 10-L Carousel Water Sampler). For N$_2$O analyses, water samples were introduced into 225-ml glass vial and then sterilized with mercuric chloride (1 ml saturated HgCl$_2$ solution per vial). The vial was then sealed with a butyl-rubber septum and an aluminum cap, taking care to avoid bubble formation, and then brought back to the laboratory and stored at 4 °C until the analyses were conducted.

2.2 Chemical analysis

Salinity and temperature were recorded using a CTD (SBE 911plus). Dissolved oxygen was measured with a dissolved oxygen auto-titrator on-board (based on the design of the Scripps Institution of Oceanography).

2.3 Dissolved N$_2$O and isotopomer analyses

At present, the analysis of very low concentrations of dissolved N$_2$O is difficult. The best way is to extract the N$_2$O in the sample using pure helium gas (He, 99.9999%) and then to concentrate it. Therefore, each water sample was transferred to a stripping chamber, and He was bubbled to extract the dissolved gases. H$_2$O and CO$_2$ were removed by passing the gases sample through a magnesium perchlorate (Mg(ClO$_4$)$_2$)
and ascarite (sodium-hydroxide-coated silica) column, respectively. N$_2$O was then collected in a U-shaped tube filled with glass beads under liquid nitrogen. At the end of the quantitative extraction of N$_2$O, the U-tube was heated in a hot-water bath. The desorbed gas was introduced into a PreCon Unit under a helium flow. Sample gas was passed through a chemical trap to remove H$_2$O and CO$_2$. After the H$_2$O and CO$_2$ were removed, N$_2$O was cryo-focused in a U-trap at liquid nitrogen temperature. After removing the Dewar flask containing liquid nitrogen from the U-trap, the sample was separated on a PoraPlot Q column (25 m) at 27°C, CO$_2$ and N$_2$O were separated by chromatography and the isotope ratios of N$_2$O was recorded with a mass spectrometer (Finnigan, MAT 252) using modified Faraday cups as the helium carrier flow. Isotopomer ratios of δ^{15}N$^{\text{bulk}}$, δ^{15}N$^{\alpha}$ (central nitrogen), δ^{15}N$^{\beta}$ (terminal nitrogen), and δ^{18}O were obtained from mass analysis of N$_2$O$^+$ and fragment NO$^+$ formed in an ion source (Toyoda and Yoshida, 1999):

$$\delta_X(\text{‰}) = [(R_{\text{SAMPLE}}/R_{\text{STANDARD}}) - 1] \times 1000$$

where X is 15N$^{\text{bulk}}$, 15N$^{\alpha}$, 15N$^{\beta}$, or 18O of N$_2$O and $^{15}R_{\text{bulk}} = (^{15}R^{\alpha} + ^{15}R^{\beta})/2$, $^{15}R^{\alpha} = [^{14}N^{15}N^{16}O]/[^{14}N^{14}N^{16}O]$, $^{15}R^{\beta} = [^{15}N^{14}N^{16}O]/[^{14}N^{15}N^{16}O]$, $^{18}R = [^{14}N^{14}N^{18}O]/[^{14}N^{14}N^{16}O]$. Nitrogen and oxygen isotope ratios of dissolved N$_2$O are expressed in ‰ deviations from atmospheric N$_2$O and the Vienna standard mean ocean water (VSMOW), respectively. The reproducibilities of δ^{15}N$^{\alpha}$, δ^{15}N$^{\beta}$, δ^{15}N$^{\text{bulk}}$, and δ^{18}O were ±0.9‰, ±1.5‰, ±0.6‰, and ±0.9‰, respectively. The atmospheric equilibrium concentration of N$_2$O was calculated from the in-situ water temperature and the atmospheric mixing ratio (310 ppbv) following the methods of Weiss and Price (1980).
3 Results

