Interactive comment on “An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO₂ in the Atlantic Ocean” by M. Vázquez-Rodríguez et al.

M. Vázquez-Rodríguez et al.
mvazquez@iim.csic.es
Received and published: 25 May 2009

The evolution of back-calculation methods is necessary and certainly not new. New pieces have been progressively and slowly added over the initial concepts of the preformed CT method (which used surface data to parameterize AT° and CT°) from Brewer (1978) or Chen & Millero (1979) that have remained to a greater or lesser extent at the core of the new-coming methods. The milestone set by the old ΔC* approach in the work from Gruber et al. (1996) came from being the first to formally deal with the ΔCdis problem, and had its main strength on the use of CFC data as a mean to give a first approximation to it, some thirteen years back. There are several works acknowledging and documenting the caveats associated with the ΔC* approach (Matear et al., 2003; Lo Monaco et al., 2005; Matsumoto and Gruber, 2005), which stem mainly from the surface data used to obtain the parameterizations and the non-linear behaviour of CFC mixing and water mass dating for ages greater than â’Lij25 years (Doney et al., 1988).

The advancement of back-calculation methods is an ongoing and inevitable process as the understanding of the ocean carbon system improves considerably (Levine et al., 2008; Rodgers et al., 2009 in press) from the increasing bottle data coverage available, repeat sections, etc. This and the known shortcomings of existing methods is what motivated the upgrades proposed in our work. The changes introduced in the procedure might seem subtle at first, but they are indeed significant in any case. Out of the several modifications proposed the most important ones are: a) Having used the subsurface layer to obtain significantly better parameterizations (based on the understanding of how winter surface properties propagate into the ocean interior); b) Avoiding the use of CFC data in Cant estimation. The concentration of CFCs is not needed as an input parameter in any of the proposed equations, but it had to be used (reasonably appropriately in subsurface waters not older than 25 years) to obtain the fit for one of them (see below).

The following are answers to specific comments:

1. “...in the end they got more or less the same answer that existing approaches have already published.”

Although the general Cant concentration fields certainly share some general trends and similarities, the discrepancies are important enough so as to generate differences of up to 8 GtC in terms of Atlantic Cant inventory (about 15% of the inventory) (Gerber et al., 2009; Vázquez-Rodríguez et al., 2009), and this is not only with respect to the old ΔC* method but also with respect to methods more recently proposed like the one from Lo Monaco et al. (2005) or the TTD.
2. “One of the proposed changes with this method is the use of data from the 100-
200m depth range for calculating the preformed alkalinity. It is true that one can get a
better fit in this range, but the depth range seems rather arbitrary.”

Several ranges were tried, from 50-150 to 150-250 m, but the 100-200 m range showed
to work particularly well in the Atlantic, showing the lowest seasonal variability and
having the closest average values to surface late wintertime ones, when water masses
typically form in high latitudes. The challenge in selecting an appropriate range relied
in the fact that the selected layer had to be as free as possible from the direct influ-
ence of surface seasonal and short-term variability, and yet be not too influenced by
underlying older waters. Adding to this, the availability of at least four different levels
of bottle data in the GLODAP dataset for this particular range meant an added value
to establish the 100-200 m boundaries for the subsurface Atlantic layer. Doing so, the
parameterizations benefited from the higher number of data and spatial coverage from
the numerous spring and summer cruises in GLODAP.

3. “What if the winter mixed layer is only 100m? Then the chosen range does not
represent that winter’s properties. From figure 3d, we see that some of these waters
have ages in excess of 20 years so how can the authors claim that this represents the
recent winter values?”

We know that the winter mixed layer depth (WMLD) generally increases polewards
from the Equator, with known exceptions like in the Southern Ocean. In the Equator,
for instance, where the strong upwelling brings up to the surface waters slightly older
than 20 years, there are no significant water mass formation processes. Even if there
were some, Figs. 3a, 3b and 3e show how in this region (and in the Southern Ocean)
the vertical variability of relevant tracers for the parameterizations of AT° or ΔC_{dis} in
the 100-200 m layer is rather negligible, and the distributions are quite homogeneous,
contrary to the ΔC_{dis} computed subsurface from subsurface CT data (Fig. 3f), which
actually corresponds quite well to the age distribution in the Southern Ocean (Fig.
3d). In the Equator, the obtained ΔC_{dis} subsurface values close to zero (Fig. 3f) are
due to the strong upwelling of very old, CT enriched waters that would therefore be
close to CT saturation with respect to the present atmospheric pCO$_2$, while the highest
disequilibrium in Southern ocean waters is mostly due to ice cap hindering of air-sea
fluxes and the way oxygen disequilibrium interferes with the way ΔC_{dis} is defined and
calculated in back-calculation approaches (Lo Monaco et al., 2005).

