Rate of Iceland Sea acidification from time series measurements

J. Olafsson1,2, S. R. Olafsdottir1, A. Benoit-Cattin1, M. Danielsen1, T. S. Arnarson1,3, and T. Takahashi4

1Marine Research Institute, Skulagata 4, IS 121 Reykjavík, Iceland
2University of Iceland, Askja, 101 Reykjavík, Iceland
3National Energy Authority of Iceland, Grensasvegur 9, 108 Reykjavík, Iceland
4Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA

Received: 9 April 2009 – Accepted: 8 May 2009 – Published: 26 May 2009
Correspondence to: J. Olafsson (jon@hafro.is)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The Iceland Sea is one part of the Nordic Seas. Cold Arctic Water prevails there and the deep water is an important source of North Atlantic Deep Water. We have evaluated time series observations of measured pCO_2 and total CO$_2$ concentration from discrete seawater samples during 1985–2008 for changes in response to increasing atmospheric carbon dioxide. The surface pH in winter decreases 0.0024 yr$^{-1}$, which is 50% faster than those at two subtropical time series stations, BATS and ESTOC. In the deep water regime (>1500 m), the rate of pH decline is $1/4$ of that observed in surface waters. The surface calcium carbonate saturation states (Ω) are about 1.5 for aragonite and 2.5 for calcite, and are about $1/2$ those for subtropical waters. During the period 1985–2008, the degree of saturation (Ω) decreased at a rate of 0.0072 yr$^{-1}$ for aragonite and 0.012 yr$^{-1}$ for calcite. The aragonite saturation horizon is currently at 1750 m and rising at 4 m yr$^{-1}$. Based on local hypsography, each year causes 800 km2 of sea floor, previously bathed in saturated waters, to be exposed to undersaturation conditions.

1 Introduction

The Nordic Seas lie north of the Greenland-Iceland-Faroes-Scotland Ridge, from which flows dense, cold overflow water to the North Atlantic (Hansen et al., 2008). The overflow waters are an important source for the global thermohaline circulation. The Iceland Sea is a constituent of the Nordic Seas. It is north of Iceland and divided by the Kolbeinsey Ridge, into two basins the western part being shallower (Fig. 1) (Jakobsson et al., 2008). The seafloor areas, depth and volumes, or hypsography, of the Nordic Seas has recently been described by Jakobsson (2002).

The hydrographic properties of the Iceland Sea can in essence be described as Arctic Intermediate Waters overlying Arctic Deep Water (Swift et al., 1980; Stefánsson, 1962). A time series of surface carbon chemistry observations was initiated in 1983 and
includes temperature, salinity, pCO_2 and the concentrations of total CO$_2$ and macronutrients (Takahashi et al., 1985). Here we describe 21 years of winter-month observations made during 1985–2008. The time series station is at 68.0° N, 12.67° W and has a bottom depth of 1850 m (Fig. 1). In mid-winter, temperature and salinity profiles generally display gentle variations with depth, with smooth transitions from intermediate to deep water (Fig. 2). These observations provide a basis for evaluating the carbon chemistry changes that result from shifts in chemical equilibria as the level of atmospheric CO$_2$ rises due to anthropogenic emissions.

There is increasing concern about the consequences of ocean acidification from the CO$_2$ driven shifts in ocean carbon system chemical equilibria driving trends toward lower pH and CaCO$_3$ saturation states, e.g. Royal Society (2005). Reactions involve firstly the hydrolysis of dissolved CO$_2$, which increases the H$^+$ concentration and thus lowers pH:

$$CO_2 (aq) + H_2O \rightarrow H^+ + HCO_3^- \quad (R1)$$

Secondly H$^+$ titrates the seawater carbonate and converts it to bicarbonate:

$$H^+ + CO_3^{2-} \rightarrow HCO_3^- \quad (R2)$$

As the carbonate ion concentration is lowered, the solubility of calcium carbonate, CaCO$_3$, increases:

$$CaCO_3 (s) \rightarrow Ca^{2+} + CO_3^{2-} \quad (R3)$$

The solubility product for calcium carbonate is written as

$$K_{sp}=[Ca^{2+}]_{sat}[CO_3^{2-}]_{sat} \quad (R4)$$

when water is in saturated with a calcium carbonate mineral, and the saturation state of calcium carbonate is

$$\Omega=[Ca^{2+}]_{sw}[CO_3^{2-}]_{sw}/K_{sp}=[CO_3^{2-}]_{sw}/[CO_3^{2-}]_{sat} \quad \text{where} \quad [Ca^{2+}]_{sw}=[Ca^{2+}]_{sat} \quad (R5)$$
where the subscripts “sw” and “sat” refer to the concentration in seawater and at saturation. When $\Omega > 1.0$ seawater is supersaturated, when $\Omega < 1$ seawater is undersaturated. As the solubility of the different mineral phases of CaCO_3 differ, so does Ω. The solubility is higher for aragonite than for calcite. Consequently aragonite forming organisms are considered more sensitive to the decrease in $[\text{CO}_3^{2-}]$ resulting from the additions of anthropogenic CO_2 (Kleypas et al., 2006).

