Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in Western Italy

1 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
2 University of Helsinki, Department of Physics, P.O. Box 68, 00014 Helsinki, Finland
3 Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
4 School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
5 National Research Council, Institute of Agro-environmental and Forest Biology, Via Salaria km. 29300, 00016 Monterotondo Scalo (Rome), Italy

*now at: University of California, Department of Environmental Science, Policy, and Management, 137 Mulford Hall, Berkeley, CA 94720, USA

Received: 21 November 2008 – Accepted: 17 December 2008 – Published: 23 February 2009

Correspondence to: B. Davison (b.davison@lancaster.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

2183
Abstract

Emission rates and concentrations of biogenic volatile organic compounds (BVOCs) were measured at a Mediterranean coastal site at Castelporziano, approximately 25 km south-west of Rome, between 7 May and 3 June 2007, as part of the ACCENT-VOCBAS field campaign on biosphere-atmosphere interactions. Concentrations and emission rates were measured using the disjunct eddy covariance method utilizing three different proton transfer reaction mass spectrometers (PTR-MS) for BVOC mixing ratio measurements and sonic anemometers for three-dimensional high-frequency wind measurements. Depending on the measurement period and the instrument, the median volume mixing ratios were 1.6–3.5 ppbv for methanol, 0.4–1.5 ppbv for acetaldehyde, 1.0–2.5 ppbv for acetone, 0.10–0.17 ppbv for isoprene, and 0.18–0.30 ppbv for monoterpenes. A diurnal cycle in mixing ratios was apparent with daytime maxima for methanol, acetaldehyde, acetone, and isoprene. The median fluxes were 370–440 µg m⁻² h⁻¹ for methanol, 180–360 µg m⁻² h⁻¹ for acetaldehyde, 180–450 µg m⁻² h⁻¹ for acetone, 71–290 µg m⁻² h⁻¹ for isoprene, and 240–860 µg m⁻² h⁻¹ for monoterpenes.

1 Introduction

Emissions of biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry. Oxidation of VOCs (both biogenic and anthropogenic) in a NOₓ-rich atmosphere may lead to the production of tropospheric ozone, which has impacts on human health and can cause damage to crops, forest ecosystems, and buildings (e.g. Sillman et al., 1999; Fowler et al., 2008).

In Mediterranean areas, where both emission and oxidation rates of BVOCs are high, production of ozone and particles from BVOC precursors represent a significant air quality challenge. Previous measurements have shown that isoprene and monoterpenes form the bulk of the total BVOC emissions from Mediterranean type ecosystems.
(Helmig et al., 1999). However, little is known about emissions of oxygenated compounds, such as methanol and acetone, from these ecosystems. BVOC emissions are strongly regulated by variations in light and temperature (e.g. Guenther et al., 1993). Nonetheless, the light and temperature dependent emission algorithms are still limited by uncertainties, particularly of the basal emission rates on which they depend.

To better understand the processes controlling photochemical pollution episodes, regional and global scale BVOC emission models have been developed. Until recently, many model estimates for biogenic emissions from Mediterranean type ecosystems (Guenther et al., 1995; Simpson et al., 1999; Owen and Hewitt., 2000), which could include regions of Chile, California, South Africa, Australia, and Europe, were calculated using basal emission rates determined for Californian Mediterranean type ecosystems only (Owen et al., 1997). Isoprene and monoterpenes emissions both tend to be very species specific, which generates considerable uncertainty in the model.

In recent years, efforts have been made to determine emission rates for a number of Mediterranean type ecosystems. In Europe, BVOC emissions in the Mediterranean area were extensively studied as part of the Biogenic Emissions in the Mediterranean Area (BEMA) project (Bertin et al., 1997; Ciccioli et al., 1997; Kesselmeier et al., 1997; Owen et al., 1997, 2001, 2002; Seufert et al., 1997; Street et al., 1997; Valentini et al., 1997). The BEMA project focused on emissions from the Castelporziano nature reserve near Rome, Italy. As the site comprised a number of vegetation types, both species specific and averaged ecosystem (forest, pseudosteppe, or macchia) emission rates could be calculated, which allowed improved modelled BVOC emission estimates within this region.

