Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

C. H. Frame1,2 and K. L. Casciotti1

1Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
2Joint Program in Chemical Oceanography, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

Received: 2 April 2010 – Accepted: 8 April 2010 – Published: 27 April 2010

Correspondence to: C. H. Frame (cframe@whoi.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Nitrous oxide (N_2O) is a trace gas that contributes to greenhouse warming of the atmosphere and stratospheric ozone depletion. The N_2O yield from nitrification (moles N_2O-N produced/mole ammonium-N consumed) has been used to estimate marine N_2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N_2O yield from nitrification is not constant. Previous culture-based measurements indicate that N_2O yield increases as oxygen (O_2) concentration decreases and as nitrite (NO_2^-) concentration increases. These results were obtained in substrate-rich conditions and may not reflect N_2O production in the ocean.

Here, we have measured yields of N_2O from cultures of the marine β-proteobacterium $Nitrosomonas marina$ C-113a as they grew on low-ammonium (50 µM) media. These yields were lower than previous reports, between 4×10^{-4} and 7×10^{-4} (moles N/mole N). The observed impact of O_2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5×10^6 cells ml$^{-1}$), where 160-fold higher yields were observed at 0.5% O_2 compared with 20% O_2. At environmentally relevant cell densities (2×10^2 to 2.1×10^4 cells ml$^{-1}$), cultures grown under 0.5% O_2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O_2. Thus, previously reported many-fold increases in N_2O yield with dropping O_2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO_2^- (up to 1 mM) in the growth medium also increased N_2O yields by an average of 70% to 87% depending on O_2 concentration. We made stable isotopic measurements on N_2O from these cultures to identify the biochemical mechanisms behind variations in N_2O yield. Based on measurements of $\delta^{15}N$, site preference (SP=$\delta^{15}N^{\alpha} - \delta^{15}N^{\beta}$), and $\delta^{18}O$, we estimate that nitrifier-denitrification produced between 11% and 26% of N_2O from cultures grown under 20% O_2 and 43% to 87% under 0.5% O_2. We also demonstrate that a positive correlation between SP and $\delta^{18}O$-N_2O is expected when nitrifying bacteria produce N_2O. A positive relationship between SP and $\delta^{18}O$-N_2O has been observed in environmental
N$_2$O datasets, but until now, explanations for the observation invoked only denitrification. Such interpretations may overestimate the role of heterotrophic denitrification and underestimate the role of ammonia oxidation in environmental N$_2$O production.

1 Introduction

The atmospheric concentration of the greenhouse gas nitrous oxide (N$_2$O) has risen steadily over the last century. Processes in the microbial nitrogen cycle are the largest source of atmospheric N$_2$O and nearly one-third of this may come from the oceans (Nevison et al., 1995). Humans have greatly increased the amount of fixed nitrogen entering the oceans (Galloway et al., 1995), and the functioning of marine microbial ecosystems is shifting in response (Fulweiler et al., 2007; Beman et al., 2005; Naqvi et al., 2000). Understanding the impact of anthropogenic activity on the size of the marine N$_2$O source requires knowledge of which microbes are involved in N$_2$O production and how the production is controlled by chemical variables.

Nitrification, and in particular ammonia oxidation, is thought to dominate N$_2$O production in oxic water columns (Elkins et al., 1978; Cohen and Gordon, 1979; Goreau et al., 1980; Ostrom et al., 2000; Popp et al., 2002). Oversaturations of dissolved N$_2$O (ΔN$_2$O, nmol L$^{-1}$) are often positively correlated with apparent oxygen utilization (AOU) (Yoshinari, 1976; Cohen and Gordon, 1978; Elkins et al., 1978). Since AOU is a tracer of organic matter remineralization, the direct relationship between AOU and ΔN$_2$O is taken as evidence that N$_2$O is produced by nitrifying organisms. However, the linear AOU-N$_2$O relationship breaks down unpredictably in low-O$_2$ environments. Several different factors may contribute to this break-down: 1) at low O$_2$ concentrations, ammonia-oxidizing bacteria produce higher yields of N$_2$O per mole of NH$_4^+$ oxidized (Goreau et al., 1980; Jorgensen et al., 1984) 2) heterotrophic denitrifying bacteria produce more N$_2$O in low-O$_2$ conditions (Knowles et al., 1981; Payne et al., 1971) 3) in stably anoxic environments denitrifying bacteria are net consumers of N$_2$O, which they reduce to nitrogen gas (N$_2$) (Cline et al., 1987).
There is probably niche overlap among nitrifiers and denitrifiers in low-O\textsubscript{2} environments, making it especially difficult to distinguish between these two N\textsubscript{2}O sources. Ammonia-oxidizing bacteria are able to thrive at low O\textsubscript{2} concentrations (Carlucci and McNally, 1969; Goreau et al., 1980; Codispoti and Christensen, 1985) and it has been suggested that denitrification occurs in oxic ocean waters in the anaerobic interiors of organic particles (Yoshida et al., 1989; Alldredge and Cohen, 1987). However, to understand the individual impacts of these processes on the total marine N\textsubscript{2}O budget, we must be able to separate their responses to environmental changes.

Stoichiometric relationships among N\textsubscript{2}O production, NO\textsubscript{3}--regeneration, and AOU are also a convenient tool for converting oceanographic nutrient and O\textsubscript{2} data to estimates of N\textsubscript{2}O production (e.g., Codispoti and Christensen, 1985; Fuhrman and Capone, 1991; Jin and Gruber, 2003; Suntharalingam and Sarmiento, 2000) or using N\textsubscript{2}O concentration data to calculate nitrification rates (e.g., Law and Ling, 2001). However, there is not a universal AOU:N\textsubscript{2}O ratio; open-ocean AOU:N\textsubscript{2}O ratios differ from low-O\textsubscript{2} environments (Cohen and Gordon, 1979). N\textsubscript{2}O yields based on regressions of oceanographic data are also strongly influenced by mixing gradients, making them unreliable gauges for biological N\textsubscript{2}O production (Nevison et al., 2003). Alternative yield estimates are based on measurements of N\textsubscript{2}O production by cultures of ammonia-oxidizing bacteria (Goreau et al., 1980). However, these yield estimates may not be applicable to the ocean when they are made using non-representative strains grown at extremely high cell densities in substrate-rich media.

Understanding the nitrification N\textsubscript{2}O source is particularly complicated because ammonia oxidizers contain two distinct N\textsubscript{2}O-producing pathways that may respond differently to geochemical controls. One pathway is the oxidative decomposition of hydroxylamine (NH\textsubscript{2}OH), or one of its derivatives, during the conversion of NH\textsubscript{3} to NO\textsubscript{2}- (Hooper and Terry, 1979). The other mechanism, known as nitrifier-denitrification, is the sequential reduction of NO\textsubscript{2}- to NO and then N\textsubscript{2}O by the action of the nitrite reductase (NIR, encoded by the gene \textit{nirK}) and the nitric oxide reductase (NOR, encoded by the gene \textit{norB}). All of the ammonia-oxidizing bacteria that have been screened to
date contain the \textit{nirK} and \textit{norB} genes (Casciotti and Ward, 2001; Shaw et al., 2006; Casciotti and Ward, 2005; Cantera and Stein, 2007; Norton et al., 2008; Arp et al., 2007), and members of several genera have demonstrated conversion of $^{15}\text{NO}_2^-$ to $^{15}\text{N}_2\text{O}$ (Poth and Focht, 1985; Shaw et al., 2006). Archaeal ammonia oxidizers also appear to possess \textit{nirK} and \textit{norB} homologs (Treusch et al., 2005; Hallam et al., 2006) but it is not known whether the proteins encoded by these genes are involved in N_2O production.

The enzymes involved in nitrifier-denitrification are homologous to those found in a subset of heterotrophic denitrifying bacteria. However, unlike heterotrophic denitrification, nitrifier-denitrification may not be a strictly anaerobic process (Shaw et al., 2006). Ammonia-oxidizing bacteria express \textit{nirK} in aerobic environments in response to NO_2^- (Beaumont et al., 2004) and it has been hypothesized that NIR’s main role is in detoxifying NO_2^- (Poth and Focht, 1985; Beaumont et al., 2002). Nevertheless, a role for O_2 is suggested by the fact that \textit{nirK} expression increases in low-O_2 conditions (Beaumont et al., 2004) and yields of N_2O from cultures of ammonia-oxidizing bacteria increase by more than 40-fold when O_2 concentrations drop below 5 µM (Goreau et al., 1980).