The effect of increasing CO_2 and decreasing pH in seawater on the corresponding Ω distribution field in the oceans has been observed by Feely et al. (2004). Substantial impact is anticipated in high-latitude oceans by late this century as assessed by Orr et al. (2005) using ocean-carbon models. Recently another ocean-carbon-climate model study has indicated that the largest pH changes in this century would be seen in the surface waters of the Arctic Ocean. Concurrently, aragonite undersaturation might occur locally and become widespread as atmospheric CO_2 increases to more than 450 ppm (Steinacher et al., 2008). Observations show that currently the aragonite saturation horizon in the deep Arctic Ocean is at about 2500 m (Jutterström and Anderson, 2005). In this paper, we will focus on the Iceland Sea, southern part of the Nordic Seas, and assess the rate of surface and deep-water acidification from time series measurements.

2 Methods

2.1 Interpretation framework

For documenting long-term changes in the ocean chemistry, one needs a precise analytical method accompanied by well defined and stable standards for instrument calibration. Although direct measurements of pH or H^+ ion concentration in seawater are desirable, commonly used electrode methods suffer from ambiguities in regards to whether measurements represent H^+ ion activities, concentrations, or the sum of concentrations of H^+ species involved in acid-base reactions. Additionally, intercomparison
of measurements made using different electrode systems is difficult because electrode liquid-junction potentials vary among calibration solutions, such as those used for the NBS scale (Bates, 1973) and those used for seawater (Bates and Culberson, 1977). Another parameter, total (or titration) alkalinity, may be determined precisely and reproducibly using calibrated HCl solutions. However, alkalinity is a statement of the neutrality of ionic charges, and consists of contributions from various acids including carbonic, boric, silicic, phosphoric and some organic acids. In principle, exact computation of pH using the alkalinity requires a precise understanding of these component acids, including their concentrations and dissociation constants. However, the concentrations of the nutrient salts are generally low in the northern waters, and hence neglecting the contributions of phosphoric and silicic acids from alkalinity introduces only small systematic errors in computed chemical parameters. A typical winter surface water in the Iceland Sea has the following properties; SST = −0.19°C, salinity = 34.7, total alkalinity = 2285 µeq/kg, TCO₂ = 2150 µmol/kg with about 4 µmol/kg for silicate and 0.7 µmol/kg for phosphate. If silicate and phosphate are neglected, the resulting properties in seawater would yield the pHCO₂ value too low by 2 µatm, pH value too high by 0.002, and Ω value too high by 0.01. Therefore, systematic errors introduced by neglecting them are within the experimental errors for the alkalinity (±3 µeq/kg) and TCO₂ (±2 µmol/kg). On the other hand, in high nutrient waters such as those found in the Southern Ocean (silicate > 100 µmol/kg), the systematic errors may be as large as −10 µatm in pHCO₂, +0.01 in pH and +0.05 in Ω.

2.2 Data processing

In our study, we chose to measure pHCO₂ and TCO₂ (= [CO₂]aq + [HCO₃⁻] + [CO₃²⁻]). This method has two advantages. First, both the pHCO₂ and TCO₂ are measured using common standards, that are calibrated using the volumetric CO₂ method maintained earlier by the late C. D. Keeling and presently by P. Tans of ESRL, US NOAA. Second, using these two properties, pH and [CO₃²⁻] in seawater may be computed using a set of CO₂ solubility and the first and second apparent dissociation constants for carbonic
acid in seawater without the concentrations and dissociation constants of other acid species such as boric, phosphoric, silicic acids. The precision of our pCO_2 and TCO$_2$ measurements is $\pm 3 \mu$atm and $\pm 2 \mu$mol/kg respectively. Accordingly, if the dissociation constants and solubility of CaCO$_3$ are assumed to be known exactly, the precisions for the computed quantities should be $\pm 1 \mu$mol/kg for [CO$_3^{2-}$], ± 0.004 for pH and ± 0.02 for Ω. However, $\pm 5\%$ uncertainties in the dissociation constants for carbonic acid would cause an uncertainty of $\pm 5 \mu$mol/kg in [CO$_3^{2-}$] and ± 0.02 in pH. Furthermore, $\pm 10\%$ uncertainty in the solubility of CaCO$_3$ results in ± 0.25 uncertainty in Ω. Therefore, when the values reported in this paper are compared with results obtained using other sets of dissociation constants, these levels of uncertainty must be taken into consideration.