Since the BEMA campaigns there have been improvements in analytical techniques for VOCs. The advent of proton transfer reaction mass spectrometry (PTR-MS) has allowed online VOC measurements at ambient mixing ratio levels (e.g. Hansel et al., 1995; Lindinger et al., 1998; de Gouw and Warneke, 2007; Hayward et al., 2004; Tani et al., 2003; Hewitt et al., 2003). This in turn has led to a dramatic improvement in VOC flux measurements. The ability of the PTR-MS to measure VOC mixing ratios at
the pptv (parts per trillion by volume) level with a response time of seconds or less has led to the use of the PTR-MS instrument in micrometeorological eddy covariance flux measurement methods such as conventional eddy covariance (e.g. Karl et al., 2001), disjunct eddy covariance (DEC; Rinne et al., 2001), and disjunct eddy covariance with continuous sampling flow (DEC\textsubscript{cf}), sometimes also called virtual disjunct eddy covariance (Karl et al., 2002). The DEC\textsubscript{cf} method was utilized in this study. The PTR-MS measured mixing ratios of different VOCs sequentially, which leads to a disjunct data set. Once these data were synchronized with the high-frequency wind data, BVOC fluxes could be calculated for the footprint area.

This paper presents the results of the mixing ratio and flux measurements made at Castelporziano within the frame of the ACCENT-VOCBAS campaign on biosphere-atmosphere interactions (for an overview, see Fares et al., 2009). Three different PTR-MS instruments were utilized in the measurements between 7 May and 3 June 2007. During the first measurement period (7–14 May), two measurement setups were operated simultaneously by Lancaster University (LU) and the Centre for Ecology & Hydrology Edinburgh (CEH), and during the latter period (20 May–3 June), the measurements were carried out in cooperation between the National Research Council of Italy (Consiglio Nazionale delle Ricerche, CNR) and the University of Helsinki (UH).

2 Methods

2.1 Measurement site

The Presidential Estate of Castelporziano (41°40′49″ N, 12°23′31″ E) is located about 25 km to the south-west from the city centre of Rome, Italy. It covers an area of 60 km\(^2\) and has a coastline of 5 km (for a detailed description of the site see Fares et al., 2009). Due to restricted public access, a number of Mediterranean ecosystem types have been preserved (e.g. macchia and pseudosteppe). The estate has few roads and low traffic but is bounded on its north-west by the busy Ostia-Rome commuter
road. The smaller SS601 public road transects the southern edge creating a boundary between the high and low macchia. The low macchia was chosen as the site for this study.

A measurement tower was erected in a slight valley depression separated from the sea by two lines of sand dunes. The vegetation in the vicinity of the tower consisted mainly of *Arbutus unedo*, *Rosmarinus officinalis*, *Quercus ilex*, *Phillyrea angustifolia*, and *Erica multiflora* (Fares et al., 2009). The average canopy height, 1.2 m, was estimated by calculating the weighted average of the average heights of these main species, which covered 80% of the total area of 1070 m2 around the tower. The weight factor was the proportion of the total area covered by a particular species. A forest of 23 km2 dominated by Holm oak (*Quercus ilex*) was located approximately 1 km to the north-east.

2.2 Measurement setup and procedure

Commercial PTR-MS instruments (Ionicon Analytik GmbH) were used in the measurements. LU and CNR-UH used two instruments which both featured two turbomolecular pumps, a heated silica steel inlet system, and a 9.6 cm long stainless steel drift tube. According to the manufacturer, the response time was about 1 s for these instruments. The PTR-MS used by CEH contained a third turbomolecular pump and its response time was about 0.2 s.

The measurement setup used by LU and CEH during the first measurement period consisted of a three-dimensional ultrasonic anemometer (Gill Instruments Ltd., Solent R2), and two PTR-MS instruments. LU also used a humidity sensor (Honeywell International, Inc., HIH-4000-001) and an ozone monitor (2B Technologies, Inc., 205 dual beam). The anemometer was mounted at 5 m above ground on the south-west corner of the measurement tower. This position gave a fetch of approximately 300 m to the north-west, more than 500 m to the south-east, but less than 60 m in the two major wind directions (south-west and north-east). The analytical instrumentation was housed in an air-conditioned cabin 10 m to the south-east of the tower. A 20 m length of 3/8 inch
Teflon tube was used as the main sampling line taking air at 18l min^{-1} from a position 30 cm below the anemometer.

