Seasonal and mesoscale variability of oceanic transport of anthropogenic CO$_2$

Z. Lachkar1, J. C. Orr2, and J.-C. Dutay3

1Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
2Marine Environment Laboratories, International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Principality Of Monaco
3Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA/CNRS/UVSQ/IPSL, Orme des Merisiers, Gif-Sur-Yvette, Bat 712, 91191 Gif sur Yvette cedex, France

Received: 13 March 2009 – Accepted: 3 April 2009 – Published: 17 April 2009

Correspondence to: Z. Lachkar (zouhair.lachkar@env.ethz.ch)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Estimates of the ocean’s large-scale transport of anthropogenic CO$_2$ are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. We have evaluated this variability with the aid of an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO$_2$ is largest within 20° of the Equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the Equator and in the Southern Ocean. Mesoscale variability contributes to the annual-mean transport of both heat and anthropogenic CO$_2$ with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This “rectified” eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO$_2$ are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the Equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO$_2$. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of heat and CO$_2$. This component is not accounted for in coarse-resolution hydrographic surveys.
1 Introduction

The ocean absorbs and stores large amounts of heat and anthropogenic CO$_2$, thus playing a key role in mediating climate change. Air-sea fluxes of anthropogenic CO$_2$ cannot be measured directly, but regional variations in these fluxes can be inferred from interior ocean measurements by estimating both meridional transport and storage in the ocean (Wallace, 2001). Precise data-based estimates of meridional carbon transport would be useful to help evaluate simulated anthropogenic CO$_2$ uptake from ocean general circulation models (GCMs). The data-based approach to assess meridional transport of heat and freshwater was first used in the North Atlantic (Wunsch, 1978; Bryden and Hall, 1980; Hall and Bryden, 1982; Roemmich and Wunsch, 1985). Approaches used include the direct method (Hall and Bryden, 1982) and the inversion of hydrographic data (Roemmich and Wunsch, 1985; Macdonald and Wunsch, 1996). Similar inversion methods along with hydrographic measurements of ocean chemical properties were later used to estimate transport of carbon (Brewer et al., 1989; Martel and Wunsch, 1993; Holfort et al., 1998; Ganachaud and Wunsch, 2000) and nutrients (Rintoul and Wunsch, 1991; Ganachaud and Wunsch, 2002; Lavin et al., 2003). Because of the potential value of data-based estimates of transport across trans-oceanic sections for improving understanding of the global carbon cycle, this effort became one of the main objectives of the World Ocean Circulation Experiment (WOCE).

Nevertheless, there are many uncertainties in these approaches, some of which are related to the temporal variability in the meridional transports of these properties. Actually the observed sections have been collected exclusively during summer months, and only has the variability of Ekman transport been taken into account when calculating annual-mean transports (Álvarez et al., 2003), yet both ocean circulation and tracer concentration fields vary seasonally in the upper ocean, and they are also affected by the mesoscale activity. Thus, these calculations ignore, or average out, a large part of seasonal variability of velocity and tracer fields that could alter time-mean transports estimates. For example, Jayne and Marotzke (2001) found that non-Ekman
fluctuations induce an uncertainty in heat transport estimates made from hydrography which may be as large as 0.2 PW and 0.4 PW in the midlatitudes of the Atlantic and the Pacific Oceans, respectively. Hall and Bryden (1982) assessed the potential error introduced by eddy noise on their estimate of the heat transport at 24° N and found that it might be as large as 25% of the total. Therefore, to provide reliable estimates of anthropogenic CO$_2$ uptake from transport estimates, we must first be able to properly assess the transport temporal variations. Whereas the seasonal and eddy variability of heat transport have received much attention (Bryden, 1979; Bryden and Heath, 1985; Bryden and Brady, 1989; Wilkin et al., 1995; Lee and Marotzke, 1997, 1998; Stammer, 1998; Wunsch, 1999; Böning et al., 2001; Jayne and Marotzke, 2001; Volkov et al., 2008), less work has been devoted to investigate the seasonal and mesoscale variability of the meridional transport of anthropogenic CO$_2$. The time dependence of anthropogenic CO$_2$ transport thus represents a gap in our understanding of the ocean uptake of CO$_2$.

Here, we focus on seasonal variability of the ocean’s meridional transport of anthropogenic CO$_2$. We used an eddy-permitting GCM to study the effects of both the seasonal cycle and mesoscale variability of transport. For comparison, we also examine the meridional transport of heat. We devote a particular attention to the contribution of mesoscale eddy variability to the meridional transport of heat and CO$_2$, as this is neither resolved in time nor in space in most synoptic hydrographic surveys. Finally, we assess to what extent such variability could alter one-time hydrographic estimates of meridional transport of CO$_2$ and heat. In order to gain insight into the mechanisms driving the transport variability, we follow the lead of Lee and Marotzke (1998) and Jayne and Marotzke (2001), who decomposed the ocean circulation into different dynamical components.
2 Methods

2.1 Strategy

We made global simulations of anthropogenic CO$_2$ using an eddy-permitting version of the ORCA-LIM global ice-ocean model with $\frac{1}{2} \cos \varphi \times \frac{1}{2}$ grid (ORCA05, where φ is latitude) and 46 vertical levels. The average horizontal grid size is 34 km. This is actually an intermediate-resolution model that features substantial mesoscale eddy activity particularly in the Southern Ocean and near the western boundary currents, even though its eddy kinetic energy is, on average, about one fourth of that from TOPEX/Poseidon altimetry observations (Lachkar et al., 2007). It is implicitly assumed that the overall qualitative picture would remain similar in future higher resolution simulations, while the quantitative details presented here may change. However, this needs to be confirmed through a series of future finer GCM runs. The main goal of using an eddy-permitting model is to provide a characterization of patterns of the simulated mesoscale variability in the meridional transport of anthropogenic CO$_2$.