N_2O with biologically distinct origins can be identified using stable isotopic signatures. The oxygen isotopic signature ($\delta^{18}\text{O}_{\text{N}_2\text{O}}$) has been used to distinguish nitrification and denitrification N_2O sources (Ostrom et al., 2000; Toyoda et al., 2005; Wrae et al., 2005; Kool et al., 2007). The $\delta^{18}\text{O}$ of N_2O depends on the proportion of oxygen in N_2O that is derived from O_2 versus H_2O, as well as any fractionation factors associated with incorporation or loss of the oxygen atoms in the metabolic precursors of N_2O (Casciotti et al., 2010). N_2O derived from NH_2OH contains only oxygen atoms from O_2 whereas N_2O produced by nitrifier-denitrification or heterotrophic denitrification depends on the $\delta^{18}\text{O}$ of NO_2^- (and also NO_3^- in the case of denitrification). H_2O contributes a significant fraction of the oxygen in NO_2^- and NO_3^- during nitrification (Andersson et al., 1982; Casciotti et al., 2010; Buchwald and Casciotti, 2010). Since the $\delta^{18}\text{O}$ values of marine H_2O are typically at least 20‰ less than those of dissolved O_2 (Kroopnick and Craig, 1976), marine N_2O produced with different amounts of oxygen
from H₂O and O₂ will reflect this in the δ¹⁸O signature. Indeed, positive correlations between oceanographic δ¹⁸O-O₂ and δ¹⁸O-N₂O data have been interpreted as evidence that the N₂O is a product of nitrification because oxygen from O₂ is most directly incorporated into N₂O through NH₂OH during NH₃ oxidation (Ostrom et al., 2000; Andersson and Hooper, 1983).

However, there are potentially different isotope effects associated with the incorporation of oxygen atoms from O₂ and H₂O into N₂O (Casciotti et al., 2010). If these isotope effects are significant and variable among different species of ammonia oxidizers, it may prove difficult to extract source information based on oxygen isotopes alone. Furthermore, the δ¹⁸O of N₂O produced by ammonia-oxidizing bacteria may change depending on what fraction of the oxygen atoms are derived from O₂ (via NH₂OH decomposition and nitrifier-denitrification) versus H₂O (via nitrifier-denitrification).

The δ¹⁵N site preference (SP) is another isotopic signature used to interpret environmental N₂O data (Toyoda et al., 2002; Sutka et al., 2003, 2004; Toyoda et al., 2005; Sutka et al., 2006; Koba et al., 2009). SP as defined by Toyoda and Yoshida (1999) is the difference in the enrichment of the internal (α) and external (β) nitrogen atoms in the linear N₂O molecule:

\[\text{SP} = \delta^{15}N^\alpha - \delta^{15}N^\beta. \]

Unlike δ¹⁸O and bulk δ¹⁵N values, SP is thought to reflect the N₂O production mechanism while remaining independent of the substrate’s isotopic signature. This is because the reactions that produce N₂O involve two identical precursor molecules (either NO or NH₂OH) (Toyoda et al., 2002; Schmidt et al., 2004) that are presumably drawn simultaneously from the same substrate pool. SP measurements made on N₂O produced by ammonia-oxidizing bacteria and denitrifying bacteria support this idea (Sutka et al., 2006). Cultures of ammonia-oxidizing bacteria produce N₂O with a SP of about 33.5‰ via NH₂OH decomposition. However, in the presence of NO₂⁻ or low O₂ concentrations, the same bacteria produce N₂O withSPs that are closer to those of denitrifying bacteria (−0.8‰) (Sutka et al., 2003, 2004, 2006).
Previous workers have estimated the “end-member” SP signatures of the two different sources of N$_2$O in ammonia oxidizer cultures by manipulating O$_2$ concentrations in order to favor production via one process over the other. However, since NH$_2$OH decomposition and nitrifier-denitrification can give rise to N$_2$O simultaneously, failure to account for this mixing may cause errors in these end-member SP estimates. If N$_2$O from NH$_2$OH decomposition has a SP that is much higher than the SP of N$_2$O from nitrifier-denitrification, as proposed by Sutka et al. (2003, 2004, 2006), then source mixing would cause underestimation of the SP of NH$_2$OH decomposition and overestimation of the SP of nitrifier-denitrification.

Here we have used δ^{18}O-N$_2$O and SP measurements in combination with a biochemical model to make mixing-corrected estimates of the end-member SP values for N$_2$O produced by NH$_2$OH decomposition and nitrifier-denitrification by the marine ammonia-oxidizing bacterium *Nitrosomonas marina* C-113a. These end-member values were then used to calculate the N$_2$O yields from nitrification and nitrifier-denitrification in different growth conditions, including a range of cell densities, O$_2$ concentrations (20%, 2%, and 0.5%), and NO$_2^-$ levels (0.2 to 1 mM), as well as in the presence of nitrite-oxidizing bacteria. Each experiment was carried out with an eye towards simulating environmental conditions more closely than previous studies by using growth medium that contains a fraction of the NH$_4^+$ present in commonly used recipes for ammonia oxidizer media (50 μM versus 5 to 10 mM NH$_4^+$).

2 Materials and methods

2.1 Culture maintenance and experimental setup

Cultures of *Nitrosomonas marina* C-113a were maintained in pure semi-continuous cultures with Watson medium containing 5 mM NH$_4^+$ (Watson, 1965). All maintenance cultures were kept in the dark at 25°C with shaking at 100 rpm. The cultures used to inoculate experiments were periodically tested for heterotrophic contamination as fol-
1 ml of each culture was added to 2 ml of a sterile 1:4 mixture of tryptic soy broth and artificial seawater and incubated 3 to 4 weeks in aerated culture tubes. Contamination was of particular concern during experiments on high density C-113a cultures because the abundance of cellular material was a potential source of organic substrate for the growth of heterotrophic denitrifiers, which can also produce N₂O at low O₂ concentrations. For this reason, additional purity tests were done by inoculating 5 ml of each high density culture (10⁵ – 10⁶ cells ml⁻¹) into 10 ml of the sterile tryptic soy/artificial seawater mixture amended with 1 mM NaNO₂⁻). These cultures were incubated in closed, inverted 15 ml centrifuge tubes for 3 to 4 weeks. All tubes remained free of turbidity and showed no production of gas bubbles that would indicate heterotrophic denitrification.

Experiments were carried out in 545 ml glass serum bottles (Wheaton, 223952) that contained 100 ml sterile Watson medium with 50 µM NH₄⁺. The headspace of each bottle was sealed using 30 mm gray butyl rubber septa (Wheaton, 224100-331) and aluminum crimps (Wheaton, 224187-01). Atmospheric O₂ and N₂O were removed by purging for 3 h with N₂ flowing at >60 ml min⁻¹ and appropriate amounts of high-purity O₂ (δ¹⁸O = +25.3‰) were injected back into each headspace to achieve 20%, 2%, or 0.5% O₂ (v/v) in the headspaces. Headspace O₂ and N₂O concentrations were checked before and after each experiment (see below). The ratio of headspace to liquid volumes was such that complete NH₃ oxidation consumed less than 10% of the total O₂ in the lowest (0.5%) O₂ headspaces.

Immediately before each experiment, 1–2 l of late exponential or early stationary phase cultures were centrifuged at 10 000 g for 30 min, washed to remove residual NH₄⁺ and NO₂⁻, and re-suspended in 30 ml sterile media without NH₄⁺. Experiments were initiated by the injection of 500 µl of washed and resuspended cells into each bottle. In the co-culture experiments, ammonia oxidizers with cell densities of approximately 2×10⁵ cells ml⁻¹ were added with washed and resuspended cells of the nitrite-oxidizing bacterium Nitrococcus mobilis (10⁶ cells ml⁻¹).

Initial and final cell densities were measured in samples preserved with 2% forma-
lin (0.22-µm filtered) by making microscopic counts of DAPI-stained cells, or by using fluorescence assisted flow cytometry (FACS) to count SYBR green-stained cells on a FACS Calibur flow cytometer (Becton Dickinson). Uninoculated bottles served as a control for abiotic N$_2$O production and were analyzed in parallel with experimental bottles. All bottles were incubated in the dark at room temperature with constant shaking. The progress of NH$_3$ oxidation was monitored by measuring accumulation of NO$_2^-$ and disappearance of NH$_4^+$ from the medium (see below). Once NH$_3$ oxidation was complete, experiments were terminated by injecting each bottle with 1 ml of 6 M NaOH, lysing the cells.