3.1 Vertical distributions of dissolved N_2O and its isotopomers

The N_2O concentration profile at stations 1 and 5 were similar to those observed in the open ocean (Toyoda et al., 2002; Yoshida et al., 1989) and correlated strongly with apparent oxygen utilization (AOU; Figs. 3–6). Everywhere at the surface, N_2O concentrations were lower than those at atmospheric equilibrium. Excess N_2O ($\Delta\text{N}_2\text{O}$) increased significantly toward the continental margins, with a mean $\Delta\text{N}_2\text{O}$ of −0.88 nM (93.9%). The isotopic compositions of dissolved N_2O were also slightly enriched in the same direction, from 8.1 to 8.5‰ for $\delta^{15}\text{N}_{\text{AIR}}$ and 45.6 to 46.5‰ for $\delta^{18}\text{O}_{\text{VSMOW}}$. The isotopomers varied more than the bulk $\delta^{15}\text{N}$, the site preference ($\delta^{15}\text{N}_{\alpha} – \delta^{15}\text{N}_{\beta}$) value of 18.4‰ at station 1 was nearly the same as that of N_2O in the troposphere (Yoshida and Toyoda, 2000). About 3‰ depletion was observed at the shallower region (station 8).

The vertical distribution of dissolved N_2O consisted of supersaturation at the subsurface and throughout the water column (Figs. 3–5). The N_2O depth profiles showed a concentration maximum between 100 and 200 m. The $\Delta\text{N}_2\text{O}$ maximum (7.90–8.51 nM) was observed in the oxygen minimum layer, similar to results reported in the literature (e.g., Naqvi et al., 1994; Toyoda et al., 2002; Yoshinari, 1976). The $\Delta\text{N}_2\text{O}$ concentration generally decreased below 200 m at both stations 1 and 5. At station 8, the profile did not show a N_2O maximum at the subsurface, but the $\Delta\text{N}_2\text{O}$ concentration became supersaturated near the bottom. Bulk nitrogen and oxygen isotope ratios of dissolved N_2O at stations 1 and 5 showed a subsurface minimum at the $\Delta\text{N}_2\text{O}$ maximum layer while both $\delta^{15}\text{N}_{\text{bulk}}$ and $\delta^{18}\text{O}$ maxima were measured at the bottom, with a slight increase with depth. At station 8, the values of both $\delta^{15}\text{N}_{\text{bulk}}$ and $\delta^{18}\text{O}$ were constant throughout the water column. Isotopomers of nitrogen, especially with respect to site preference, showed some vertical variation from the subsurface to the deeper layers. Site preference decreased at the $\Delta\text{N}_2\text{O}$ maximum and slightly increased with depth. A
site-preference maximum peak at station 1 was detected at a depth of about 2200 m and then decreased towards the bottom. At station 5, a site-preference maximum was found at about 2000 m and at the bottom. At station 8, the ΔN_2O and isotopic compositions did not change, while site preference fluctuated greatly throughout the water column. Site preference maxima were detected at a depth of 60–140 m and also at the bottom.

4 Discussion

4.1 Surface N_2O and the kinetic equilibrium

Dissolved N_2O in the surface layers of the sea is usually at or near saturation, while the N_2O concentrations in the Southern Ocean surface layer were found to be below atmospheric equilibrium; however, this is not surprising, as a similar phenomenon was also observed in another ocean (Naqvi et al., 1994). Several processes control N_2O concentration in the surface water, and physical factors, mainly temperature and wind, normally affect gas saturation values up to about 5% above or below saturation (Bieri et al., 1966, 1968). The decrease in the surface equilibrium of N_2O in the Southern Ocean may be associated with an increase in the transfer velocity, which is mainly related to wind speed since the temperature around this area is quite stable during February and March. In the Antarctic, the ocean area from about latitude 40°S to the Antarctic Circle has the strongest winds speeds recorded anywhere on Earth (CIA, 2003). Broecker and Siems (1994) reported that when wind speed exceeds 10 m s$^{-1}$, waves begin to break, causing the formation of air bubbles that become entrained in the water. This, in turn, results in gas exchange at the surface layer between the air bubbles and seawater. During our study, the average wind speed in the area of the sampling sites increased and ranged from 6.8 m s$^{-1}$ at station 8 to 10.6 m s$^{-1}$ at station 1. Therefore, these data support the finding of a decrease in the surface equilibrium (from -0.62 to -1.32 nM).
In the surface water, the isotopic composition of dissolved N$_2$O is governed by gas exchange with atmospheric N$_2$O. Inoue and Mook (1994) reported that the kinetic fractionation factors for dissolved N$_2$O during N$_2$O invasion and evasion are slightly greater (about 0.7‰ for δ^{15}N and 1.1‰ for δ^{18}O) than those in air. The kinetic fractionation factors of δ^{15}N and δ^{18}O being transferred across the interface can be calculated using the following equations:

$$\alpha_{\text{inv}} = R_{\text{inv}}/R_g = k_{\text{inv}}^i/k_{\text{inv}}^j$$

and

$$\alpha_{\text{ev}} = R_{\text{ev}}/R_l = k_{\text{ev}}^i/k_{\text{ev}}^j,$$

where R_{inv} and R_{ev} refer to the isotopic compositions of the invading and evading N$_2$O, respectively; R_g and R_l refer to the isotopic compositions of gaseous and dissolved N$_2$O; k_{inv} represents the transfer coefficient for the invasion process; k_{ev} represents the transfer coefficient for the evasion process; and superscript i is an isotope heavier than j. The equilibrium fractionation factor α between the gas and water phases is related to the kinetic factors by considering the fact that at equilibrium, R_{inv} must be equal to R_{ev}.

$$\alpha_{\text{ev}}/\alpha_{\text{inv}} = (R_{\text{ev}}/R_l)/(R_{\text{inv}}/R_g) = R_g/R_l = \alpha$$

Nitrogen (bulk) and oxygen isotope ratios of dissolved N$_2$O are about 1‰ higher in the surface water of the Southern Ocean than in the troposphere, 7.0 and 44.7‰ for δ^{15}N and δ^{18}O, respectively (Kim and Craig, 1993), which agrees with the equilibrium isotope fractionation. However, oxygen isotopes of surface-water N$_2$O are more fractionated than nitrogen isotopes. Significant kinetic fractionation of oxygen isotopes during gas transfer at water surfaces seems to be related to short-range interactions with the oxygen atom in N$_2$O, which makes the lighter molecule more soluble at the transition state; this is similar to the results of Inoue and Mook (1994). Furthermore, compared to the isotope compositions of dissolved N$_2$O at the other stations, those at 7828
station 1, where a higher wind speed was expected to cause a higher N$_2$O exchange rate between surface water and air, were closer to those of the troposphere. Thus, the exchange of N$_2$O between ocean and atmosphere and its isotopic fractionation should be treated kinetically and varies with time and space.

Similar to the isotopic compositions of N$_2$O, a site preference of about 17.0‰ on average was observed, in that 15N at the center (α-center) was enriched compared with the end-site nitrogen (β-site). This value is close to that measured in the troposphere (Yoshida and Toyoda, 2000). However, the site preference was depleted between station 1 and station 8 due to the enrichment of $\delta$$_{15}^N$$\beta$, while the difference was smaller for $\delta$$_{15}^N$$\alpha$, which suggests that the heavier isotope of the β-site nitrogen (15N$_{14}$N$_{16}$O) is slightly more soluble in water compared to 14N$_{14}$N$_{16}$O. The former was caused by the significant difference in solute-solvent interaction (dispersion) energies between lighter and heavier molecules. The equilibrium fractionation of $\delta$$_{15}^N$$\beta$ in the Southern Ocean ranged from +1.8 to +3.8‰ relative to tropospheric $\delta$$_{15}^N$$\beta$-N$_2$O ($\sim$ −3‰; Yoshida and Toyoda, 2000), and the fractionation is much larger than that of $\delta$$_{15}^N$bulk (+1.1 to +1.5‰). This may be a result of the kinetic fractionation of the β-site nitrogen, which is much more active than the center nitrogen during gas transfer across the gas-liquid interface. During invasion, two processes have to be considered: dissolution and molecular diffusion near the surface, whereas during evasion there is only molecular diffusion from the water mass to the surface (Inoue and Mook, 1994).

4.2 Production and consumption of N$_2$O in the water column

In the ocean, AOU reflects the amounts of O$_2$ consumed by respiration and nitrification in water since its last contact with the atmospheric O$_2$ at the surface. The correlation between ΔN$_2$O and AOU provides circumstantial evidence that nitrification is the dominant mechanism of N$_2$O production (Butler et al., 1989; Cohen and Gordon, 1979; Elkins et al., 1978; Yoshinari, 1976). At below mixed layer to N$_2$O maximum layer, O$_2$ is consumed in the process of nitrification whereby nitrate is regenerated. The correlation
gradient between ΔN_2O and AOU at the productive layer (Fig. 6) is closed to that reported by Cohen and Gordon (1979) in the Northwestern Atlantic and Northwestern Pacific suggested that N_2O production in the ocean primarily arises from nitrification (Cohen and Gordon, 1978; Yoshinari, 1973). While the generally flat relationship between ΔN_2O and AOU below the productive layer may due to the denitrification takes place whereby O_2 are not utilized by this process. However, the coincidence with the isotopic studies of dissolved N_2O much more clearly understands the reaction dynamics of N_2O biological pathways.