Following conventional practice, we computed eddy fluxes from covarying fluctuations in velocity and tracer fields, relying on 5-day average model output. Model results were compared to GLODAP data-based estimates of anthropogenic CO$_2$ (Key et al., 2004). In addition, comparing our simulated heat transport variability with previous observational and model-based estimates helped us to further validate our model results. We also made anthropogenic CO$_2$ simulations with the same model, but at coarse-resolution ($2^\circ \cos \varphi \times 2^\circ$) as typically done in the current generation of climate and carbon models. The comparison between these eddying and non-eddying simulations helped isolate the transport directly associated with resolved mesoscale eddies.

2.2 Model details

Our dynamic simulations were made with the ORCA-LIM global ice-ocean model, whose ocean component, the OPA model (Océan PArallélisé, version 9) is coupled
to the dynamic-thermodynamic Louvain-la-Neuve sea-ice model (LIM) (Fichefet and Maqueda, 1997). A full description of OPA is provided in Madec and Imbard (Madec and Imbard, 1996) and (Madec et al., 1998). The model has 46 vertical levels with a vertical grid resolution varying from 6 m at the surface to 250 m at the bottom. Vertical mixing coefficients are computed from a second-order closure scheme based on a prognostic equation for turbulent kinetic energy (TKE) (Gaspar et al., 1990; Blanke and Delecluse, 1993). Lateral tracer mixing occurs along isopycnal surfaces (Cox, 1987). Further details of the model physics are given in Lachkar et al. (2007). The bathymetry is calculated using the 2′ bathymetry file ETOPO2 from NGDC (National Geophysical Data Center) (Smith and Sandwell, 1997; Jakobsson et al., 2000), except for the zone south of 72° S where it was computed from the BEDMAP data (Lythe and Vaughan, 2001). Initial conditions for the temperature and salinity fields were taken from Levitus et al. (1998) for the low and middle latitudes and from the PHC2.1 climate (Steele et al., 2001) for high latitudes. The model was started from rest, then spun up for 8 years with a climatological seasonal forcing with daily frequency as computed from the 1992–2000 NCEP/NCAR 10-m wind stress and 2-m air temperature data (Kalnay et al., 1996). Additionally, we used monthly climatologies of precipitation (Xie and Arkin, 1996), relative humidity (Trenberth et al., 1989), and total cloud cover (Berliand and Strokina, 1980). Surface heat fluxes and freshwater flux for ocean and sea-ice were calculated using the empirical bulk parameterisations proposed by Goose (1997), which yield more realistic results than do traditional restoring of sea-surface temperature and salinity (Large et al., 1997; Gent et al., 1998).

To reduce computational costs, we used the offline model to simulate anthropogenic CO₂. The offline model is a tracer-transport version of OPA (OPA Tracer 8.5) that was driven by 5-day fields of advection and vertical turbulent diffusion that were computed previously by the dynamic (online) version of the model. Furthermore, we used a perturbation approach to model anthropogenic CO₂ in order to further reduce the exhorbitant computational time and memory that would otherwise be needed to make long global carbon simulations at eddy-permitting resolution to near-steady state con-
ditions. Typically, such simulations would need to be integrated for several thousand years. This perturbation approach was introduced by Siegenthaler and Joos (1992) and first used in a 3-D model by Sarmiento et al. (1992). It assumes that the natural ocean carbon cycle is not affected directly by the anthropogenic perturbation, which means we can treat anthropogenic CO$_2$ as a passive transient tracer. For further details about these anthropogenic CO$_2$ simulations, including their boundary conditions, see Lachkar et al. (2007).

3 Results

3.1 Comparison with GLODAP data

Figure 1 shows global and basin zonal integrals of simulated anthropogenic CO$_2$ inventories compared to those for the GLODAP data-based estimates. The simulated anthropogenic CO$_2$ inventories generally match the data-based estimates, despite excesses in the tropical and subtropical Pacific Ocean and deficiencies in the high latitudes. The high-latitude deficiencies are linked to the weak simulated penetration of anthropogenic CO$_2$ in the upper ocean (Fig. 2). This artefact results from a known deficiency of the ORCA model that stems partly from the model's overly weak vertical mixing in this region due to a shallow mixed layer associated with the formulation of the model's TKE parameterization (Lachkar et al., 2007).

Despite adequate data-model agreement, potential systematic errors in the GLODAP data-based estimates for anthropogenic DIC (Matsumoto and Gruber, 2005) compromise our ability to use that tracer by itself as a reference to validate models (Orr et al., 2001). Anthropogenic DIC is clearly not of the same value as CFC-11, which is measured directly. Previously though, we have evaluated the same model with CFC-11 in Lachkar et al. (2007, 2009).
3.2 Meridional transports of CO$_2$ and heat: annual-mean and seasonal variability