2.2 Chemical analyses

The concentrations of NH$_4^+$ were determined colorimetrically by the phenol-hypochlorite method (Solorzano, 1969) and NO$_2^-$ concentrations were determined by the Griess-Ilosvay colorimetric method (Pai and Yang, 1990) using a 1 cm path-length flow cell. Headspace O$_2$ concentrations were determined using a gas chromatograph with a 63Ni electron capture detector (Shimadzu GC-8A). The O$_2$ peaks from 20 to 250 µl injections of sample headspace were recorded and integrated using Shimadzu EZStart software (v. 7.2.1). Sample peak areas were calibrated with standard injections of air. Headspace N$_2$O concentrations were also measured before and after each experiment using the GC-8A. Sample peak areas were calibrated against commercial N$_2$O mixtures (10, 1, and 0.1 ppm) and fresh atmospheric air (approximately 320 ppb). When total headspace N$_2$O was less than 20 nmol, N$_2$O was quantified by analyzing the whole bottle (by purging and trapping, see below) on a Finnigan Delta$^+$ IRMS and using the linear relationship between peak area of m/z 44 and N$_2$O mass to determine total N$_2$O. The average blank determined by analyzing bottles flushed with high-purity N$_2$ was 0.08±0.04 nmol.
2.3 Isotopic analyses

Isotopic analyses of N₂O were conducted using a Finnigan DeltaPLUS XP isotope ratio mass spectrometer. Bottles were purged with He and N₂O was cryo-trapped on-line with a custom-built purge and trap system (McIlvin and Casciotti, 2010) operated manually with 545 ml serum bottles. The following modifications made large volume gas extraction possible: bottles were loaded manually, the helium flow rate was increased to 60 ml min⁻¹, and the purge time was extended to 45 min. As described in McIlvin and Casciotti (2010), CO₂ was largely removed from the gas stream by passage through a CarboSorb trap, then N₂O was separated from residual CO₂ using a capillary column (25 m × 0.32 mm) lined with Poraplot-Q before injection into the mass spectrometer through an open split. Mass/charge (m/z) peak areas were automatically integrated using Isodat 2.0 software. Values for δ¹⁸O, δ¹⁵Nbulk, δ¹⁵Nα, and δ¹⁵Nβ were obtained from simultaneous collection of the 45/44, 46/44, and 31/30 peak area ratios and referenced to our laboratory’s N₂O tank as described in Appendix A. This reference tank has been calibrated for δ¹⁸O (‰ vs. VSMOW), δ¹⁵Nbulk, δ¹⁵Nα, and δ¹⁵Nβ (‰ vs. AIR) by S. Toyoda (Tokyo Institute of Technology). Furthermore, the “scrambling coefficients” or isotopomer-specific NO⁺ fragment ion yields for our DeltaPLUS XP were determined for the ion source conditions used in these measurements (see Appendix B). For quality-control, two or three tropospheric N₂O samples were analyzed between every 7 to 10 experimental samples to check the consistency of our isotopomer analyses. These samples were created by allowing 100 ml of artificial seawater to equilibrate with outside air in 545 mL serum bottles, sealing the bottles, and analyzing them as described above. Triplicate samples of tropospheric N₂O from Woods Hole, MA analyzed during a typical run had δ¹⁵Nα = 15.0±0.1‰, δ¹⁵Nβ = -1.9±0.1‰, δ¹⁸O = 44.4±0.2‰, δ¹⁵Nbulk = 6.5±0.1‰, SP = 16.9±0.1‰, and m/z 44 peak area = 15.6±0.2 mV-s.

We also measured the δ¹⁸O and δ¹⁵N of NO₂⁻ that was produced by cultures as NH₃ oxidation progressed. NO₂⁻ was converted to N₂O using the azide method developed by McIlvin and Altabet (2005). The conversion to N₂O was carried out immediately
after sampling to avoid shifts in the oxygen isotopic values by abiotic exchange with water (Casciotti, 2007) or continued biological production of NO$_2^-$ from residual NH$_3$. Individual sample volumes were adjusted so that a consistent amount of N$_2$O (5 or 10 nmol) was produced for each set of azide reactions. Each sample set included at least three sets of three different NO$_2^-$ standards (N-23, N-7373, and N-10219, Casciotti, 2007) that were used to calculate sample δ^{15}N ($\%$ vs. AIR) and δ^{18}O ($\%$ vs. VSMOW) values. These samples were analyzed in 20 ml headspace vials using the autosampler setup described by Casciotti et al. (2002), modified with the addition of an -60° C ethanol trap and column backflush (McIlvin and Casciotti, 2010).

3 Results and discussion

Nitrifier-denitrification depends on the presence of NO$_2^-$ to produce N$_2$O (Ritchie and Nicholas, 1972; Poth and Focht, 1985; Yoshida, 1988), and the accumulation of NO$_2^-$ in environments such as oxygen deficient zones (ODZs) could contribute to increased N$_2$O production in these regions. This study was designed to test the impact of O$_2$ and NO$_2^-$ concentrations on the N$_2$O yield of marine ammonia-oxidizing bacteria at a lower substrate (NH$_4^+$) concentration, and at a broader and lower range of cell densities than any previous work. To date, the roles of substrate concentration and cell density in determining N$_2$O yield have not been resolved. N$_2$O yield data are presented in the same form used in oceanographic N$_2$O studies so that yields refer to the fraction of N atoms converted to N$_2$O out of the total amount of NH$_3$ that is oxidized (i.e. 2×moles N$_2$O/moles NH$_3$). In other words, a yield of 5×10^{-4} indicates that 1 in every 2000 N atoms from oxidized NH$_3$ will go into an N$_2$O molecule.

3.1 Cell density and O$_2$ concentration

Cell density influenced the observed N$_2$O yields in both low O$_2$ (0.5% and 2%) and high O$_2$ (20%) conditions. O$_2$ concentration had the greatest impact on N$_2$O yield at
the highest starting cell density tested (1.5×10^6 cells ml⁻¹) (Fig. 1). At 20% O₂, the high density cultures had the lowest yields, on average 1.3±0.4×10⁻⁴, while at 0.5% O₂ the high density cultures had the highest average yields observed, 220±40×10⁻⁴. In contrast, O₂ had a much smaller impact on N₂O yield in the medium density cultures (starting density of 2.1×10^4 cells ml⁻¹) and the low density cultures (starting density=2×10^2 cells ml⁻¹). In fact, the N₂O yields of the medium density cultures were not significantly different among the high and low O₂ treatments (5.1±0.5×10⁻⁴ at 20% O₂, 5.5±0.8×10⁻⁴ at 2% O₂, 6.4±1.4×10⁻⁴ at 0.5% O₂). Low density cultures produced average yields of 3.9±0.3×10⁻⁴ at 20% O₂, 4.7±0.1×10⁻⁴ at 2% O₂, and 6.7±0.5×10⁻⁴ at 0.5% O₂.

The average yields of the cultures at 20% O₂ (1.3–5×10⁻⁴) were comparable to the production yields (0.8–5.4×10⁻⁴) measured by Yoshida et al. (1989) in the oxic surface waters of the western North Pacific using ^1⁵NH₄⁺ tracer techniques. However, they are lower than previously reported yields for Nitrosomonas cultures at 20% O₂ (26–30×10⁻⁴ in Goreau et al. (1980) and 10–390×10⁻⁴ in Remde and Conrad, 1990).

In this study, low-O₂ conditions only resulted in substantial increases in N₂O yield when cell densities were artificially high. N₂O yields were relatively low and less sensitive to O₂ when cell densities were close to those observed in the ocean (10^3−10^4 cells l⁻¹, Ward et al., 1982). This draws into question the oceanographic applicability of previous culture-based yield measurements, where a many-fold increase in N₂O yield was observed as O₂ dropped from 20% to 0.5% (Goreau et al., 1980). Goreau et al. (1980) worked with a marine Nitrosomonas strain at cell densities (1×10^6 cells ml⁻¹) comparable to our high density experiments and observed N₂O yields of 800–1000×10⁻⁴ for cultures grown at 0.5% O₂. The implication of the present study is that other factors (such as cell density) influence the relationship between N₂O yield and O₂ concentration.

The mechanisms that explain the high N₂O yields of high density cultures at low O₂ could be chemical or biological. O₂ has a major influence on the half-life of nitric...
oxide (NO), the gaseous precursor of N₂O during nitrifier-denitrification. Concentration-dependent changes in the rate of N₂O-production could be related to O₂ as a consequence of the abiotic oxidation of NO:

\[2\text{NO} + \text{O}_2 \rightarrow 2\text{NO}_2\]

where nitrous acid (HNO₂), is the major decomposition product of the second reaction (Ignarro et al., 1993). In oxygenated environments, O₂ is the major reactant so that the reaction obeys pseudo-first-order kinetics (Lewis and Deen, 1994). However, in low-O₂ environments the half-life of NO increases, so that during bacterial NH₃ oxidation, it can accumulate to concentrations that are similar to N₂O (Remde and Conrad, 1990; Lipschultz et al., 1981). This may allow enzymatic NO reduction to N₂O during nitrifier-denitrification to compete for NO with the above O₂-dependent reaction. Studies of N. europaea have also shown that the expression of nirK during nitrifier-denitrification is controlled by a repressor protein that belongs to a family of NO-sensitive transcription regulators (Rodionov et al., 2005; Beaumont et al., 2002, 2004). If NO induces nirK transcription, the abiotic reaction of O₂ with NO could impact NIR-dependent N₂O production by destroying the gene’s inducer, NO. High cell densities may be necessary for either of these effects to take hold because biological competition with O₂ for NO will depend on the diffusivities of O₂ and NO relative to the distance between cells.