The PTR-MS instruments sampled from the main sampling line at 0.25 l min$^{-1}$. They were optimised to an E/N ratio of 128 Td using a drift tube pressure, temperature, and voltage of 2.02 hPa, 45°C, and 500 V, respectively. The reaction time was 100 µs and the count rate of $\text{H}_3\text{O}^+\text{H}_2\text{O}$ ions was 1.2–2.6% of the count rate of H_3O^+ ions, which was $(1.6–3.1) \times 10^6$ counts s$^{-1}$. The data from the ultrasonic anemometer and PTR-MS were logged into the same computer using a programme written in LabView (National Instruments Corp.). The humidity sensor (Honeywell, HIH4000-001) and ozone monitor sampled from the main line at a rate of 0.5 Hz and ancillary measurements of air pressure, temperature, photosynthetically active radiation, and CO$_2$ and H$_2$O mixing ratios were recorded by an environmental gas analyser (PP Systems, EGM-4) with a time resolution of 20 s.

Both PTR-MS instruments measured in three modes: flux, ambient mixing ratio, and zero air. Each instrument measured zero air for a five-minute period each hour followed by a 25-min flux measurement period and then a 5-min mixing ratio measurement period before a second 25-min flux measurement period. Zero air was generated by passing ambient air through a glass tube containing a platinum catalyst powder at 0.5 l min$^{-1}$. In the flux measurements, the PTR-MS measurement cycle contained eight masses and six of them were related to BVOCs (Table 1). The PTR-MS integration, or dwell, time was 0.2 s for each BVOC-related mass and the total measurement cycle length was 1.4 s. This corresponded to approximately 1070 measurements over the 25-min flux averaging period. In the ambient mixing ratio measurements, seven BVOC-related masses were measured within a PTR-MS measurements cycle of 7.1 s (Table 1) with an integration time of 1 s for each VOC-related mass.

The measurement setup of CNR-UH during the second measurement period consisted of a three-dimensional ultrasonic anemometer (R. M. Young Company, model 81000) and a PTR-MS. As in the setup of LU and CEH, the anemometer and the inlet of the main sampling line were attached to the measurement tower at 5 m above
ground and the PTR-MS was housed in the air-conditioned cabin. The main sampling line was 25 m long, its inner diameter was 8 mm, and it was made of Teflon (PTFE). A continuous flow of 25 l min\(^{-1}\) was used in the main line and a side flow of 0.12 l min\(^{-1}\) was taken into the PTR-MS via a 1.5 m long PTFE tube, which had an inner diameter of 1.6 mm. A PTFE filter (1 µm pore size, LI-COR, Inc., part number 9967-008) was installed in front of the PTR-MS inlet to prevent particles from entering the instrument.

The operating parameters of the PTR-MS were held constant during the measurement period (20 May–3 June), except for the secondary electron multiplier voltage, which was optimized before every calibration. The drift tube pressure, temperature, and voltage were 2.2 hPa, 55°C, and 600 V, respectively. The parameter E/N was about 130 Td and the reaction time was about 97 µs. The count rate of \(\text{H}_3\text{O}^+\text{H}_2\text{O}\) ions was 1–9% of the count rate of \(\text{H}_3\text{O}^+\) ions, which was \((2.9–5.5) \times 10^6\) counts s\(^{-1}\).

The wind measurements were conducted continuously at a sampling frequency of 20 Hz and the data were recorded on a different computer than the BVOC data. The BVOC measurement procedure was controlled with the Balzers Quadstar 422 software of the PTR-MS and it contained two hour-long sequences. Every second hour was allocated to the flux measurements. The PTR-MS measurement cycle consisted of 15 masses and 12 of them were related to BVOCs (Table 1). The measurement cycle length was 13.3 s and the cycle was repeated 264 times an hour. The PTR-MS integration time was 1 s for each BVOC-related mass. The other hour-long sequence consisted of zero air measurements and ambient mixing ratio measurements. In the zero air measurements, VOC-free air produced from ambient air with a zero air generator (catalytic converter, Parker Hannifin Corp., ChromGas Zero Air Generator 1001) was fed into the PTR-MS to determine BVOC background signals of the instrument. Zero air was measured for about 12.5 min (20 cycles) and then the PTR-MS was set to measure ambient air for about 37.5 min (60 cycles). In both measurements, the PTR-MS measurement cycle contained 21 masses, 18 of which were related to BVOCs (Table 1). The measurement cycle length was 37.5 s and the integration time was 2 s for each VOC-related mass. The last 10 min of the sequence were allocated to mass scan...
measurements of ambient air. The scan range was 40–250 amu and the integration time was 2 s for each mass.