3.2.1 Meridional overturning

The meridional transport of a tracer depends both on its spatial distribution in the ocean and on the overturning circulation. The time-mean meridional overturning stream function is shown in Fig. 3. The model's overturning circulation exhibits most of the familiar large-scale features: the Atlantic deep cell associated with North Atlantic deep water (NADW) formation, and the northward inflow of Antarctic bottom water (AABW) into the deep Pacific. With a simulated NADW circulation of 14 Sv and AABW deep cell of 13 Sv, the model slightly underestimates observation-based estimates while being in the range of their uncertainty (Ganachaud, 2003; Talley et al., 2003; Orsi et al., 1999; Ganachaud and Wunsch, 2000). The time-mean overturning is largely baroclinic (depth varying) with reversal of the flow at depth. One metric of the annual cycle of the overturning stream function is simply the difference between mean conditions in July minus those in January (Fig. 3). Seasonal patterns differ radically from the time-mean overturning circulation. The seasonally varying component is symmetric about the Equator and largely depth independent, with the return flow for the surface currents showing no deep reversals. These differences between the time-mean and seasonal overturning circulations are consistent with previous studies (Bryan, 1982; England et al., 1994; Böning and Herrmann, 1994; Wacongne and Pacanowski, 1996; Garternicht and Schott, 1997; Lee and Marotzke, 1998; Jayne and Marotzke, 2001). The amplitude of the annual cycle of the overturning circulation in the equatorial region is about 75 Sverdrups (1 Sv=10^6 m3s$^{-1}$) for the World Ocean, with 15 Sv from the Atlantic Ocean and 60 Sv from the Indo-Pacific Ocean. While the fluctuations in the zonal wind stress drive a corresponding change in the northward Ekman mass transport, there is a rapid adjustment to these wind stress anomalies owing to geostrophy and gravity waves that balance the changes in Ekman transport (Willebrand et al., 1980; Jayne and Marotzke, 2001). Thus, there is no net mass transport across a zonal
section. Nevertheless, when integrated vertically, there is a net meridional transport for anthropogenic CO$_2$ and temperature because anthropogenic CO$_2$ concentrations and temperatures are much higher in the Ekman layer than in the compensating deep return flow.

3.2.2 Meridional transports of heat and anthropogenic CO$_2$

Figures 4 and 5 show the meridional transport annual-mean and annual cycle for heat and anthropogenic CO$_2$, respectively. Although transported by the same circulation, the two tracers have different annual-mean transports owing to their contrasting vertical and meridional distributions in the upper ocean as shown in Fig. 6. Annual-mean heat transport is asymmetric about the Equator with maximum northward transport of 1.5 PW at 15° N versus maximum southward transport of about 1 PW at 10° S. Conversely, annual-mean meridional transport of anthropogenic CO$_2$ in 1994 is northward everywhere with two maxima of 0.3 Pg C yr$^{-1}$ and 0.2 Pg C yr$^{-1}$ at 45° S and 15° N, respectively.

Seasonal variability of meridional transport is much more similar between the two tracers because both are driven by seasonal circulation differences that are largely depth-independent, symmetric about the Equator, and dominated by the tropical dynamics. For example, both tracers exhibit their largest seasonal variability within 20°, and both have similar patterns across the Equator. Within 20° of the Equator, the annual cycle of transport (July minus January) is negative, and its magnitude is maximum around 10° in each hemisphere. The annual cycle for the global heat transport has a peak-to-peak amplitude that varies between 6 and 8 PW near the Equator and ranges from 1.5 to 2 PW in the subtropics.

The structure for the annual cycle of heat in our simulation is remarkably similar to that obtained by Jayne and Marotzke (2001) using a $\frac{1}{4}$° eddy-permitting model, although the peak-to-peak amplitude found in their model is 25% smaller, ranging between 4.5 and 6 PW in the equatorial region and between 1 and 1.5 PW in the subtropics. Such differences may result in part because our model is forced with wind stress
and temperature from NCEP climatology, whereas Jayne and Marotzke (2001) used the ECMWF reanalyses. Our simulated annual cycle for heat in equatorial region also agrees well with the estimate of Carissimo et al. (1985), who used satellite-derived net radiation balances and atmospheric transports and found that seasonal amplitude of heat transport was between 7 and 8 PW. Relative to heat transport, the annual cycle of anthropogenic CO$_2$ transport has a similar structure with an amplitude varying between 1.2 Pg C yr$^{-1}$ and 1.5 Pg C yr$^{-1}$ in the equatorial region and between 0.3 Pg C yr$^{-1}$ and 0.4 Pg C yr$^{-1}$ at subtropical latitudes.

Unlike for the annual-mean transport, the Atlantic basin contributes the least to the seasonally varying transport with a peak-to-peak amplitude at 8° N of less than 2 PW and 0.3 Pg C yr$^{-1}$ for heat and anthropogenic CO$_2$, respectively. This results from the relatively weak seasonal overturning circulation in this basin in comparison to the Indo-Pacific Ocean (Fig. 3). For a better mechanistic understanding of the processes driving the annual mean transport and its variability, we decomposed the meridional velocity into various dynamical components.

3.2.3 Mechanisms: dynamical decomposition

Following Lee and Marotzke (1998), the meridional velocity component was broken down into three separate components:

\[
\mathbf{v}(x, y, z) = \left[v_e(x, y, z) - \frac{1}{h} \int_{-h}^{0} v_e(x, y, z) \, dz \right] + \frac{1}{h} \int_{-h}^{0} v(x, y, z) \, dz + v_{\text{baroc}}(x, y, z) \tag{1}
\]

where h is ocean depth. The first component on the right hand side of Eq. 1 is the Ekman flow minus its barotropic compensation. The Ekman component of velocity, v_e, is taken to be the shear velocity in the upper 100 m of ocean referenced to velocity at 100 m (the tenth level in our model). Most of the Ekman transport takes place in the uppermost 30 m (top three levels in the model). The second component is the contribution of the non-Ekman meridional velocity associated with the external
mode (or barotropic gyre circulation) flowing over varying topography. The third component, v_{baroc}, is the baroclinic velocity which is generally associated with thermal wind shear balanced by zonal density gradients along with smaller contributions from the ageostrophic processes. We refer to these three terms as the Ekman, barotropic, and baroclinic components.