We determined the partial pressure of carbon dioxide (pCO_2) in discrete sea water samples using a gas chromatograph for gas samples equilibrated at 4.0°C, and total dissolved inorganic carbon (TCO$_2$) using coulometry (Chipman et al., 1993). The pCO_2 results were corrected to in situ temperatures using the temperature coefficient of 0.0423°C$^{-1}$ (Takahashi et al., 1993). Accuracy of the TCO$_2$ determinations is maintained since 1992 by comparison of results with reference material calibrated by Andrew G. Dickson of the Scripps Institution of Oceanography using C. D. Keeling’s manometric system. From the observed pCO_2 and TCO$_2$ results we calculate pH (total pH scale) and calcium carbonate saturation using the CO2SYS software (Lewis and Wallace, 1998), in which the solubility of CO$_2$ in seawater by Weiss (1974) and the apparent dissociation constants for carbonic acid of Mehrbach et al. (1973), as refit by Dickson and Millero (1987), are used. The CO2SYS also calculates aragonite and calcite solubility, Ksp, (Mucci, 1983) with pressure corrections.
3 Results

3.1 Surface changes

There is large seasonality in the high-latitude North Atlantic both in physical and biogeochemical parameters (Takahashi et al., 1993). In high winter, daytime is short and convective cooling of the surface layer intense. The biological processes are at their seasonal minimum. However, the winter mixed layer depth extends generally only to about 200 m at the Iceland Sea time series station (Ólafsson, 2003). For the evaluation of long-term surface variations, we use only winter observations in upper 20 m, which were collected in the first 67 days of the year (25 January to 7 March) in order to minimize the biochemical effects.

Over the 23 year period of the surface-water time series, 1985–2008, the computed pH values reveal a strong decreasing trend (Fig. 3a). Taking into account the effect of interannual variability of surface layer temperature, a linear regression shows the rate of pH decline -0.0024yr^{-1} and an increase in $[\text{H}^+]$ of about 14% over the 23 year period (Table 1 part A). The observed rate of pH decline is slower, -0.0017yr^{-1}, and the corresponding $[\text{H}^+]$ increase smaller, 9%, at two subtropical Atlantic time series stations BATS near Bermuda (Bates, 2007) and ESTOC near the Canary Islands (Santana-Casiano et al., 2007). However, our rates are not directly comparable with those from BATS, which are based on season-detrended whole-year data, nor with ESTOC which is based on a multivariate regression on a whole-year data. The temperature effect 0.0056°C$^{-1}$ computed from regression analysis (Table 1 part A) is larger than expected from the hydrographic temperature trend which suggests that it includes variations in other parameters, e.g. TCO$_2$, which influence pH. Addition of TCO$_2$ to the multivariate regression would reduce the temperature coefficient to 0.0045°C$^{-1}$ and change the pH change rate to -0.0022yr^{-1}.

In this cold water with a mean temperature of -0.3°C, the saturation states, Ω_{ar} and Ω_{ca}, are low, and they have decreased over the observation period (Fig. 3b and Table 1 part A). The rates of Ω change with time are comparable with those observed.
at BATS (Bates, 2007). The Ω_{ca} is decreasing at a rate about 1.6 times faster than that of $\Omega_{\text{ar}}, -0.0117/-0.00721$ (Table 1). Since Ω is inversely proportional to K_{sp} (Eq. 5), the rate of change in Ω reflects the K_{sp} of these minerals: for a given change in $[\text{CO}_3^{2-}]$ resulting from a pH change, $\Omega_{\text{calcite}}/\Omega_{\text{aragonite}}=K_{\text{sp(aragonite)}}/K_{\text{sp(calcite)}}=1.6$.