The N_2O maxima observed at the subsurface (150–300 m) of the Southern Ocean were produced by the decomposition of sinking particles during the summer season. In the waters of the Southern Ocean surrounding Antarctica, a phytoplankton bloom fueled by nutrient-rich waters leads to the growth of vast swarms of krill (*Euphausia superba*) each summer. Consequently, settling particles, such as fecal pellets, may be produced during the life cycle of the krill, either directly or indirectly. Chlorophyll- a is the most important among several kinds of phytopigments and can be used as a semi-quantitative measurement of phytoplankton abundance. Hirawake et al. (2003) reported that the chlorophyll- a concentration clearly shows a seasonal variation, with a complicated spatial distribution. The chlorophyll- a concentration was very low ($<0.3 \text{ mg m}^{-3}$) in October, but rapidly increased up to 1–5 mg m^{-3} through December near the sea-ice edge and in the open ocean.

The N_2O isotopic compositions in the maximum layer, $+7.3$ to $+8.2\%$ for $\delta^{15}N_{\text{bulk}}$ and $+43.5$ to $+46.2\%$ for $\delta^{18}O$, were similar to the values measured in other oceans (Kim and Craig, 1993; Naqvi et al., 1998) and freshwater ecosystems (Boontanon et al., 2000; Ueda et al., 1999). As reported in several aquatic systems, dissolved N_2O can be categorized into three types according to the intramolecular distributions of $\delta^{15}N_{\text{AIR}}$ and $\delta^{18}O_{\text{VSMOW}}$ in N_2O: oxic, anoxic, and semi-anaerobic N_2O (Boontanon et al., 2000). Under oxic conditions, by-product N_2O, produced during nitrification (Yoshida and Alexander, 1970), accumulates with no further oxidation or reduction. Yoshida (1988) reported very low $\delta^{15}N_{\text{bulk}}$, from -60 to -68%, for N_2O produced
during ammonium oxidation in pure cultures of *Nitrosomonas europaea*, while the oxygen atom of N₂O produced via nitrification is derived from both O₂ and H₂O in ambient water (Ostrom et al., 2000; Schmidt and Voerkelius, 1989). Under anoxic conditions, intermediate N₂O is enriched in ¹⁵N and ¹⁸O compared with oxic N₂O. Wahlen and Yoshinari (1985) reported this type of N₂O in Green Lake. Semi-anaerobic N₂O, produced during the simultaneous occurrence of oxidation-reduction processes, represents a coupling between the other two processes and may be an important mechanism of N₂O production (Boontanon et al., 2000; Naqvi et al., 1998). In the Southern Ocean, the isotope ratios of N₂O suggest that N₂O is produced by the simultaneous occurrence of nitrification and denitrification processes taking place in the sinking particles (Alldredge and Cohen, 1987). With respect to the occurrence of redox conditions within an organic particle, Alldredge and Cohen (1987) and Kaplan and Wofsy (1985) suggested that denitrification occurred, even in oxygenated water, as long as the large diameter of the particulate organic matter could provide anaerobic conditions in the center of the particle. N₂O produced during nitrification in the outer oxic layer could diffuse into the inner layer and partly be incorporated into denitrification processes. This kind of multi-occurrence of oxidation-reduction could explain the different isotopic signatures of N₂O. In addition, when N₂O was produced via denitrification, δ¹⁵N_{bulk}(N₂O) values increased nearly to that of δ¹⁵N(NO₃⁻) (5–7‰; Sigman et al., 1999; Wada et al., 1987). Ostrom et al. (2000) reported the enrichment of ¹⁸O by approximately 20‰ during nitrification, since the δ¹⁸O of dissolved O₂ was significantly high (+24.7‰), and N₂O produced by nitrification was enriched in ¹⁸O by +43 to +46‰ relative to seawater δ¹⁸O.