We evaluated how each of these three components contributes to the annual cycle of meridional transport of heat and anthropogenic CO$_2$ (Fig. 7). The seasonally varying Ekman transport is symmetric across the Equator because the Coriolis parameter and the zonal wind seasonal cycle are antisymmetric about the Equator. The maximum Ekman variability occurs at 7° S and 5° N where the seasonal variations in zonal wind are the largest. The Ekman transport is the dominant mechanism driving seasonal variability in the tropics. Very near the Equator, there is an increase of the baroclinic southward transport, which compensates a sharp reduction in Ekman transport. However, this dynamic decomposition is meaningless very near the Equator where the Ekman transport becomes ill-defined as the Coriolis parameter approaches zero. The increase in the baroclinic transport at the Equator expresses the existence of a seasonally varying flow across the Equator driven by the water pressure gradient (Schopf, 1980; Philander and Delecluse, 1983; Jayne and Marotzke, 2001). In the southern extratropics, the baroclinic transport contributes substantially to the seasonal variability. Finally, throughout the ocean there is little contribution to the seasonal variability of meridional transport from the barotropic gyre circulation.

The dominance of the Ekman transport component explains why the annual cycle of meridional transport is similar for both tracers. In contrast, the discrepancies between time-mean meridional transport of the two tracers suggest that the contributions of the baroclinic and barotropic components are much more important than for the seasonal variability. Indeed, after applying the analogous dynamic decomposition to the annual-mean transport, we found that the baroclinic transport has the same magnitude as does the Ekman transport and that these two components counteract one another nearly everywhere. There is also an important contribution to the mean transport from
the barotropic component, particularly for anthropogenic CO₂ (Fig. 8).

Having studied the time-mean and the seasonally varying transport of heat and anthropogenic CO₂, we now turn our attention to the contribution of the mesoscale variability to the time-mean transport of both tracers.

3.3 Eddy transport of CO₂ and heat

3.3.1 Characteristics of the eddy transports

Here we explore the characteristics of the eddy transport of CO₂ and heat in an eddy-permitting GCM. We examine the spatial distributions of the eddy transport, and we investigate its physical nature for both tracers. The eddy transport for a tracer results from the covariance of fluctuations in its concentration and fluctuations in advective velocities, both relative to their time means. This so-called “rectified” eddy transport (hereafter referred to as eddy transport) contributes to the annual-mean transport and is generally associated with mesoscale activity (Thompson, 1993; Jayne and Marotzke, 2002); however, it may also result from other high-frequency variability processes such as tropical instability waves (Qiao and Weisberg, 1998).

The transport of heat by mesoscale eddies has been the subject of considerable debate over recent decades. In contrast, the eddy transport of the transient tracers, e.g., anthropogenic CO₂, has not been evaluated. Eddies affect not only the time-varying component of meridional transport but also the time-mean. For reference, before addressing eddy transport of anthropogenic CO₂, we first evaluate our simulated eddy heat transport in terms of previous observational and eddy-permitting model estimates.

We computed the time-mean, depth-integrated, meridional eddy heat transport H_e from the model output using the identity:

$$H_e(x, y) = \int_{-h}^{0} \rho c_p \left[\bar{v} \bar{\theta} - \bar{v} \theta \right] dz$$

(2)

where ρ is the in-situ density, c_p is the heat capacity of seawater, θ is the poten-
tial temperature, v is the meridional velocity, and h is the ocean depth. The overbar represents the annual-mean. Zonally integrated, meridional eddy transport of heat computed from Eq. 2 is shown in Fig. 9a. There is large poleward eddy heat transport in the Southern Ocean and between the tropics. Maxima in meridional transports are associated with the North Equatorial Counter Current in the Pacific Ocean and the Antarctic Circumpolar Current (ACC) in the Southern Ocean. Our results for eddy heat transport are remarkably similar to those from Jayne and Marotzke (2002), who used a $\frac{1}{4}$° eddy-permitting GCM. We have found 0.2 PW of southward eddy transport between 60°S and 40°S in the Southern Ocean, which is similar to data-based estimates of 0.45±0.3 PW from de Szoeke and Levine (1981) and 0.3 PW from Stammer (1998). Our estimate is also consistent with the work of Marshall et al. (1993) who predicted 0.25 PW of eddy heat transport from an analytical model of the zonally averaged ACC, but it is larger than the 0.14 PW of eddy heat transport across the ACC as simulated in Fine Resolution Antarctic Model (FRAM) (Thompson, 1993). Conversely, our estimate is lower than the observed time-mean eddy transport obtained from both Bryden (1979) at Drake Passage (0.5 PW) and from Macdonald and Wunsch (1996) at 30°S (0.9±0.3 PW). Between 40°S and 45°S, our estimate of 0.2 PW is lower than the 0.6 PW estimate from Jayne and Marotzke (2002), even though the general structure is similar elsewhere. Near the Equator, our simulated eddy heat transport agrees well both in structure and magnitude with the Jayne and Marotzke (2002) findings of 0.85 PW of southward at 5°N and 0.4 PW of northward at 5°S. Furthermore, this large convergent eddy heat transport at the Equator is also consistent with observations (Bryden and Brady, 1989) as well as previous modelling work by Philander and Pacanowski (1986). Farther from the Equator there is a second important peak in eddy heat transport noticeable in the Indian Ocean at around 15°S, which is associated with an intense monsoonal activity. There is also a northward eddy transport maximum of about 0.1 PW in the North Atlantic (45°N), related to the Gulf Stream mesoscale variability in agreement with Jayne and Marotzke (2002). In the North Pacific, there is a northward eddy heat transport of about 0.05 PW in the
latitudinal band (30°–40° N) associated with the Kuroshio current. This slightly underestimates the recent observation-based estimate of Qiu and Chen (2004) who found about 0.1 PW eddy poleward transport in the Pacific basin at these latitudes. In summary, our model exhibits similar overall structure of annual-mean, meridional eddy heat transport as found in previous observational and modelling studies; however, it probably underestimates the magnitude of transport, particularly in the mid southern and northern latitudes, because its eddy-permitting horizontal grid only resolves part of the eddy spectrum.