It is unclear why the highest density cultures had significantly lower N₂O yields at 20% O₂ than cultures with lower cell densities (Fig. 1), but it may be related to the amount of time that it took each culture to oxidize all of the NH₄⁺ present. The medium- and low-density cultures took 3.5 and 14 days to oxidize 50 µM NH₄⁺, respectively, while the high density cultures took 7 h. The bacteria in the medium- and low-density cultures may have had time to adjust their gene expression and enzyme activity to experimental conditions, whereas the high-density cultures did not. The discrepancy could also be related to differences in cell growth and division. Cell numbers doubled approximately 7, 2, and 0 times, in the low-, medium-, and high-density cultures, respectively. Rapidly
growing cells may be less efficient at converting NH₂OH to NO₂⁻, allowing more NH₂OH to decompose into N₂O.

3.2 NO₂⁻ and O₂ concentration

NO₂⁻ concentrations are sub-micromolar throughout most of the ocean. Yet in pure batch cultures of ammonia oxidizers, NO₂⁻ exposure is an unavoidable result of growth because NO₂⁻ increases up to the initial NH₄⁺ concentration. Excess NO₂⁻ may increase N₂O yields if ammonia oxidizers convert NO₂⁻ to N₂O to avoid the toxic effects of NO₂⁻ (Poth and Focht, 1985; Beaumont et al., 2002, 2004). Our experiments contained lower NH₄⁺ concentrations and therefore lower amounts of NO₂⁻ than previous studies. To test the impact of NO₂⁻ on N₂O yields, we increased NO₂⁻ concentrations by adding 0.2 or 1 mM NO₂⁻ to some cultures, and decreased accumulated NO₂⁻ concentrations in others by adding the nitrite-oxidizing bacterium *Nitrococcus mobilis* to create a co-culture.

The addition of 1 mM NO₂⁻ had a greater impact on N₂O yield than differences in O₂ concentration (Fig. 2a). The increase due to the additional NO₂⁻ was apparent in both low and high O₂ conditions. Furthermore, the average N₂O yields increased as the amount of added NO₂⁻ increased. Cultures under 20% O₂ with no added NO₂⁻ had an average yield of 4.0±0.03×10⁻⁴ while those with 1 mM added NO₂⁻ had an average yield of 7.6±0.5×10⁻⁴. Cultures under 0.5% O₂ with no added NO₂⁻ had an average yield of 6.0±0.5×10⁻⁴ and those with 1 mM added NO₂⁻ had an average yield of 10.2±0.3×10⁻⁴. N₂O yields were calculated as a fraction of the total N in NH₄⁺ at the start of the experiment (5×10⁻⁶ moles). There was no detectable loss of dissolved N from the combined NH₄⁺ and NO₂⁻ pools.

In the co-cultures, NO₂⁻ concentrations remained below detection at 20% O₂ and below 17 µM at 0.5% O₂. Although co-culturing kept NO₂⁻ concentrations lower than they were in the pure cultures, N₂O yields were not significantly lower in the presence of the nitrite-oxidizing bacteria (Fig. 2b). The insignificant differences between the
yields with and without nitrite oxidizers suggests that the 50 µM NO$_2^-$ that accumulated in our pure cultures did not have a major impact on the N$_2$O yields measured for those cultures. However, we were unable to entirely eliminate NO$_2^-$ accumulation in the low-O$_2$ experiments. Future work should focus on identifying the impact of NO$_2^-$ on N$_2$O production by nitrifiers in low-O$_2$ environments.

The role of NO$_2^-$ in the biochemistry of ammonia oxidizers can be both stimulatory and inhibitory. *N. europaea* cultures that have been starved for NH$_3$ demonstrate increased potential NH$_3$ oxidizing activity in the presence of 5 mM NO$_2^-$ (Laanbroek et al., 2002), indicating that NO$_2^-$ has protective properties. On the other hand, the same species exhibits reduced growth in the presence of higher NO$_2^-$ concentrations (10–100 mM) (Beaumont et al., 2004). Environmentally-relevant ammonia oxidizers may also have lower NO$_2^-$ tolerances than laboratory strains like *N. europaea* that are regularly exposed to high NO$_2^-$ concentrations. The relationship between NO$_2^-$, nitrifier-denitrification, and N$_2$O production is also complex. Aerobic nirK expression occurs in response to increasing NO$_2^-$ concentrations (Beaumont et al., 2004), but nirK knockout mutants actually produce more N$_2$O than the wild-type strain (Beaumont et al., 2002).

Oceanic O$_2$ concentrations may influence a number of different biogeochemical variables that enhance N$_2$O production by ammonia oxidizers. For example, low O$_2$ concentrations can increase the biological turnover time of NO$_2^-$ (Hashimoto et al., 1983) because the activity of nitrite-oxidizing bacteria ceases at a higher O$_2$ concentration than the activity of ammonia-oxidizing bacteria (Helder and de Vries, 1983). Charpentier et al. (2007) also suggest that high concentrations of organic particles found in certain productive waters enhance N$_2$O production by creating high-NO$_2^-$, low-O$_2$ microenvironments necessary to support nitrifier-denitrification. Future oceanographic work should investigate how N$_2$O production rates in oxygen deficient zones (ODZs) relate to these different biogeochemical variables.
3.3 Pathway dependence of δ^{15}N$^{\text{bulk}}$-N$_2$O

The bulk δ^{15}N of biological N$_2$O (δ^{15}N$^{\text{bulk}}$-N$_2$O) depends on the δ^{15}N of the substrate and any kinetic isotope effects associated with the enzymes that produce the N$_2$O. Cultures of ammonia-oxidizing bacteria produce N$_2$O that is generally depleted in 15N relative to the substrate NH$_3$ or the NO$_2^-$ produced (Yoshida, 1988; Sutka et al., 2003, 2004, 2006). This observation has been used to argue against nitrification as the source of N$_2$O in waters such as the western North Pacific, where N$_2$O is actually more enriched in 15N than the ambient NO$_3^-$ (Yoshida et al., 1989). However, the δ^{15}N of other N$_2$O precursors like NH$_2$OH (or NH$_3$) and NO$_2^-$ are difficult to measure because their oceanic concentrations are generally quite low.

Ammonia-oxidizing bacteria make N$_2$O through two different pathways, so that the observed isotopic signatures of N$_2$O are a function of the pathways’ mixing fractions, the isotopic signatures of their different substrate molecules, and the different isotope effects associated with those pathways. To probe the range of N$_2$O isotopic signatures made by C-113a, we manipulated growth conditions such as O$_2$ concentration and cell density in order to favor one N$_2$O production mechanism over another during complete oxidation of 5 µmoles of NH$_3$ (Figs. 3 and 4). We have interpreted the observed variation in δ^{15}N$^{\text{bulk}}$-N$_2$O to account for pathway-dependent mixing with different isotope effects and δ^{15}N signatures for N$_2$O produced through the different pathways. The goal in separating out the isotopic characteristics of the two processes was to determine the full range of N$_2$O isotopic signatures that can be produced by this ammonia oxidizer. We note that it was impossible to decouple nitrifier-denitrification from the NH$_2$OH decomposition pathway by growing C-113a in the presence of NO$_2^-$ alone because the bacteria do not produce N$_2$O unless there is also NH$_4^+$ present in the media (unpublished observations).

N$_2$O produced by all C-113a cultures was depleted in 15N relative to the substrate NH$_3$ (δ^{15}N-NH$_4^+=-3\%$), although the range varied widely (δ^{15}N$^{\text{bulk}}$-N$_2$O=-54.9% to...
Culture conditions affected the degree of 15N depletion, with cultures grown under 0.5% O$_2$ producing the most depleted N$_2$O (-54.9% to -15.2%), while cultures grown with 20% O$_2$ generally produced N$_2$O with higher δ^{15}N values (-13.6% to -6.7%). The low-O$_2$ cultures that produced the most depleted N$_2$O also produced the most N$_2$O (highest yield). We interpret the results by assuming each datapoint (δ^{15}N$_{\text{bulk, total}}$, M_{total}) represents a two-component mixture of a constant or “basal” N$_2$O source from NH$_2$OH decomposition ($M_{\text{NH}_2\text{OH}}$) and a variable source of N$_2$O from nitrifier-denitrification (M_{ND}) that tended to be larger in low-O$_2$ cultures. This is the basis for performing the type II linear regression of δ^{15}N$_{\text{bulk, total}}$ versus $\frac{1}{\text{mass N}_2\text{O}}$ in Fig. 3.