2.3 Calculation of BVOC volume mixing ratios

The PTR-MS instruments of LU and CEH were calibrated against the same gas standard, which contained methanol, acetaldehyde and acetone at a mixing ratio of 1 ppmv. The gas standard was prepared by diluting known volumes of the gas standard with zero hydrocarbon free air in Tedlar bags. These were then used to calibrate the PTR-MS over the range of 2–700 ppbv. In the first period, BVOC calibrations were done on 6 and 13 May.

LU and CEH calculated the normalized sensitivities for isoprene and monoterpenes (Table 2) using the proton transfer reaction rate coefficients of Zhao and Zhang (2004) and the instrument specific transmission coefficients which were calculated following the procedure described by Wilkinson (2006).

The PTR-MS of CNR-UH was calibrated three times during the measurement period: on 20, 25, and 31 May. These calibrations were performed with gas standards prepared by diluting pure liquid standards in nitrogen and analysed with a gas chromatograph-mass spectrometer at CNR. The monoterpane mixing ratio in the standard gas was 2.35 ppmv and the mixing ratios of methanol, acetaldehyde, acetone, and isoprene were 1 ppmv. The monoterpenes used in the calibrations were α-pinene (1 ppmv), limonene (1 ppmv), and ocimene (350 ppbv). The standard gas was diluted with zero air so that the mixing ratios fed into the PTR-MS were 225 ppbv for monoterpenes and 96 ppbv for the other compounds. The measured normalized sensitivities (Table 2) were determined for all three instruments using similar methods as described by Taipale et al. (2008).
VOC volume mixing ratios (VMR) were calculated using a similar approach by all groups as described by Taipale et al. (2008):

\[
\text{VMR} = \frac{I(RH^+)}{S_{\text{norm}}},
\]

(1)

where \(S_{\text{norm}}\) is the normalized sensitivity in units of normalized counts \(s^{-1} \text{ppbv}^{-1}\) (ncps ppbv\(^{-1}\)). The normalized count rate of RH\(^+\) ions is

\[
I(RH^+)_\text{norm} = I(RH^+) \left(\frac{I(H_3O^+) + I(H_3O^+H_2O)}{I_{\text{norm}}} \right)^{-1} \left(\frac{p_{\text{drift}}}{p_{\text{norm}}} \right)^{-1} \\
- \frac{1}{n} \sum_{i=1}^{n} I(RH^+)_{\text{zero},i} \left(\frac{I(H_3O^+)_{\text{zero},i} + I(H_3O^+H_2O)_{\text{zero},i}}{I_{\text{norm}}} \right)^{-1} \\
\left(\frac{p_{\text{drift,zero},i}}{p_{\text{norm}}} \right)^{-1},
\]

(2)

where \(I(RH^+), I(H_3O^+), \) and \(I(H_3O^+H_2O)\) are the count rates of RH\(^+\), H\(_3\)O\(^+\), and H\(_3\)O\(^+\)H\(_2\)O ions, \(p_{\text{drift}}\) is the drift tube pressure, and \(n\) is the number of zero air measurement cycles. The sum of the primary and water cluster ion count rate is normalized to a count rate of \(I_{\text{norm}} = 10^6\) cps and the drift tube pressure is normalized to a pressure of \(p_{\text{norm}} = 2\) hPa. The primary ion count rate was determined using the signal of the primary ion isotopes detected at 21 amu (M21). In the flux measurements, the water cluster ion count rate was derived from the water cluster ion signal detected at M37, while in the ambient mixing ratio measurements it was derived from the signal of the water cluster ion isotopes detected at M39. The contribution of the oxygen isotope, \(^{16}\)O\(^{17}\)O, was not subtracted from the signal detected at M33 when calculating the methanol mixing ratios since the oxygen count rate (M32) was not measured.
2.4 Calculation of BVOC fluxes

VOC fluxes were measured with the DEC_{cf}. To determine the measured fluxes, \(F_m \), a covariance function was calculated for each compound:

\[
F_m(\Delta t) = \frac{1}{N} \sum_{i=1}^{N} w'(i - \Delta t / \Delta t_w) c'(i).
\]

In this equation, \(w' = w - \bar{w} \) is the momentary deviation of the vertical wind speed, \(w \), from its average, \(c' = c - \bar{c} \) is that of the BVOC mass concentration, \(\Delta t \) is the lag time between the wind and concentration measurements, \(\Delta t_w \) is the sampling interval in the wind measurements, and \(N \) is the number of PTR-MS measurement cycles during the flux averaging time. LU and CEH used a flux averaging time of 25 min which corresponded to \(N = 1070 \). The averaging time of CNR-UH was 30 min, corresponding to \(N = 132 \). The sampling interval was 0.05 s in the wind measurements of both LU-CEH and CNR-UH.