As for heat transport, we also computed the depth-integrated, annual-mean, eddy transport of anthropogenic CO$_2$, T_e using a similar equation:

$$T_e(x, y) = \int_{-h}^{0} [\bar{v} \bar{c} - \bar{v} \bar{c}] \, dz$$

(3)

where c is the concentration of anthropogenic CO$_2$, v is the meridional velocity, and h is the depth of the ocean.

Figure 9b shows global and basin zonal integrals of the eddy transport of anthropogenic CO$_2$. The overall structure of the eddy transport of anthropogenic CO$_2$ resembles that for heat (Fig. 9a). Discrepancies exist, however, including the larger peak of northward transport for anthropogenic CO$_2$ in the Indian basin at 15° S (associated with monsoon activity), which is even comparable to the maximum in global northward transport at the Equator. Also, relatively larger is the maximum of southward eddy transport of CO$_2$ at 15° N in the North Pacific. In the southern mid latitudes, southward eddy transport of CO$_2$ is relatively larger than for heat between 60° S and 50° S reaching 0.05 Pg C yr$^{-1}$ which represents up to 20% of the total annual-mean transport of CO$_2$ at these latitudes. In contrast, the eddies associated with the Gulf Stream and the Kuroshio Current contribute very little to the meridional transport of CO$_2$.
3.3.2 Dynamics of the eddy transport

Our computation of the rectified eddy transport includes not only variability due to the mesoscale activity but also variability associated with other features such as propagation of large-scale waves and Ekman layer fluctuations. Thompson (1993) simulated the meridional heat transport across the ACC using the FRAM model, showing that mesoscale activity largely dominates the large-scale contribution to the rectified eddy transport. Here, to discriminate between these processes and to evaluate the contribution of the resolved mesoscale eddies to the rectified eddy transport, we compared our eddy-permitting simulations to analogous simulations made with a coarse-resolution version of the same model (Fig. 10). In the coarse-resolution model, annual-mean eddy transport of both heat and anthropogenic CO$_2$ is negligible in the mid and high latitudes, particularly in the Southern Hemisphere. Thus most of the eddy transport in these regions results from the mesoscale eddy activity, which can only be resolved with the fine-grid model. In contrast near the Equator, there is non-negligible, annual-mean eddy transport of heat and anthropogenic CO$_2$ in the coarse-resolution version, although that is substantially smaller than in the eddy-permitting model. Thus in the equatorial region, other processes (e.g., tropical waves and Ekman layer variability) also contribute to the so-called eddy transport.

For an improved understanding of the nature of the meridional eddy transports of heat and anthropogenic CO$_2$, we separated out their dynamical components given in Eq. 1. Figure 11 shows the contributions of these different components to the total eddy transport. The small tropical eddy transport of heat (0.2 PW) and anthropogenic CO$_2$ (0.035 Pg C yr$^{-1}$) at 5° N that is associated with the Ekman component is due to covarying fluctuations of Ekman velocity and tracer fields. In the extratropics, the Ekman contribution to the eddy transport of heat and anthropogenic CO$_2$, is close to zero. For both heat and anthropogenic CO$_2$, the baroclinic component dominates everywhere except between 40° S and 60° S where the barotropic component outweighs the baroclinic contribution. The importance of barotropic eddies at these latitudes illustrates the
fundamental role of the bottom topography and the meandering of the ACC in driving southward eddy transport of heat and tracers. These results contrast with those of Jayne and Marotzke (2001) who found that the baroclinic contribution dominates the barotropic component even in the southern mid latitudes. One possible cause for this discrepancy may be that the horizontal resolution of our model is not as fine as theirs (0.5° vs. 0.25°), which could limit development of baroclinic eddies. On the other hand, our finding corroborates results from Cessi and Fantini (2004) who found that the eddy fluxes of heat across zonal periodic current are mainly due to the barotropic component of the eddies. Our finding is also consistent with recent results from Ishida et al. (2007) who found that the eddy transport, while largely dominated by transient baroclinic eddies in the tropical oceans, is mostly due to barotropic standing eddies in the Southern Ocean.

Results from our analysis indicate that there is a strong temporal variability in transport and that eddies contribute substantially to the time-mean transport. Thus one may question whether a synoptic one-time survey of the ocean is representative of the time-mean circulation. In the next section we investigate the extent to which carbon transport estimates from a hydrographic survey may misrepresent true mean transport due to uncertainties associated with temporal variability and coarse-sampling, where eddy effects are not resolved.

4 Discussion

Most measurements that are used for hydrographic-based computations of time-mean transport are taken from synoptic surveys, often taken during summer months. Thus they ignore the impact of the temporal variability on transport. If temporal variability of heat and anthropogenic CO$_2$ transports were large, then estimates from synoptic surveys would be heavily biased. To help quantify this potential bias, we decomposed fluctuations of meridional transport, $T'(t)$, of each of the tracers into the three familiar
components:

\[T'(t) = v'(t) \cdot \bar{c} + \bar{v} \cdot c'(t) + \left[v'(t) \cdot c'(t) - v'c' \right] \quad (4) \]

where \(v \) is the meridional velocity and \(c \) is the tracer concentration (for heat \(c \) is actually \(\rho c_p \theta \)). The overbar represents the annual mean of the quantity and the prime represents the temporal deviation from that mean. \(T'(t) \) is the deviation of the instantaneous transport measured from hydrographic surveys from its annual mean value. The first term on the right-hand side of Eq. 4 is the transport fluctuation due to the variations in velocity acting on the time-averaged tracer field. The second term represents how the time-mean velocity field advects variations in the tracer field. The third term represents fluctuations of the eddy transport about its (rectified) annual mean.