Equation (3b) (below), the model for the linear regression, was developed using the mass balance Eqs. (1) and (2):

$$\delta^{15}\text{N}_{\text{bulk, total}} = \delta^{15}\text{N}_{\text{ND}} \times M_{\text{ND}} + \delta^{15}\text{N}_{\text{NH}_2\text{OH}} \times M_{\text{NH}_2\text{OH}}$$ \hspace{1cm} (1)

$$M_{\text{ND}} = M_{\text{total}} - M_{\text{NH}_2\text{OH}}$$ \hspace{1cm} (2)

$$\delta^{15}\text{N}_{\text{bulk, total}} = \frac{\delta^{15}\text{N}_{\text{ND}} \times (M_{\text{total}} - M_{\text{NH}_2\text{OH}}) + \delta^{15}\text{N}_{\text{NH}_2\text{OH}} \times M_{\text{NH}_2\text{OH}}}{M_{\text{total}}}$$ \hspace{1cm} (3a)

$$\delta^{15}\text{N}_{\text{bulk, total}} = (\delta^{15}\text{N}_{\text{NH}_2\text{OH}} \times M_{\text{NH}_2\text{OH}} - \delta^{15}\text{N}_{\text{ND}} \times M_{\text{NH}_2\text{OH}}) \times \frac{1}{M_{\text{total}}} + \delta^{15}\text{N}_{\text{ND}}$$ \hspace{1cm} (3b)

According to Eq. (3b), the y-intercept of the regression is the δ^{15}N$_{\text{ND}}$ of the more depleted nitrifier-denitrification end-member (δ^{15}N$_{\text{ND}}$). The value of δ^{15}N$_{\text{ND}}$ obtained in this way is $-60.6\% \pm 4.1\%$ (errors are given as one standard deviation of the y-intercept). The difference between the δ^{15}N$_{\text{ND}}$ of the product N$_2$O and the δ^{15}N of the starting NH$_3$ is the overall isotope effect associated with N$_2$O formation by nitrifier denitrification ($\epsilon_{\text{ND}} = -57.6\%$). The most enriched N$_2$O produced in these experiments had a δ^{15}N$_{\text{ND}}$ of -6.7%, providing a minimum δ^{15}N$_{\text{ND}}$ for $M_{\text{NH}_2\text{OH}}$ (since a mixture...
of N$_2$O that has one -60.6% end-member must also have a heavier end-member in order to produce an N$_2$O mixture with an intermediate δ^{15}N$_\text{bulk}$).

This end-member mixing model does not account for the Rayleigh effects that kinetic isotopic fractionation has in closed systems such as batch cultures. These effects change the isotopic signatures of the NH$_3$ that is consumed and the NO$_2^-$ that accumulates as NH$_3$ oxidation proceeds (Mariotti et al., 1981) so that at any instant during the reaction, the δ^{15}N of N$_2$O produced from these substrates will also reflect these isotopic shifts. However in this study, the end-member mixing model is not a serious violation of Rayleigh assumptions because all cultures were allowed to oxidize the same amount of NH$_3$ to completion before the total N$_2$O was analyzed. Abrupt changes in N$_2$O production rates during the NH$_3$ oxidation reaction could also make this model problematic in a Rayleigh system. However, in these experiments N$_2$O accumulated steadily as NH$_3$ oxidation progressed and NO$_2^-$ accumulated (Fig. S1, see supplementary material http://www.biogeosciences-discuss.net/7/3019/2010/bgd-7-3019-2010-supplement.zip).

3.4 Covariation of SP and δ^{18}O-N$_2$O

The δ^{18}O of N$_2$O is like δ^{15}N$_\text{bulk}$ in that these signatures are both pathway-dependent and substrate-dependent. That is, the δ^{18}O of N$_2$O produced by ammonia-oxidizing bacteria depends on the mixing fraction of the two N$_2$O pathways as well as the isotopic signatures of the substrates (O$_2$ and H$_2$O) that contribute oxygen atoms to those pathways and isotopic fractionation during oxygen atom incorporation or loss in the reactions that produce N$_2$O (Casciotti et al., 2010). The conversion of NH$_3$ to NO$_2^-$ incorporates oxygen atoms from O$_2$ and H$_2$O (Andersson et al., 1982; Andersson and Hooper, 1983):

\[
\text{NH}_3 + \frac{1}{2}\text{O}_2 \rightarrow \text{NH}_2\text{OH}
\]
\[
\text{NH}_2\text{OH} + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + 4\text{H}.
\]
We expect the $\delta^{18}O$ of N$_2$O derived from NH$_2$OH decomposition to be independent of the $\delta^{18}O$ of H$_2$O because O$_2$ is the sole contributor of oxygen during the first reaction. However, the $\delta^{18}O$ of N$_2$O produced by NO$_2^-$ reduction during nitrifier-denitrification depends upon both the $\delta^{18}O$-O$_2$ and $\delta^{18}O$-H$_2$O, in proportions that are affected by the amount of oxygen atom exchange between NO$_2^-$ and H$_2$O (Andersson and Hooper, 1983; Casciotti et al., 2002; Kool et al., 2007; Casciotti et al., 2010).

The fact that the $\delta^{18}O$ of N$_2$O produced by nitrifier-denitrification is sensitive to changes in $\delta^{18}O$-H$_2$O is the basis for a technique that uses parallel experiments in 18O-labeled and unlabeled H$_2$O to identify the proportion of N$_2$O produced by nitrifier-denitrification (Wrage et al., 2005). The difference in $\delta^{18}O$ of N$_2$O from ammonia oxidizers grown in labeled and unlabeled H$_2$O is directly proportional to the fraction of the total N$_2$O that is produced by nitrifier-denitrification. Note that in these experiments, side-by-side comparisons between labeled and unlabeled replicates assume that nitrifier-denitrification and NH$_2$OH decomposition contribute the same proportion of N$_2$O to both labeled and unlabeled replicates and that the N$_2$O from NH$_2$OH decomposition has the same 18O signature in both labeled and unlabeled experiments.

The impact of $\delta^{18}O$-H$_2$O on the $\delta^{18}O$ of N$_2$O produced by C-113a is demonstrated in Fig. 4, where cultures grown in water with a $\delta^{18}O$ of $+40\%$ produced N$_2$O that was 5% to 40% more enriched in 18O than cultures grown in H$_2$O with a $\delta^{18}O$ of -5%. The difference between labeled and unlabeled cultures was greatest at 0.5% O$_2$, whereas at higher O$_2$ concentrations, the $\delta^{18}O$-N$_2$O values converged. The pattern is consistent with larger N$_2$O contributions by nitrifier-denitrification as O$_2$ concentrations drop and H$_2$O contributes more to the overall $\delta^{18}O$-N$_2$O.

In contrast to $\delta^{18}O$-N$_2$O, SP signatures of N$_2$O from ammonia oxidizers are thought to be pathway-dependent and substrate-independent: SP signatures vary as a result of mixing among N$_2$O sources with distinct SP values (Sutka et al., 2003, 2004, 2006), but they do not depend on the $\delta^{15}N$ values of the N$_2$O precursor molecules (Toyoda et al., 2002). For example, *N. europaea* produces high-SP N$_2$O ($31.4\pm4.2\%$) when
growing aerobically on NH$_3$, presumably through NH$_2$OH decomposition (Sutka et al., 2006). However, it can also produce low-SP N$_2$O ($-0.8 \pm 5.8\%$) in the presence of NO$_2^-$ and anaerobic conditions during nitrifier-denitrification (Sutka et al., 2003, 2004). In the present study, C-113a also produced high-SP N$_2$O (up to 33.2%) under 20% O$_2$ and low-SP N$_2$O (down to -9.1%) under 0.5% O$_2$ (Fig. 4).