Since site preference should mainly depend on production or consumption mechanisms, analysis of the isotopomers of N₂O should distinguish the production mechanism of the N₂O under investigation. In the above, the proposed N₂O production mechanism can be explained by the coupling of nitrification and denitrification. Isotopic fractionation governed by kinetic isotope effects occur during the reaction sequences \(\text{NH}_4^+ \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \) for the outer layer, while the oxidation of NOH does not
involve a primary kinetic isotope effect and thus should not markedly affect site preference (Popp et al., 2002). In N₂O generated by dissimilatory nitrite reduction (Weeg-Aerssens et al., 1988), the N-N bond of N₂O is formed by a nucleophilic attack of a second nitrite on a metal-coordinated nitrosyl species (Fig. 7). The first N ultimately occupies the β-position, and fractionation could result in nitrite binding to the ferrous heme following by nucleophilic attack of NO₂⁻ on the coordinated nitrosyl species, resulting in the formation of the N-N bond. While this reaction sequence may also allow isotope discrimination, exchange of the two nitrogens in the intermediate may also occur during N₂O formation, resulting in a more complicated isotopic fractionation of N₂O isotopomers. Furthermore, the reaction may cause depletion of ¹⁵N both in the center and in the terminal nitrogen of N₂O, because as the reaction approaches completion, the isotopic composition of the product approaches that of the initial substrate. Thus, N₂O released during the initial phase by the decomposition of sinking particles, at a depth of 60–200 m at station 1 and 60–100 m at station 5, will be depleted in ¹⁵N at both Nα and Nβ sites when the level of nitrification is greater than the level of denitrification. Due to the utilization of substrate nitrogen, δ¹⁵N values of the substrate are enriched and result in a small enrichment of ¹⁵N at both Nα and Nβ sites at the N₂O maximum layer (300 m at station 1 and 150 m at station 5). Below the N₂O maximum layer, the inner layer becomes anaerobic and denitrification can take place using the accumulated NO₃⁻. Consequently, N₂O quickly decreases because of its reduction to N₂. Following cleavage of the N-O bond of N₂O during denitrification, associated isotopic fractionation should show enrichment of both ¹⁵N at the Nα position and of δ¹⁵Nbulk and δ¹⁸O.

In the deeper layer, below 500 m, at steady state, denitrification takes place in anoxic microsites within particles that could also serve as sites of active reduction of N₂O to N₂. This, in turn, preferentially removes the lighter isotope thereby successively enriching the remaining unreacted N₂O in ¹⁵N and ¹⁸O. Thus, partly escaped N₂O is slightly enriched in δ¹⁵Nbulk, δ¹⁸O, and δ¹⁵Nα while there is only a small fluctuation in δ¹⁵Nβ. During denitrification, δ¹⁵N and δ¹⁸O of produced N₂O are expected to be
either similar or more enriched than $\delta^{15}N$ and $\delta^{18}O$ of the substrate NO$_3^-$ (Wada et al., 1996). However, N$_2$O was found to be more enriched in ^{15}N and ^{18}O compared to NO$_3^-$ ($\delta^{15}N$ of NO$_3^-$ from Sigman et al., 1999) in the deeper layers at both stations 1 and 5, which is similar to what was found in the western North Pacific (Yoshida et al., 1989). This indicates that most of the N$_2$O is involved in NO$_3^-$ reduction. N$_2$O is both consumed and produced during NO$_3^-$ reduction. As a result, the $\delta^{15}N$ and $\delta^{18}O$ of N$_2$O are determined by the fractionation factors during production and consumption. Yoshida (1984) reported a kinetic nitrogen isotope fractionation factor for the reduction of N$_2$O by denitrifying bacteria of up to 1.028 in terms of the rate-constant ratio of the isotope species. If the ^{15}N and ^{18}O enrichment of the substrates is greater during consumption than during production, enrichment in both ^{15}N and ^{18}O of N$_2$O relative to NO$_3^-$ should result. Furthermore, in deep water, horizontal and vertical movements of cold water from close to shore, induced by the geopotential anomaly of the strong steering current of the ridge system around the Antarctic (see Lutjeharms, 1990; Orsi et al., 1995), should be one of the parameters controlling the isotopic composition of N$_2$O (Fig. 8).