The first component may introduce a bias in one-time hydrographic estimates of the annual-mean transport if the variability in the circulation is not taken into account. In general though, the variability associated with the Ekman transport is considered in these studies (Álvarez et al., 2003). Thus, we investigated if fluctuations in non-Ekman transport (barotropic and baroclinic components), which are neglected in such calculations, could substantially alter synoptic survey estimates of time-mean tracer transport. For this analysis, we begin by computing the root-mean-square (RMS) of the transport variability that is associated with the non-Ekman part of the first term on the right-hand side of Eq. 4. Figures 12 and 13 show biases associated with this term for transport estimates of heat and anthropogenic CO\(_2\), respectively. In the southern mid latitudes, there is a relatively large variability associated with this term, with a maximum of 0.5 PW for heat transport and about 0.15 Pg C yr\(^{-1}\) for anthropogenic CO\(_2\), which is 50% of the total transport at these latitudes. Near the Equator, variability associated with the non-Ekman transport is generally the largest and it is even larger than the annual-mean transport in each of the three basins, ranging from 1.5 PW to 2.5 PW for heat and from 0.2 Pg C yr\(^{-1}\) to 0.45 Pg C yr\(^{-1}\) for anthropogenic CO\(_2\). In the extratropical Atlantic, transport variability associated with this term is smaller. For heat transport, it ranges from 0.05 PW in the northern subtropics to 0.12 PW in South At-
lantic at 25° S. For anthropogenic CO$_2$, this bias varies between 0.02 Pg C yr$^{-1}$ in the northern subtropics and 0.03 Pg C yr$^{-1}$ at 25° S. In the South Atlantic, this uncertainty can be as large as 35% of the total heat transport and 20% of total transport of anthropogenic CO$_2$. In the North Atlantic, it represents up to 20% and 30% of total heat and CO$_2$ transports, respectively.

In the Pacific basin, variability associated with the non-Ekman transport is generally larger than in the Atlantic Ocean. Maximum variability in the North Pacific is at 35° N where heat transport variability is 0.23 PW (65% of the annual-mean value) and anthropogenic CO$_2$ variability reaches 0.048 Pg C yr$^{-1}$, well above the annual mean transport that is close to zero. In the South Pacific, at 35° S, the bias reaches 0.24 PW for heat transport (70% of the annual-mean transport) and 0.055 Pg C yr$^{-1}$ for anthropogenic CO$_2$ (35% of the total transport). This variability is also important in the Indian Ocean, in particular due to intensive monsoon activity between 15° S and 30° S, where it varies between 0.13 and 0.28 PW for heat transport (12% to 20% of the annual mean-transport) and between 0.03 Pg C yr$^{-1}$ and 0.05 Pg C yr$^{-1}$ for anthropogenic CO$_2$ (up to 30% of the annual mean-transport). More details about uncertainties in hydrographic-based transport estimates related to non-Ekman fluctuations are available in Tables 1 and 2.

The second term in Eq. 4, due to the seasonal variability of the tracer concentrations, also contributes to temporal variability and is not accounted for in the hydrographic survey estimates. Associated biases for heat and anthropogenic CO$_2$ are shown in Figs. 12 and 13, respectively. The variability associated with this term is generally smaller than with the first component. Yet, in the Southern Ocean, this bias is large, reaching up to 40% of anthropogenic CO$_2$ transport and even locally exceeding corresponding total meridional transport of heat. In the subtropics of all three basins, the bias is typically less than 0.12 PW for heat transport and below 0.02 Pg C yr$^{-1}$ for anthropogenic CO$_2$. At 25° N in the North Atlantic, the bias is less than 0.05 PW for heat transport and around 0.004 Pg C yr$^{-1}$ for anthropogenic CO$_2$, which represents about 5% of their respective annual-mean transports. In the North Pacific at 32° N,
this uncertainty is as large as 0.1 PW for heat (40% of the annual-mean transport) and 0.02 Pg C yr\(^{-1}\) for anthropogenic CO\(_2\) (100% of the annual-mean transport). More details on uncertainties in the hydrographic transport estimates due to this second term, seasonal tracer variability, are provided in Tables 1 for heat and 2 for anthropogenic CO\(_2\).

The third term in Eq. 4 concerns the variability of the eddy transport about the time-mean. Generally, biases associated with this term are very small except near the Equator (10° S–10° N) and in the Southern Ocean (Figs. 12 and 13). In the Pacific Ocean at 5° N, this variability reaches 0.25 PW for heat transport and 0.046 Pg C yr\(^{-1}\) for anthropogenic CO\(_2\) transport. In the Southern Ocean, this eddy bias reaches 0.1 PW for heat transport and 0.03 Pg C yr\(^{-1}\) for anthropogenic CO\(_2\) transport, respectively. In the subtropics in all three basins, the variability associated with this term is quite small, i.e., 0.01–0.02 PW for heat transport and less than 0.01 Pg C yr\(^{-1}\) for anthropogenic CO\(_2\) transport. Therefore, the eddy variability appears to play a negligible role in the time dependence of the meridional tracer transport at these latitudes. Yet, this term is well known to strongly depend on the spatial resolution of sampling. Therefore, it might introduce a larger bias in the transport estimates if the sampling is done with an insufficient resolution. To test this hypothesis, we estimated this term using a 4 times coarser sampling, meaning an average resolution of 136 km instead of the original eddy-permitting model resolution of 34 km. We found that the eddy temporal variability estimated with this coarser 136-km resolution is generally 2 to 3 times larger. In the North Atlantic, the eddy bias can represent up to 10% of the total transport of heat and up to 15% of the total transport of anthropogenic CO\(_2\). Thus proper sampling resolution is crucial for providing accurate hydrographic-based transport estimates. The actual eddy bias may be much larger still given that estimates here rely on a eddy permitting model that by definition does not resolve the full spectrum of even mesoscale eddies. Findings from this analysis are summarized in Tables 1 and 2.
5 Summary and conclusions

Seasonal variability of meridional transport of heat and anthropogenic CO$_2$ is studied with an eddy-permitting version of the coupled ocean-sea ice model ORCA-LIM. Our aim has been to study both seasonal and mesoscale-eddy induced variability of the meridional transport of heat and anthropogenic CO$_2$ and to investigate to what extent this variability may affect their annual-mean transport estimates based on one-time hydrographic surveys.