Knowing the end-member SP signatures of N$_2$O from NH$_2$OH decomposition and nitrifier-denitrification is powerful because these can then be used to calculate the size of each pathway’s contribution to a culture’s total N$_2$O output based on its SP signature (SP$_{total}$) (Charpentier et al., 2007). We used the following model to extract these end-member SP signatures from our culture data, accounting for the fact that the SP of the N$_2$O from each culture is a mixture of these end-members. Following Charpentier et al. (2007), we set up a system of isotopic mass balance equations that describe isotopic mixing between low-SP N$_2$O from nitrifier-denitrification (SP$_{ND}$) and high-SP N$_2$O from NH$_2$OH decomposition (SP$_{NH_2OH}$):

$$SP_{total} = F_{ND} \times SP_{ND} + (1 - F_{ND}) \times SP_{NH_2OH},$$

where F_{ND} is the fraction of total N$_2$O that is produced by nitrifier-denitrification. Solving Eq. (4a) for F_{ND} produces:

$$F_{ND} = \frac{SP_{total} - SP_{NH_2OH}}{SP_{ND} - SP_{NH_2OH}}$$

Equation (4b) cannot be solved for F_{ND} without knowing the end-member values, SP$_{ND}$ and SP$_{NH_2OH}$, or having additional information about the value of F_{ND} for each data point. Therefore, we develop a complementary mixing equation based on the δ^{18}O-N$_2$O:

$$\delta^{18}O-N_2O_{total} = F_{ND} \times (\delta^{18}O-NO_2^- + 18\epsilon_{ND}) + (1 - F_{ND}) \times (\delta^{18}O-O_2 + 18\epsilon_{NH_2OH})$$

As discussed above, the measured δ^{18}O-N$_2$O (δ^{18}O-N$_2$O$_{total}$) depends not only on the mixing fraction F_{ND}, but also the isotopic signatures of the substrate molecules.
\(\delta^{18} \text{O-NO}_2 \) and \(\delta^{18} \text{O-O}_2 \) and kinetic and/or branching isotope effects associated with either reaction \(^{18}\epsilon_{\text{NH}_2\text{OH}} \) and \(^{18}\epsilon_{\text{ND}} \). In these equations, \(^{18}\epsilon_{\text{NH}_2\text{OH}} \) and \(^{18}\epsilon_{\text{ND}} \) are the net isotope effects expressed during oxygen incorporation from either O\(_2\) or NO\(_2^-\) into N\(_2\)O. Here we do not consider the impact of Rayleigh fractionation on the \(\delta^{18} \text{O-O}_2 \) because the O\(_2\) pool is large relative to the fraction that is consumed (<10\%) and is expected to raise the \(\delta^{18} \text{O-O}_2 \) less than 2‰. Substituting Eq. (4b) into (5) produces Eq. (6), which includes both SP values and oxygen isotopic signatures:

\[
\delta^{18} \text{O-N}_2\text{O}_{\text{total}} = \frac{\text{SP}_{\text{total}} - \text{SP}_{\text{NH}_2\text{OH}}}{\text{SP}_{\text{ND}} - \text{SP}_{\text{NH}_2\text{OH}}} \times \left(\delta^{18} \text{O-NO}_2 - \epsilon_{\text{ND}} \right) + \left(1 - \frac{\text{SP}_{\text{total}} - \text{SP}_{\text{NH}_2\text{OH}}}{\text{SP}_{\text{ND}} - \text{SP}_{\text{NH}_2\text{OH}}} \right) \times \left(\delta^{18} \text{O-O}_2 - \epsilon_{\text{NH}_2\text{OH}} \right)
\]

The best-fit values of the parameters \(\text{SP}_{\text{NH}_2\text{OH}} \), \(\text{SP}_{\text{ND}} \), \(\epsilon_{\text{NH}_2\text{OH}} \), and \(\epsilon_{\text{ND}} \) (Table 1) were obtained by fitting Eq. (6) to our dataset \((n = 32)\) using a Levenberg-Marquardt non-linear regression program (Draper and Smith, 1981). Inputs were the values of \(\text{SP}_{\text{total}} \), \(\delta^{18} \text{O-N}_2\text{O} \), and \(\delta^{18} \text{O-NO}_2^- \) measured for each culture, as well as the known \(\delta^{18} \text{O} \) of the high-purity O\(_2\) used in the headspaces (+25.3‰). Our estimates of the end-member SP values of N\(_2\)O are significantly lower \((-10.7\pm2.9‰)\) for N\(_2\)O produced by nitrifier-denitrification and higher \((36.3\pm2.4‰)\) for N\(_2\)O produced by NH\(_2\)OH decomposition than previous estimates (Sutka et al., 2003, 2004, 2006).

These results expand the range of SP values produced by ammonia oxidizers by more than 10‰. This has an impact when Eq. (4b) is used to calculate the fraction of N\(_2\)O from nitrifier-denitrification using oceanographic SP data (Charpentier et al., 2007). Here we used the new end-member SP values to calculate that nitrifier-denitrification by C-113a accounted for 11% to 26% of N\(_2\)O production under 20% O\(_2\) and 43% to 87% of production under 0.5% O\(_2\) (Table 2). There was considerable variation among cultures with different cell densities, with denser cultures producing relatively more N\(_2\)O by nitrifier-denitrification at low-O\(_2\) and less at high-O\(_2\).
A sensitivity analysis on the model reveals that estimates of SP$_{\text{NH}_2\text{OH}}$ and SP$_{\text{ND}}$ are both very sensitive to the values of the isotope effects $\epsilon_{\text{NH}_2\text{OH}}$ and ϵ_{ND}, although the sensitivity to $\epsilon_{\text{NH}_2\text{OH}}$ decreases in labeled H$_2$O (Fig. S2a–d, see http://www.biogeosciences-discuss.net/7/3019/2010/bgd-7-3019-2010-supplement.pdf). There are few published estimates of these isotope effects that we can compare with our model results, although recent work has addressed the isotope effects for oxygen atom incorporation into NH$_2$OH and NO$_2^-$ by C-113a (Casciotti et al., 2010). Work on the heterotrophic denitrifier Pseudomonas aureofaciens indicates that the branching oxygen isotope effect of NO$_2^-$ reduction is approximately 25‰ (Casciotti, 2007). However, it is not known whether the same isotope effect applies to nitrifier-denitrification or if there is also a kinetic isotope effect that influences the δ^{18}O of N$_2$O.

Equation (6) assumes that the oxygen atoms in N$_2$O produced by NH$_2$OH decomposition come only from O$_2$. If a fraction of this oxygen actually comes from H$_2$O then the model value of $\epsilon_{\text{NH}_2\text{OH}}$ should be too low for data from experiments in unlabeled H$_2$O (δ^{18}O-H$_2$O<δ^{18}O-O$_2$) and too high for data from labeled H$_2$O (δ^{18}O-H$_2$O>δ^{18}O-O$_2$). However, this pattern was not apparent in the residuals of $\epsilon_{\text{NH}_2\text{OH}}$ from labeled versus unlabeled experiments. Furthermore, if oxygen atoms exchanged between H$_2$O and NH$_2$OH is occurring, there was too much scatter in the data to resolve it by including an exchange term in Eq. (6).

The δ^{18}O and SP signatures of the N$_2$O in these experiments covaried (Fig. 4). The covariation depended on the δ^{18}O of the H$_2$O in the media: the slope of the linear regression of SP and δ^{18}O-N$_2$O was negative (-0.904 ± 0.087) for experiments performed in 18O-enriched H$_2$O (40‰) and positive (0.152±0.044) for experiments in 18O-depleted H$_2$O ($-5‰$) (Fig. 4). Our model provides an explanation for the covariation between SP and δ^{18}O-N$_2$O because it describes mixing between two N$_2$O sources with distinct SP values and different proportions of oxygen from O$_2$ and H$_2$O. According to Eq. (6), the sign and magnitude of the regression slope will depend upon the difference between δ^{18}O-O$_2$ and δ^{18}O-H$_2$O.
Positive correlations between $\delta^{18}O$-N_2O and SP observed in environmental data have been interpreted as signs that N_2O consumption by denitrification is an important N_2O cycling process in the system under scrutiny (Koba et al., 2009; Yoshida and Toyoda, 2000; Popp et al., 2002; Toyoda et al., 2002; Schmidt et al., 2004). Indeed, there is experimental evidence demonstrating that progressive consumption of N_2O by denitrifier cultures results in a simultaneous increase in both SP and $\delta^{18}O$-N_2O (Ostrom et al., 2007). The theoretical basis for this behavior is the fact that the N-O bonds formed by the heavier nitrogen and oxygen isotopes have lower zero-point energies and are therefore more resistant to being broken than bonds between the lighter isotopes (Yung and Miller, 1997; Toyoda et al., 2002). As a result, decomposition of a symmetrical O-N-N-O intermediate during N_2O formation and also cleavage of the N-O bond during N_2O reduction to N_2 will produce N_2O with positively correlated $\delta^{18}O$ and SP values.

Our work demonstrates that SP and $\delta^{18}O$-N_2O can also covary as a result of N_2O production by nitrification, without the need to invoke N_2O consumption by heterotrophic denitrifiers. The sign and magnitude of the correlation depends on the difference between the $\delta^{18}O$ of the O$_2$ and the H$_2$O that contribute oxygen atoms to the N_2O. In contrast to this study, where we manipulated $\delta^{18}O$-H$_2$O, there is little natural variation in $\delta^{18}O$-H$_2$O in the open ocean but much larger variation in $\delta^{18}O$-O$_2$ as a result of isotopic fractionation associated with respiratory O$_2$ consumption (Kroopnick and Craig, 1976; Bender, 1990; Levine et al., 2009). According to model Eq. (6), we would expect the slope of the $\delta^{18}O$-SP regressions (such as those in Fig. 4) to increase as $\delta^{18}O$-O$_2$ rises relative to $\delta^{18}O$-H$_2$O (or $\delta^{18}O$-NO$_2^-$). N_2O from nitrification may therefore influence the dynamics between $\delta^{18}O$-N_2O and SP in the oxycline in two opposing ways: 1) a drop in O$_2$ concentration may promote nitrifier-denitrification and thus the incorporation of low-$\delta^{18}O$ oxygen atoms from H$_2$O into low-SP N_2O and 2) respiratory O$_2$ consumption increases the $\delta^{18}O$ of the remaining O$_2$ pool, raising the $\delta^{18}O$ of the N_2O produced by NH$_2$OH decomposition as well as nitrifier-denitrification.
In the future, the combined measurement of SP, δ^{18}O-N$_2$O, and δ^{18}O-O$_2$ may be used to resolve these effects.