It should be noted that at station 8, which is a shallow water column close to the shore, the strong steering current in the summer may promote homogeneity of both the N$_2$O concentration and the isotopic composition from the surface to the bottom. To clearly understand the variability in the isotopomers of N$_2$O, culture studies are needed in which media composition, substrate concentrations, and rates of the reactions are well regulated.

4.3 Sea-to-air flux and N$_2$O budget in the Southern Ocean

The degassing of surface sea water could release N$_2$O into the atmosphere by simple diffusion and contributions to the net flux of N$_2$O across the sea-air interface. Based on our data, it is premature to quantitatively calculate the influence of the Southern Ocean on the global N$_2$O budget; however, several insights can be pointed out. The estimated
value of N$_2$O that will eventually reach the atmosphere after transport through the unsaturated zone can be determined from the empirical relationship between wind speed and gas transfer, using measured values of wind speed, temperature, and the surface concentration of N$_2$O, according to the following equation (Liss and Slater, 1974):

$$F = K_L(C_S - C_E)$$ \hspace{1cm} (4)

where K_L is the liquid-phase gas-transfer coefficient, C_S is the gas concentration in the surface water; and C_E is the gas concentration of the solution during equilibrium with the overlying gas phase.

By using the average wind speed measured during the sampling period, the N$_2$O sea-air flux was -1.45 (St. 8) to -6.50 (St. 1) μmol m$^{-2}$ d$^{-1}$, with an average of -3.68 ± 2.57 μmol m$^{-2}$ d$^{-1}$. A negative flux value has also been observed in the Bay of Bengal (-0.10 μmol m$^{-2}$ d$^{-1}$; Naqvi et al., 1994). In the Antarctic Zone, mixing is greatest in the summertime T_{min} layer. During the austral summer, the summer surface mixed layer is underlain by a roughly 200-m-thick minimum temperature layer (the T_{min} layer), and the deep portion of the winter mixed layer becomes isolated from the surface due to summertime melting and warming (Gordon et al., 1977). The entrainment of upper circumpolar deep water (UCDW) into the T_{min} layer continues while the surface layer above it remains isolated. Thus, the T_{min} layer represents a long-term mixing zone between the summer surface layer and the UCDW (Smith and Treguer, 1994). In this case, the N$_2$O produced under the T_{min} layer should diffuse into it and then either be transported or escape into the atmosphere via sea-air exchange. Thus, we can estimate the inventory of excess N$_2$O by assuming that N$_2$O from the UCDW source is transported to the upper layer by simple diffusion. Assuming a vertical eddy-diffusion coefficient of 0.6 cm2 s$^{-1}$ (Li et al., 1984) and the measured gradients of ΔN$_2$O between N$_2$O maxima to the lower T_{min} layer, these calculations yield an upward N$_2$O flux of 0.041 to 0.048 μmol m$^{-2}$ d$^{-1}$, with an average of 0.045 μmol m$^{-2}$ d$^{-1}$ which in the range of those observed by Law and Ling (2001), and we obtain the isotopomeric signature of δ^{15}N$_\text{bulk} = 13.2^{\circ}$, δ^{18}O = 51.8^{\circ}$, and a site preference of 7.3^{\circ} for the source.
Information about the distribution of N$_2$O in other areas of the Southern Ocean is lacking. Therefore, as noted above, the influence of Southern Ocean N$_2$O on the global N$_2$O budget cannot be calculated. A conservative estimate shows that the N$_2$O flux determined in this study would produce about 46.2 ± 5.3 Mg N$_2$O-N d$^{-1}$. This value is based on the assumption of upward N$_2$O flux and a total surface area of the Southern Ocean of 37 × 1012 m2 (Peng, 1984). This low production rate may be due to the simultaneous production and consumption of N$_2$O. However, this upward N$_2$O flux from the N$_2$O maxima layer can be diluted or transferred by the current of fresh water from melted ice. Thus, N$_2$O emission may occur in other areas depending upon the flow and diffusion rates. Furthermore, the existing data suggest that the area around the Southern Ocean is a large N$_2$O sink. We can estimate the dynamic exchange rate of N$_2$O to be about −3.76 ± 2.67 Gg N$_2$O-N d$^{-1}$ using the sea-air flux and N$_2$O diffusion from the N$_2$O maximum layer calculation.

