Interactive comment on “Soil respiration in a fire scar chronosequence of Canadian boreal jack pine forest” by D. R. Smith et al.

N. Töpfer
natascha.toepfer@copernicus.org

Received and published: 2 October 2009

During the typesetting of this paper, the following section was accidentally removed. We apologize that this was not noticed before publication.

3.2 Soil organic carbon analyses

C_s contents of samples collected during FC 2 are shown in Table 3 and Fig. 5. Mean C_s (C_s) ranged from 0.060 g C/cm3 (1975B, fire scar age = 0 years) to 0.103 g C/cm3 (1991NB, fire scar age = 16 years). It was checked that the C_s data for the five scar age categories were normally distributed (Kolmogorov-Smirnov test: $P>0.1$ for all scar age categories). To test for differences between scars, ANOVA was inappropriate due to evidence of a statistically significant difference in variances between fire scar age categories (Levene’s test: $W=8.833$; $df=4, 27$; $P<0.001$). Therefore a non-parametric test was performed, which indicated significant differences in median C_s between one or more scar age categories (Kruskal-Wallis test: $\chi^2=11.031$; $N=32$; $df=4$; $P=0.026$). Subsequent t tests (Students t test where Levene’s $P>0.05$; Unequal variances t test where Levene’s $P<0.05$) revealed a statistically significant difference in C_s between 1948B and 1975B ($P<0.001$), though other comparisons were not statistically significant ($P>0.1$) (Table 4; Fig. 5).