4. “The authors propose a correction to the AT° to correct for a predicted decrease of
preindustrial AT due to CaCO3 dissolution changes and SST shifts. This correction is
based totally on theoretical estimates and seems very tenuous at best.”

The proposed correction for the effect of temperature on AT° estimates is entirely based
on recent empirical observations (NPAT vs T correlations), and the estimated temper-
ate increase of surface waters is taken from the latest IPCC report and several other
authors cited in the manuscript. On the other hand, ocean acidification and CaCO3
dissolution are well-documented processes known to be taking place nowadays that
affects AT, thus making a correction necessary for preindustrial AT° estimates from
present subsurface data. The vast majority of published works and ongoing research
are either mesocosm experiments or numerical models (for larger scales, usually). This
is the reason for having referred to Heinze (2004) results to come up with the proposed
minor correction.

5. “If I understand correctly, they describe a two step approach for calculating the
disequilibrium term with equations 2 and 3. First they use the Gruber approach that
requires a watermass age. It is not clear to me how they got watermass ages from
CFC12 for cruises in the 2000s when CFCs were not increasing during that timeframe.”

Correct. First, Cant is indirectly estimated with a shortcut method (as in Gruber et al.
1996) using CFC12 age estimates in order to obtain subsurface ΔC_{dis} estimates (from
equation 2) that can be later parameterized, in a “second step” (it must be noticed that
this is something that does not need to be done again by future users. They will only
need to apply equation 3 to get ΔC_{dis} in the water column). Only very few of the
considered cruises were conducted in the 2000s (NSeas and A25 in 2002, and A16N in 2003). However, this would have no effect for subsurface water masses older than 5 years found during these cruises.

6. “This is further complicated by taking the equation 2 disequilibrium values and fitting them with multiple linear regressions. They had to break the dataset into 7 regions and still got R squared values ranging from 0.18 to 0.62. Even the best fits only constrain a little more than half of the variability.”

This further fitting is necessary to make ΔC_{dis} computable from measurable conservative tracers (θ, S, NO and PO). The “chopping into blocks” of the ocean into several regions for the purpose of minimising the residuals of the fits is a common practice (Sabine et al., 2002 did it for the Pacific; Lee et al, 2003 in the Atlantic). This practice suits even best procedures that include resolving water mass mixing via an OMP analysis, as in our case, since there is no method to date that is able to resolve the Atlantic Ocean mixing. Moreover, the goodness of the fit (R2) and standard errors of the estimate are indicated in the manuscript. One can get low R2 values in regions of low variability and this would still be acceptable in terms of final Cant uncertainties, like in the South Atlantic for instance. Most importantly, the lowest R2 values correspond to warm intertropical waters with comparatively small relevance in terms of volume (and hence little impact on inventories) with respect to the whole Atlantic.

7. “...These approaches are used for all waters with a temperature greater than 5°C. For colder waters (I did not see why 5°C was chosen as the cutoff), they used an optimum multi-parameter fitting routine”

The reasons for establishing this 5°C boundary are not arbitrary. Warm waters below the 5°C isotherm represent approximately 86% of the Atlantic volume and store about 50% of the Atlantic Cant content. The 5°C limit roughly separates the upper waters from the region where Arctic and Antarctic waters meet and the mixing can be solved with a classical OMP.

8. “From all of this the authors claim an uncertainty of 5 umol/kg, but they do not show how they determined their uncertainties.”

The way uncertainties were calculated is far well documented and has been previously used in other Cant estimation works (Gruber et al, 1996; Sabine 1999; Lee et al., 2003), as stated in the manuscript. The analytical errors of the variables involved in the parameterizations that are randomly propagated are also given in the manuscript. The resulting lower uncertainty, compared to older Cant estimation methods, comes from the higher quality of the modern AT data (CRM calibrated) and the better AT fit here proposed.

The bottom line is that, from what has been discussed here and in the manuscript, there is still plenty of room for improvement in back-calculation techniques, which is what is intended with the proposed upgraded method. It is understandable from the point of view of the modeller’s community that having a single data-based model to calculate Cant would be optimum, but that would be as difficult as much as desirable. It would also be inappropriate to leave behind and not to profit from all of the ongoing carbon system fieldwork without implementing it to move forward in the back-calculation techniques. The improvement of data-based methods and numerical models is not only necessary, it must be complementary, in continuous feedback and, as much as possible, parallel in time.

Please also note the Supplement to this comment.

Interactive comment on Biogeosciences Discuss., 6, 4527, 2009.