3.2 Deep water changes

We evaluate the changes in carbonate chemistry of deeper water from deep observations where seasonal variability is negligible. It is evident from the water column investigations 1994–2008 (Fig. 4) that pH and the carbonate saturation states of aragonite and calcite are decreasing, the isolines are shoaling with time. Over the duration of the observations the aragonite saturation horizon, $\Omega_{\text{ar}}=1$, shoals from 1763 m to 1710 m. For the deepest water the rate of change with time in the carbonate system parameters was evaluated from 97 samples from the 1500–1850 m depth range. As the solubility of calcium carbonate is pressure dependent, pressure and time are chosen as variables in a multivariate linear regression (Table 1 part B). The pressure (or depth) effects thus obtained are compared with the chemical equilibrium calculations using the pressure effect on K_{sp} of $-\Delta V$ (cm3) = $36.00-0.20\times(T^{\circ}\text{C})$ for calcite and $=33.3-0.22\times(T^{\circ}\text{C})$ for aragonite (Mucci, 1983). The equilibrium calculations indicate pressure effects of -5.0×10^{-5} db$^{-1}$ for pH, -3.4×10^{-4} db$^{-1}$ for Ω_{ca} and -2.0×10^{-4} db$^{-1}$ for Ω_{ar}. The results of the multivariate linear regression would include the effects of pressure as well as other changes such as chemical compositions. Nevertheless, considering the uncertainties (up to 20% in ΔV; Broecker and Takahashi, 1976) in the pressure effect on the K_{sp} of calcite and aragonite, these results are mutually consistent, thus giving credence to our results.

In this near bottom layer, the pH is falling 0.0006 yr$^{-1}$ (Table 1 part B) about 4 times slower than at the surface (Table 1 part A). The corresponding increase in H^{+} concentration over 23 years is 3.1% or about 1/4 of the surface rate of H^{+} increase.

Similarly, below 1500 m depth the aragonite saturation state is changing -0.0009 unit yr$^{-1}$ and the saturation horizon is shoaling with time (Table 1 part B).
This rate of decline for Ω_{ar} is 13% of that at the surface. The same applies to the Ω_{ca} decline. The rate of shoaling of the aragonite saturation horizon (where $\Omega_{ar}=1$) was evaluated using the regression coefficients in Table 1 part B and solving the multivariate linear regression for pressure when $\Omega_{ar}=1$ and year=1995 and 2005. Over this 10-year period, the aragonite saturation horizon shoals by 37.8 m (4 m yr$^{-1}$). Thus substantial sea-floor area may undergo a transition from supersaturated to undersaturated conditions as determined by the hypsometry of the Iceland Sea, the shape of the basin as described by the relation between depth and sea-floor area.

The Iceland Sea is relatively shallow, the mean depth being 1026 m, whereas the mean depths of the adjacent Norwegian and Greenland Seas are, respectively, 1816 m and 1580 m (Fig. 1) (Jakobsson, 2002). The Iceland Sea aragonite saturation horizon, $\Omega=1$, is about 800 m shallower than in the Arctic where it is at about 2500 m (Jutterström and Anderson, 2005). The hypsometric curve for the Iceland Sea reveals a rather gentle slope in the depth range 1000–1800 m, such that a 1-m depth change corresponds to 200 km2 of sea floor (Fig. 5). As the aragonite saturation horizon is currently rising at 4 m yr$^{-1}$, each year 800 km2 of the Iceland Sea floor along with associated biota become exposed to waters that have just become undersaturated with respect to aragonite. This analysis assumes similar temperature, salinity and carbon chemistry properties within this depth range across the basin. Our data from both east of, and west of the Kolbeinsey Ridge, the latter being shallower, demonstrate that this assumption is valid (Table 2).

There are two major reasons why these changes in the Nordic Seas are faster than those in the subtropical Atlantic. First, the buffer capacity of the cold Arctic waters is less than that of subtropical waters. The Revelle factor in the Iceland Sea surface water in winter was about 15.2 in the early 2000 whereas in subtropical Atlantic waters at BATS is was then 9.2 (N. Bates, personal communication, 2009). Thus, for the same amount of CO$_2$ added to seawater the reduction in pH would be more in the Iceland Sea surface water. Second, Iceland Sea surface waters are undersaturated with respect to atmospheric CO$_2$ throughout the year due to low temperatures and intense
biological utilization. Hence the Iceland Sea absorbs more CO$_2$ per unit area (Takahashi et al., 2002, 2009) as do the Nordic Seas in general (Skjelvan et al., 2005). The CO$_2$ air-sea flux has been estimated to be about 4.5 mol m2 y$^{-1}$ (J. Olafsson, personal communication, 2009). Both the high air-sea CO$_2$ flux and the lower buffer capacity (higher Revelle factor) result in stronger acidification of Iceland Sea surface waters.