4 Conclusions

As shown previously, culturing conditions influence N$_2$O yields from ammonia-oxidizing bacteria. However, yields observed in this study were much lower than those obtained in previous culture-based measurements, and they did not increase as dramatically at low oxygen tensions. These results are in line with modeling- and incubation-based oceanographic estimates of N$_2$O yields from nitrification and may be useful in future modeling of N$_2$O production and distributions in the ocean. Recent work interpreting isotopic signatures of biogenic N$_2$O has often relied on the assumption that a direct relationship between δ^{18}O-N$_2$O and SP was indicative of N$_2$O consumption and production by denitrification. However, our work suggests that a direct relationship between these signatures may also occur as a result of nitrification, at least when the SP values vary between -10‰ and 36‰. Nitrification produces this relationship through mixing between high-SP, 18O-enriched N$_2$O produced by NH$_2$OH decomposition and low-SP, 18O-depleted N$_2$O produced by nitrifier-denitrification. When interpreting the marine N$_2$O cycle using isotopic signatures, a major unknown is whether archaeal ammonia oxidizers also produce N$_2$O and if so, what their impact is on the N$_2$O budget and the isotopic signatures of N$_2$O in the ocean. The genome of *Cenarchaeum symbiosum* contains genes that are homologous to bacterial *nirK* but not for hydroxylamine oxidoreductase (Hallam et al., 2006). If the archaeal system of converting NH$_3$ to NO$_2^-$ is profoundly different from the bacterial one, it could influence how O$_2$ is incorporated into NO$_2^-$ and thus the value of δ^{18}O-N$_2$O, as well as SP and δ^{15}N$^{\text{bulk}}$-N$_2$O.
Appendix A

Data collected during continuous flow isotopic analyses of N₂O included simultaneous signal intensities (in volt-seconds) of mass/charge (m/z) detectors 30, 31, 44, 45, and 46. The delta values and site preferences reported here were calculated using the raw peak area ratios of 31/30, 45/44, and 46/44 for a reference gas injection and the eluted sample peak. Isodat reports these raw ratios as "rR 31NO/30NO", etc. For each run, sample raw ratios were referenced to the standard ratios, and these ratio ratios were multiplied by the appropriate standard ratios (31R_{standard}=0.004054063, 45R_{standard}=0.007743032, 46R_{standard}=0.002103490) to calculate 31R_{sample}, 45R_{sample}, and 46R_{sample}, respectively. For example, 31R_{sample}=[(rR 31NO/30NO)]_{sample}/[(rR 31NO/30NO)_{standard}] · 31R_{standard}.

The R_{standard} values are the calculated ratios that the Farraday cups in the Casciotti MS should detect whenever the standard gas is analyzed under normal operating conditions. They depend on the actual isotopic/isotopomeric composition of the standard gas and also how that gas is fragmented in the MS. To calculate these three values we used 1) values of δ^{15}N^α, δ^{15}N^β, and δ^{18}O for our standard gas as measured by Sakae Toyoda and 2) The relative yields of m/z 30 and 31 from the ^{15}N^{14}NO and ^{14}N^{15}NO when these isotopomers are analyzed in the Casciotti MS (see Appendix B for details).

31R_{sample}, 45R_{sample}, and 46R_{sample} values are then entered into the following equations:

\[31R = \frac{(1-\gamma)^{15}R^\alpha + \kappa^{15}R^\beta + ^{15}R^{15}R^\alpha + ^{17}R(1+\gamma^{15}R^\alpha + (1-\kappa)^{15}R^\beta))}{(1+\gamma^{15}R^\alpha + (1-\kappa)^{15}R^\beta)}\]

\[45R = ^{15}R^\alpha + ^{15}R^\beta + ^{17}R\]

\[46R = (^{15}R^\alpha + ^{15}R^\beta)^{17}R + ^{18}R + ^{15}R^{15}R^\beta\]

\[17R/0.0003799 = (^{18}R/0.0020052)^{0.516}\]
where γ and κ are the yields of the scrambled fragment ions from $^{14}\text{N}^{15}\text{NO}$ (m/z 30) and $^{15}\text{N}^{14}\text{NO}$ (m/z 31) (see Appendix B). The four equations above can be evaluated with a nonlinear equation solver to obtain values for $^{15}\text{R}_\alpha$, $^{15}\text{R}_\beta$, ^{17}R, and ^{18}R for each sample.

Appendix B

Calculating m/z 30 and 31 yield coefficients

When N_2O is introduced into the ion source of the mass spectrometer, some NO$^+$ fragment ions are produced. While most of these ions contain N from the α position, a small amount of "scrambling" occurs, yielding NO$^+$ ions containing the β N. Accurate measurements of $^{15}\text{R}_\alpha$ and $^{15}\text{R}_\beta$ require quantification of the scrambling behavior for the mass spectrometer under standard operating conditions.

Westley et al. (2007) use six separate coefficients to describe the 30^+ and 31^+ fragmentation behaviors of the $^{14}\text{N}^{15}\text{NO}$, $^{15}\text{N}^{14}\text{NO}$, and $^{15}\text{N}^{15}\text{NO}$ isotopologues. We followed their recommendation and performed mixing analyses using purified $^{14}\text{N}^{15}\text{NO}$, $^{15}\text{N}^{14}\text{NO}$, and $^{15}\text{N}^{15}\text{NO}$ gases from ICON (Summit, N. J.) to investigate the fragmentation behavior of individual isotopologues in our MS (see supplementary material: http://www.biogeosciences-discuss.net/7/3019/2010/bgd-7-3019-2010-supplement.zip).

We also compared this approach to the results of a simpler approach using two scrambling coefficients, γ and κ, to describe the relative production of m/z 30 ions from $^{14}\text{N}^{15}\text{NO}$ and m/z 31 ions from $^{15}\text{N}^{14}\text{NO}$, respectively. These coefficients were used in the system of equations that convert ^{31}R, ^{45}R, and ^{46}R to $^{15}\text{R}_\alpha$, $^{15}\text{R}_\beta$, ^{17}R, and ^{18}R (see Appendix A for the full set of equations).

We calculated γ and κ using a series of dual inlet measurements of two sample gases with known isotope and isotopomer ratios referenced to a standard gas that also has a known isotopomer composition. In this case, the sample gases were from the laboratories of K. Koba (Tokyo University of Agriculture and Technology) and N. Ostrom.
(Michigan State University), and the standard gas was the reference gas from the Casciotti lab (WHOI). These three N₂O reference gases were all calibrated by S. Toyoda (Tokyo Institute of Technology).

For each sample gas the “measured” value of rR 31NO/30NO_{sample}/rR 31NO/30NO_{standard} was determined by averaging the results of a series of 10-cycle dual inlet analyses on the Casciotti MS. Then the “calculated” value of rR 31NO/30NO_{sample}/rR 31NO/30NO_{standard} (equivalent to $^{31}R_{sample}/^{31}R_{standard}$) was obtained by inserting Toyoda’s calibrated values of $^{15}R_\alpha$, $^{15}R_\beta$, ^{17}R, and ^{18}R for the sample and standard gases into the equation below and guessing values of γ and κ.

$$^{31}R = ((1 - \gamma)^{15}R_\alpha + \kappa^{15}R_\beta + {^{15}R_\alpha}^{15}R_\beta + {^{17}R}(1 + \gamma^{15}R_\alpha + (1 - \kappa)^{15}R_\beta))/((1 + \gamma^{15}R_\alpha + (1 - \kappa)^{15}R_\beta))$$

The problem is one of optimization where the object is to vary γ and κ until the calculated values of $^{31}R_{sample}/^{31}R_{standard}$ are as close as possible to the measured $rR31/30_{sample}/rR31/30_{standard}$ for both sample gases. This two-coefficient model automatically obeys the constraint of Toyoda and Yoshida (1999) that $\delta^{15}N_{bulk} = (^{15}R_\alpha + ^{15}R_\beta)/2$. The optimized values used here are $\gamma=0.1002$ and $\kappa=0.0976$. These coefficients are consistent with reported values for fragment ion yields and scrambling coefficients (between 0.08–0.10) (Westley et al., 2007; Toyoda and Yoshida, 1999).