Unlike the annual mean overturning circulation, the seasonally-varying component is largely depth independent. Seasonal cycles of the meridional transports of both heat and anthropogenic CO$_2$ are similar with largest amplitude confined to the tropics. Near the Equator, the peak-to-peak amplitude of total annual cycle of meridional transport reaches between 6 and 8 PW for heat and between 1.2 and 1.5 Pg C yr$^{-1}$ for anthropogenic CO$_2$. In the subtropics, this seasonal variability ranges from 1.5 to 2 PW for heat and between 0.4 Pg C yr$^{-1}$ and 0.5 Pg C yr$^{-1}$ for anthropogenic CO$_2$. Comparison of variability in our simulated heat transport with that from previous observational and GCM-based studies reveals general overall agreement despite some discrepancies in the mid to high latitudes. We further explored the mechanisms that drive this temporal variability by decomposing the meridional transport into that from Ekman transport, barotropic depth independent transport, and baroclinic depth varying transport. Ekman transport dominated the seasonal variability particularly in the tropics. Near the Equator and in the southern mid-latitudes, the contribution from the baroclinic component (due to vertical shear) was also important. Yet, throughout the ocean the barotropic component had little effect on the seasonal variability of meridional transport.

We also investigated the contribution of the mesoscale variability to the mean transport. Eddy rectification contributes to the meridional transport via large poleward transport of heat and anthropogenic CO$_2$ associated with the ACC as well as substantial convergent transport about the Equator, particularly in the Pacific basin and in the Indian Ocean around 15°S. Although, the overall structure of the eddy transport of
anthropogenic CO$_2$ resembles that for heat, the former shows a higher relative contribution of the Southern Ocean and smaller contribution from northern subtropics and midlatitudes. In order to isolate the contribution of the mesoscale eddies in the rectified eddy transport, we compared our eddy-permitting simulations to additional runs performed with a coarse-resolution version of the same model. Most of the rectified eddy transport in mid and high latitudes results from the mesoscale eddy activity, whereas near the Equator, other processes that are insensitive to horizontal model resolution (e.g., variability in Ekman transport) also play some role. We also found that the transport by eddies is generally baroclinic, except in the southern mid latitudes where the barotropic contribution dominates. The importance of the barotropic component south of 40° S expresses the fundamental role of the meandering of the ACC and of bottom topography in driving southward eddy transport of heat and tracers.

Finally, we quantified to what extent neglecting temporal variability could alter hydrographic-based estimates of time-mean transports of heat and anthropogenic CO$_2$. For both tracers, the largest bias introduced by such variability was found to be associated with the neglect of the non-Ekman (barotropic and baroclinic) variability in those calculations. Near the Equator, this bias is even larger than the annual-mean transport. In the subtropical North Atlantic, where most of the hydrographic surveys were conducted, the bias from neglecting the non-Ekman transport of heat and anthropogenic CO$_2$ can reach up to 20% and 30% of the respective annual-mean transports. In the subtropical South Atlantic seasonal variability represents up to 35% of the annual-mean transport of heat and 20% of the annual-mean transport of anthropogenic CO$_2$. This variability is largest in the South Pacific at 35° S, where it reaches up to 70% of the annual-mean transport of heat and 35% of the annual-mean transport of anthropogenic CO$_2$. The other two additional sources of bias in synoptic survey estimates, due to seasonality of the tracer field and the eddy variability, are in general much smaller. Yet, for hydrographic surveys whose sampling resolution does not resolve the eddy field, the bias due to eddy variability becomes substantially larger and can represent in the North Atlantic up to 10% and 15% of total transports of heat and
anthropogenic CO$_2$ in the North Atlantic. We have demonstrated that for reliable hydrography-based transport estimates of anthropogenic CO$_2$ and heat, methods must properly account for non-Ekman seasonal variability. They also need to account for eddy variability which cannot be captured without fine-scale surveys. Errors due to temporal variability appear to be generally small in the Atlantic and the Indian subtropics, but in some of the most energetic regions, such as near the Equator and in the southern mid-latitudes, the bias can be much larger. These biases further call into question the approach of using hydrographic-based transport estimates of anthropogenic CO$_2$ to deduce regional air-sea CO$_2$ fluxes.

Acknowledgements. We thank the ESOPA group at LOCEAN for the general support, improvements, and maintenance of the ocean model OPA-ORCA. We also thank B. Barnier, A.-M. Treguier, J.-M. Molines, G. Madec, and other members of the DRAKKAR project for discussions, particularly their expertise concerning the model configurations used here. Support for this research has come from the French Commissariat à l’Energie Atomique (CEA), the EU CARBOOCEAN Project (Contract no. 511176 [GOCE]) and the Swiss Federal Institute of Technology Zurich (ETH Zurich). Computations were performed at CEA (CCRT) supercomputing center. The IAEA is grateful for the support provided to its Marine Environment Laboratories by the Government of the Principality of Monaco.

References

4259

Table 1. Biases in synoptic survey estimates of meridional heat transport (PW) associated with its temporal variability. The data shown are the root-mean-square variability of the three components in Eq 4 for different locations. Maximum associated uncertainties (ratio of bias to annual-mean transport) are in brackets. Data in the 4th row corresponds to the eddy variability bias estimated using a coarse resolution sampling of 136 km.