4 Conclusions

The anthropogenic increase of atmospheric carbon dioxide affects the Nordic Seas both at the surface and at depth. In the surface, the pH has decreased from 8.13 to 8.08 between 1985 and 2008, and the aragonite saturation (Ω), which is naturally low anyway, decreased from 1.6 to 1.5 between 1985 and 2008. In the deep water, the pressure effect adds to the low temperature, and above the depths of about 1500 m, the aragonite saturation horizon is shoaling at a rate of about 4 m yr$^{-1}$. This shoaling results from extensive vertical mixing which transmits atmospheric signatures to waters as deep as 1500 m (Messias et al., 2008). Large areas of the benthos are thus undergoing a rapid transition from being exposed to waters that are supersaturated to being exposed to waters that are undersaturated with respect to aragonite. There is an urgent need to clarify the effects of these changes on associated benthic ecosystems, especially at shallower depths, where the population of carbonate forming benthic biota are much greater.

Acknowledgements. The authors thank all colleagues at the Marine Research Institute in Iceland, who have cooperated and assisted in the time series work in its course since 1983. This work is supported by the European Community Sixth Framework Programme CARBOOCEAN IP, Marine carbon sources and sinks assessment Contract no. 511176 and it is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. T. T. is supported by a grant (NAO30AR4320179P27) from US NOAA.
References

Lewis, E. and Wallace, D.: Programme developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of
Energy

5262

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>x=Time, year</td>
<td>z=Temperature, t°C</td>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>-0.0024 ± 0.0002</td>
<td>0.00563 ± 0.00270</td>
<td>13.00 ± 0.38</td>
<td>0.907</td>
</tr>
<tr>
<td>Ω_{ar}</td>
<td>-0.00721 ± 0.00066</td>
<td>0.0778 ± 0.0094</td>
<td>15.97 ± 1.33</td>
<td>0.882</td>
</tr>
<tr>
<td>Ω_{ca}</td>
<td>-0.0117 ± 0.0011</td>
<td>0.121 ± 0.015</td>
<td>25.78 ± 2.13</td>
<td>0.882</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>x=Time, year</td>
<td>z=Pressure, db</td>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>-0.000601 ± 0.000103</td>
<td>-0.000058 ± 0.000004</td>
<td>9.318794 ± 0.204435</td>
<td>0.767</td>
</tr>
<tr>
<td>Ω_{ar}</td>
<td>-0.000948 ± 0.000240</td>
<td>-0.000251 ± 0.000009</td>
<td>3.332886 ± 0.478023</td>
<td>0.906</td>
</tr>
<tr>
<td>Ω_{ca}</td>
<td>-0.001508 ± 0.000367</td>
<td>-0.000411 ± 0.000013</td>
<td>5.288040 ± 0.731239</td>
<td>0.916</td>
</tr>
</tbody>
</table>
Table 2. Iceland Sea mean properties of the sea water in the depth range 1000–1500 db west and east of the Kolbeinsey Ridge.

<table>
<thead>
<tr>
<th></th>
<th>Pressure</th>
<th>t°C</th>
<th>S</th>
<th>TIC μmol kg$^{-1}$</th>
<th>pCO$_2$ μatm</th>
<th>Ωar</th>
<th>Ωca</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western</td>
<td>1135±142</td>
<td>−0.56±0.12</td>
<td>34.898±0.042</td>
<td>2161±4</td>
<td>329±15</td>
<td>1.18±0.06</td>
<td>1.86±0.10</td>
<td>8.052±0.019</td>
</tr>
<tr>
<td>Eastern</td>
<td>1207±164</td>
<td>−0.76±0.15</td>
<td>34.908±0.006</td>
<td>2166±5</td>
<td>330±4</td>
<td>1.17±0.05</td>
<td>1.83±0.08</td>
<td>8.049±0.009</td>
</tr>
</tbody>
</table>
Fig. 1. Portion of the IB CAO v.2 bathymetric chart (Jakobsson, 2008) showing the Iceland Sea time series station, IS-ts, and adjacent Nordic Seas. The Iceland Sea boundaries are based on Jakobsson (2002).
Fig. 2. Winter 2006 profiles of temperature and salinity at the time series station, IS-ts, showing a 90 m seasonal mixed layer and homogenous water below 1500 m depth.
Fig. 3. Iceland Sea winter surface water changes in pH, and the saturation state of aragonite and calcite (Ω_{ar} and Ω_{ca}). Coefficients for the linear regression lines are shown in Table 1 part A.
Fig. 4. Iceland Sea Time Series deep-water trends during 1994–2008 for pH, aragonite saturation and calcite saturation (Schlitzer, 2009). The station depth is 1850 m.
Fig. 5. The hypsometry of the Iceland Sea (Jakobsson, 2002) shows that in the depth range 1000–1800 m, a 1 m shoaling of the aragonite saturation horizon results in 200 km2 of seafloor being exposed to bottom waters that are undersaturated with respect to aragonite.