Following the alternative approach of Westley et al. (2007) we found that ionization of the $^{15}N^{14}NO$ ICON standard produced approximately one tenth as many 31 ions as the $^{14}N^{15}NO$ ICON standard (see supplementary material for data and calculations). This result is an independent confirmation of the scrambling coefficient approach described above (because $\kappa/(1 - \gamma)=0.108$) and it does not require a priori knowledge of the isotopomeric composition of the reference gas.

For the data presented in this paper, we opted to use two coefficients and assumed that the fragment ion yields of 30 and 31 sum to 1 for both $^{14}N^{15}NO$ and $^{15}N^{14}NO$. Using this approach we were able to reproduce the isotopomer ratio values of sample gases.
with a broad range of site preferences (calibrated value for P. Ostrom tank=+26.5‰ and the value measured using our approach=+27.0‰; calibrated value of K. Koba tank=−5.4‰ and measured=−4.8‰).

Acknowledgements. We would like to thank Sakae Toyoda for calibrating our N₂O reference gas, Robin Sutka and Nathaniel Ostrom for providing the calibrated Michigan State reference gas, and Keisuke Koba for providing the calibrated Tokyo University of Agriculture and Technology reference gas. Marian Westley kindly provided extensive details on her isotopomer intercalibration strategy. Ed Leadbetter suggested the test for heterotrophic denitrification and the high cell density N₂O measurements. Matt McIlvin helped develop the modification necessary to do large-bottle headspace analyses on the MS. Matt First and Mark Dennett provided assistance with the flow cytometer. Alyson Santoro, Cara Manning, and Ed Leadbetter provided suggestions that improved the manuscript immensely.

References

Andersson, K. K. and Hooper, A. B.: O₂ and H₂O are each sources of one O in NO₂⁻ produced from NH₃ by Nitrosomonas: ¹⁵N-NMR evidence, FEBS Letters, 164, 236–240, 1983. 3024, 3036, 3037

Beaumont, H. J. E., Lens, S., Reijnders, W. N. M., Westerhoff, H. V., and van Spanning, R.
Controls and isotopic signatures of nitrous oxide production

C. H. Frame and K. L. Casciotti

Codispoti, L. A. and Christensen, J. P.: Nitrification, denitrification and nitrous oxide cycling in...
C. H. Frame and K. L. Casciotti

Abstract

Introduction

Conclusions

References

Tables

Figures

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the eastern tropic south Pacific Ocean, Mar. Chem., 16, 277–300, 1985. 3022
Cohen, Y. and Gordon, L. I.: Nitrous oxide in the oxygen minimum of the eastern tropical North
Pacific: evidence for its consumption during denitrification and possible mechanisms for its
Cohen, Y. and Gordon, L. I.: Nitrous oxide production in the ocean, J. Geophys. Res., 84,
347–353, 1979. 3021, 3022
Fuhrman, J. A. and Capone, D. G.: Possible biogeochemical consequences of ocean fertiliza-
Fulweiler, R. W., Nixon, S. W., Buckley, B. A., and Granger, S. L.: Reversal of the net dinitrogen
fixation: anthropogenic enhancement-environmental response, Global Biogeochem. Cy., 9,
235–252, 1995. 3021
Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W.:
Production of \(\text{NO}_2^- \) and \(\text{N}_2\text{O} \) by nitrifying bacteria at reduced concentrations of oxygen, Appl.
Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K., Richardson, P. M., and
DeLong, E. F.: Pathways of carbon assimilation and ammonia oxidation suggested by en-
3023, 3042
Helder, W. and de Vries, R. T. P.: Estuarine nitrite maxima and nitrifying bacteria (EMS-Dollard
estuary), Netherlands Journal of Sea Research, 17, 1–18, 1983. 3033
Hooper, A. B. and Terry, K. R.: Hydroxylamine oxidoreductase of \textit{Nitrosomonas} production of
nitric oxide from hydroxylamine, Biochim. Biophys. Acta, 571, 12–20, 1979. 3022
aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide
from L-arginine, P. Natl. Acad. Sci., 90, 8103–8107, 1993. 3031
Jin, X. and Gruber, N.: Offsetting the radiative benefit of ocean iron fertilization by enhancing

C. H. Frame and K. L. Casciotti

Abstract

Introduction

Conclusions

References

Tables

Figures

Title Page

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Controls and isotopic signatures of nitrous oxide production

C. H. Frame and K. L. Casciotti

at natural abundance levels, Limnol. Oceanogr. Methods, 2010. 3028, 3029

3050

Table 1. Isotope effects and signatures derived in this paper for *N. marina* C-113a. Best fit values of model parameters for Eq. (6) are given with standard deviations based on covariance estimates in Bard (1974).

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>σ</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{15}\epsilon_{\text{ND}}$</td>
<td>57.6‰</td>
<td>4.1‰</td>
<td>N isotope effect of nitrifier denitrification</td>
</tr>
<tr>
<td>$^{18}\epsilon_{\text{ND}}$</td>
<td>−8.4‰</td>
<td>1.4‰</td>
<td>O isotope effect of nitrifier denitrification</td>
</tr>
<tr>
<td>$^{18}\epsilon_{\text{NH}_2\text{OH}}$</td>
<td>2.9‰</td>
<td>0.8‰</td>
<td>effective O isotope effect of NH$_2$OH decomposition</td>
</tr>
<tr>
<td>SP$_{\text{ND}}$</td>
<td>−10.7‰</td>
<td>2.9‰</td>
<td>site preference of N$_2$O from nitrifier denitrification</td>
</tr>
<tr>
<td>SP$_{\text{NH}_2\text{OH}}$</td>
<td>36.3‰</td>
<td>2.4‰</td>
<td>site preference of N$_2$O from NH$_2$OH decomposition</td>
</tr>
</tbody>
</table>
Table 2. The fraction of N_2O produced by nitrifier denitrification (F_{ND}) calculated using measured SP values, Eq. (4b), and the best fit values for SP_{ND} and SP_{NH_2OH} in Table 1.

<table>
<thead>
<tr>
<th>density (cells ml$^{-1}$)</th>
<th>20% O$_2$</th>
<th>2% O$_2$</th>
<th>0.5% O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×10^2</td>
<td>$0.26 \pm 0.06, n = 5$</td>
<td>$0.38 \pm 0.04, n = 5$</td>
<td>$0.43 \pm 0.09, n = 4$</td>
</tr>
<tr>
<td>2.1×10^4</td>
<td>$0.19 \pm 0.03, n = 5$</td>
<td>$0.18 \pm 0.04, n = 5$</td>
<td>$0.48 \pm 0.11, n = 5$</td>
</tr>
<tr>
<td>2×10^5</td>
<td>$0.11 \pm 0.03, n = 6$</td>
<td>–</td>
<td>$0.58 \pm 0.11, n = 6$</td>
</tr>
<tr>
<td>1.5×10^6</td>
<td>–</td>
<td>–</td>
<td>$0.87 \pm 0.09, n = 5$</td>
</tr>
</tbody>
</table>
Fig. 1. N_2O yields versus cell density. Each bar represents the average of 5 replicate cultures. Error bars are for one standard deviation among replicates.
Fig. 2a. N$_2$O yields increased when NO$_2^-$ was added to the starting media. Initial NH$_4^+$ concentrations were 50 µM. Added NO$_2^-$ was either 0, 0.2 mM, or 1 mM.
Fig. 2b. N_2O yields in the presence and absence of nitrite-oxidizing bacteria. Starting NH_4^+ concentrations were 50 μM.
Fig. 3. The slope and intercept of a Type II linear regression of $\delta^{15}\text{N}_{\text{bulk}}$ and 1/mass N$_2$O regression are given ±one standard deviation. The densities of the cultures represented here were 1.5×10^6, 2×10^5, 2.1×10^4, and 2×10^2. In making a linear fit to the data, we assume that any differences in total N$_2$O are due to nitrifier-denitrification. The y-intercept of the line is equal to the $\delta^{15}\text{N}_{\text{bulk}}$ of N$_2$O from nitrifier-denitrification. Data points that were less than 1 nmol N$_2$O were not included.
Fig. 4. SP and δ^{18}O-N$_2$O covary. Filled symbols are data from cultures grown in labeled water (about 40‰) and diamonds represent data from cultures in unlabeled water (about −5‰). Regression slopes and intercepts are given ± one standard deviation. The cultures represented here were 1.5×10^6, 2×10^5, 2.1×10^4 cells ml$^{-1}$. Data from cultures that produced less than 1 nmol N$_2$O were not included. Data from low-density cultures were not included to avoid the impact of relaxation of the δ^{18}O-NO$^-$ towards equilibrium with H$_2$O over the course of the NH$_3$ oxidation reaction. All δ^{18}O values are referenced to VSMOW.