<table>
<thead>
<tr>
<th></th>
<th>S. Ocean (60° S–40° S)</th>
<th>S. Subtropics (35° S–25° S)</th>
<th>N. Subtropics (25° N–35° N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>World Ocean</td>
<td>Atlantic</td>
<td>Indian</td>
</tr>
<tr>
<td>Non-Ekman</td>
<td>0.05–0.5 (>100%)</td>
<td>0.1–0.12 (35%)</td>
<td>0.12–0.2 (20%)</td>
</tr>
<tr>
<td>Tracer seasonality</td>
<td>0.1–0.25 (>100%)</td>
<td><0.02 (5%)</td>
<td><0.05 (8%)</td>
</tr>
<tr>
<td>Eddy (High Res.)</td>
<td><0.1 (>100%)</td>
<td><0.02 (5%)</td>
<td><0.02 (2%)</td>
</tr>
<tr>
<td>Eddy (Low Res.)</td>
<td>0.1–0.45 (>100%)</td>
<td><0.03 (5%)</td>
<td>0.02–0.06 (8%)</td>
</tr>
</tbody>
</table>
Table 2. Biases in synoptic survey estimates of meridional anthropogenic CO\textsubscript{2} transport (in Pg C yr−1) associated with its temporal variability (same as in Table 1).

<table>
<thead>
<tr>
<th></th>
<th>S. Ocean (60° S–40° S)</th>
<th>S. Subtropics (35° S–25° S)</th>
<th>N. Subtropics (25° N–35° N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>World Ocean Atl. Indian Pacific Atl. Pacific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Ekman</td>
<td>0.02–0.15 (50%)</td>
<td>0.02–0.03 (20%)</td>
<td>0.03–0.05 (30%)</td>
</tr>
<tr>
<td>Tracer seasonality</td>
<td>0.01–0.06 (40%)</td>
<td><0.01 (2%)</td>
<td><0.01 (5%)</td>
</tr>
<tr>
<td>Eddy (High Res.)</td>
<td>0.01–0.03 (20%)</td>
<td><0.01 (2%)</td>
<td><0.01 (4%)</td>
</tr>
<tr>
<td>Eddy (Low Res.)</td>
<td>0.02–0.1 (70%)</td>
<td><0.01 (2%)</td>
<td><0.015 (10%)</td>
</tr>
</tbody>
</table>
Fig. 1. Zonally global and basin-integrated inventories of anthropogenic CO$_2$ per degree of latitude, as observed (black dashes, GLODAP) and simulated by the eddy-permitting model (blue) at end of year 1994.
Fig. 2. The potential density field (black contours) superimposed over the anthropogenic CO$_2$ concentration (in μmol kg$^{-1}$) field (shading) along 30° W in the Atlantic Ocean (top), 170° W in the Pacific Ocean (middle) and 85° E in the Indian Ocean (bottom) in 1994, as simulated by the eddy-permitting model (left) and from data (right).
Fig. 3. Simulated annual-mean (left) and seasonal July minus January (right) overturning for the global ocean (top), the Atlantic Ocean (middle), and the Indo-Pacific Ocean (bottom). Negative values are in dotted lines and indicate counterclockwise overturning.
Fig. 4. Global- and basin-integrated meridional transports of heat for January (solid blue), July (dashed blue), and the annual-mean (solid black).
Fig. 5. Global and basin integrated meridional transports of anthropogenic CO$_2$ for January (solid blue), July (dashed blue) and the annual-mean (solid black).
Fig. 6. Zonally averaged temperature (top) and anthropogenic CO₂ (bottom) concentrations over the upper 3000 m, respectively in °C and µmol kg⁻¹.
Fig. 7. Decomposition of the annual cycle of total meridional transport (black), defined as the July minus January difference, into baroclinic (blue), barotropic (red), and Ekman (green) components for heat (left) and anthropogenic CO$_2$ (right).
Fig. 8. Decomposition of the annual-mean total meridional transport (black) into baroclinic (blue), barotropic (red), and Ekman (green) components for heat (left) and anthropogenic CO$_2$ (right).
Fig. 9. Zonally integrated meridional eddy transport of heat (left) and anthropogenic CO$_2$ (right) over the global ocean (black) and in the Atlantic (blue), Pacific (red) and Indian (green) basins.
Fig. 10. Zonally and vertically integrated meridional eddy transports of heat (left) and anthropogenic CO$_2$ (right) as simulated using the coarse-resolution (blue) and the eddy-permitting (red) versions of the model.
Fig. 11. Decomposition of the total eddy transports (black) of heat (left) and anthropogenic CO₂ (right) into baroclinic (blue), barotropic (red) and Ekman (green) components.
Fig. 12a. Root-mean-square variability of heat transport around annual-mean transport (dashed black line) due to the temporal fluctuations in non-Ekman transport (grey shading), temperature seasonality (red shading), and eddy variability as estimated using high and low resolutions of 34 km (dark blue shading) and 136 km (light blue shading), respectively. From top to bottom, results correspond to the global, Atlantic, Pacific and Indian Oceans.
Fig. 12b. Continued.
Fig. 13a. Root-mean-square variability of anthropogenic CO$_2$ transport around annual-mean transport (dashed black line) due to the temporal fluctuations in non-Ekman transport (grey shading), temperature seasonality (red shading), and eddy variability estimated using high and low resolutions of 34 km (dark blue shading) and 136 km (light blue shading), respectively. From top to bottom, results correspond to the global, Atlantic, Pacific and Indian Oceans.
Temporal variability of oceanic transport of anthropogenic CO₂

Z. Lachkar et al.

Fig. 13b. Continued.