5 Conclusions

The horizontal and vertical distributions of dissolved N$_2$O in the Southern Ocean during the austral summer show characteristic features related to the production of phytoplankton and zooplankton, which are most abundant during this season. Furthermore, the characteristics of the various water masses in the Southern Ocean may also be governed by the production and removal of dissolved N$_2$O. In this study, the following important facts should be emphasized:

The concentration and isotopic composition of dissolved N$_2$O in the surface water are suggested to be associated with the transfer velocity around the Southern Ocean. Surface N$_2$O is at about 94% saturation and the calculated dynamic sea-air flux is on average −3.68 μmol m$^{-2}$ d$^{-1}$. This negative value can be explained by physical factors and the marine movement from the glacial region.
The vertical distributions of N_2O display a maximum layer around 150–300 m ($\Delta\text{N}_2\text{O}$, 7.90–8.51 nM) and coincide with the oxygen minimum layer. The N_2O maximum layer occurs below the chlorophyll-a maximum layer, suggesting a relationship between N_2O production and consumption and plankton dynamics in this area. N_2O production derives from aerobic and/or semi-anaerobic conditions, depending upon the redox boundaries by using the isotopic viewpoints.

In the deeper layer, the existence of anoxic microsites within particles, together with the horizontal and vertical movements of cold water from inshore, induced by the geopotential anomaly of the strong steering current of the ridge system around the Antarctic, are parameters that control the isotopic composition of N_2O, at least in part.

The influence of Southern Ocean N_2O on the global N_2O budget was estimated to be about $-3.76 \pm 2.67 \text{Gg N}_2\text{O-N d}^{-1}$, based on the sea-air flux and the assumption of upward N_2O flux caused by diffusion from the maximum layer to the T_{min} layer.

Acknowledgements. We acknowledge funding from the Japan Science and Technology Agency (JST). We would like to thank Wada E. and an anonymous reviewer, who commented constructively on the manuscript. We also thank the officers and crew members of the R/V Tanageroa for their cooperation.

References

Bouwman, A. L.: Exchange of greenhouse gases between terrestrial ecosystems and the at-
Production and consumption mechanisms of N_2O

N. Boontanon et al.

Introduction

Kim, K. R. and Craig, H.: Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: A global...
Schmidt, H. L. and Voerkelius, S.: Origin and isotope effects of oxygen in compounds of the

Fig. 1. Location of sampling stations during the JARE-43 Marine Science Cruise on the R/V Tangaroa.
Fig. 2. Vertical profiles at 140° E for temperature, salinity, dissolved oxygen, and apparent oxygen utilization. Top row highlights the upper 350 m.
Fig. 3. Vertical profiles of excess N$_2$O, isotopomer ratios (δ^{15}N$_{\text{bulk}}$, δ^{15}N$^\alpha$, δ^{15}N$^\beta$, and δ^{18}O), and 15N site preference (δ^{15}N$^\alpha - \delta^{15}$N$^\beta$) of N$_2$O observed at station 1 (61° S). Top row highlights the upper 500 m.
Fig. 4. Vertical profiles of excess N\textsubscript{2}O, isotopomer ratios ($\delta^{15}\text{N}_{\text{bulk}}$, $\delta^{15}\text{N}^{\alpha}$, $\delta^{15}\text{N}^{\beta}$, and $\delta^{18}\text{O}$) and 15N site preference ($\delta^{15}\text{N}^{\alpha} - \delta^{15}\text{N}^{\beta}$) of N\textsubscript{2}O observed at station 5 (64° S). Top row highlights the upper 350 m.
Fig. 5. Vertical profiles of excess N$_2$O, isotopomer ratios (δ^{15}N$^{\text{bulk}}$, δ^{15}N$^{\alpha}$, δ^{15}N$^{\beta}$, and δ^{18}O), and 15N site preference (δ^{15}N$^{\alpha}$ − δ^{15}N$^{\beta}$) of N$_2$O observed at station 8 (66.15° S).
Fig. 6. Correlation of ΔN$_2$O and AOU at stations 1 and 5. ΔN$_2$O in the mixed layer, below mixed layer to maximum layer, and below maximum layer plotted as triangles, squares, and diamonds, respectively.
Fig. 7. Proposed pathways for the formation and destruction of N$_2$O from the reduction of nitrite. The involvement of enzyme-bond intermediates is shown (modified from Weeg-Aerssens et al., 1988).
Fig. 8. Summary of the effects of dissolved N$_2$O in the Southern Ocean.