To aid identification of the lag time, LU used the data from the humidity sensor connected to the main sampling line at the same point as both PTR-MS instruments. The humidity data were combined with the vertical wind speed data, allowing a correlation function to be applied and the lag time to be estimated. A six-second time window was used to refine the lag time. A BVOC flux measurement was rejected if no clear peak was detected above the general noise of the covariance function within the time window.

The CEH group adopted a variable lag time approach, assuming there were several sources of delays. A procedure for estimating the lag time by performing the cross-correlation between the vertical wind speed component and the BVOC signal on all individual half-hour periods for each compound separately was used. Visual assessments of both the position and the quality of the peak in the covariance function were made for all the compounds measured in the flux mode within a 10 s window. The rejection criteria were similar to the ones described by Spirig et al. (2005). For example
the lag times for a given m/z should not differ by more than a cycle length. Normally, variability of 2 s deviation from expected mean lag time was considered acceptable.

In the flux measurements by CNR-UH, the wind data were recorded on a different computer than the PTR-MS data. This means that there was an uncertainty in the timing of the wind and concentration time series in addition to the lag time due to the residence time of the sample air in the sampling lines. Therefore, the covariance functions were calculated for a rather wide lag time interval of ±3 min, using a time step of 0.05 s. To facilitate the identification of the lag time, the covariance function was calculated also for H$_3$O$^+$H$_2$O ions detected at M37 (Rinne et al., 2007). Since the signal of these water cluster ions is high and depends on the ambient water vapour mixing ratio (Ammann et al., 2006), there usually is a clear maximum in a covariance function related to daytime measurements. If a clear maximum could be identified from the covariance function of M37, a lag time window of ±13.3 s around the maximum was chosen. Finally, the BVOC fluxes were determined by finding the maxima of the respective covariance functions within the lag time window. Normally, CNR-UH could calculate the fluxes from the measurements conducted between 08:00 and 21:00 LT.

Two micrometeorological quality criteria were employed in the post-processing of the flux data of LU, CEH, and CNR-UH. A flux measurement was discarded if it was obtained in stable conditions or if the friction velocity was below 0.2 m s$^{-1}$. The high-frequency attenuation of the measured flux caused by the response time of the PTR-MS was estimated from the equation.

$$\frac{F_m}{F} = \frac{1}{1 + (2\pi n_m \tau \bar{u} / (z - d))^\alpha},$$

where F is the non-attenuated flux, τ is the response time, and \bar{u} is the average wind speed at the measurement height, z (Horst, 1997). For neutral and unstable stratification, the dimensionless frequency at the cospectral maximum is $n_m=0.085$ and the exponent is $\alpha=7/8$. The displacement height was calculated using the relation $d=2h/3=0.80$ m (e.g. Garratt, 1994) and the average canopy height of $h=1.2$ m. The
response time was 1 s for the LU and CNR-UH instruments and 0.2 s for the CEH instrument. The range of the high-frequency attenuation was 0.62–0.98 for the LU data, 0.87–0.99 for the CEH data, and 0.45–0.97 for CNR-UH data. The median values were 0.78, 0.93, and 0.71, respectively.

2.5 Identification of BVOCs

To assist identification of the compounds contributing to the masses measured by PTR-MS, occasional measurements with gas-chromatographic methods were performed during the first measurement period 7–13 May. The technique has been described in more detail by Davison et al. (2008). At a flow rate of 200 ml min\(^{-1}\) a total volume of 4 l air was sampled through stainless steel sampling tubes packed with Tenax and Carbopack B to pre-concentrate VOCs. These samples were analysed by thermal desorption (Perkin Elmer Turbomatrix thermal desorption system) and GC-MS (Perkin Elmer Turbomass Gold GC-MS). The compounds were separated on an Ultra 2 column (50 m×0.2 mm, I.D., 0.11 µm P/N 19091-005 Agilent Technologies). Compound identification was by standards whenever possible and Wiley and NIST spectral libraries. Light compounds, usually below C\(_4\), are readily lost in the pre-concentration step on the Tenax tubes and so are not reliably detected by this method. Measurements using Tenax tubes were also made during the second measurement period and are reported in the companion paper (Fares et al., 2009).

3 Results and discussion

3.1 Weather during the campaign

Figure 1 shows meteorological parameters measured at the Castelporziano site during the campaign and longer term measurements at the CarboEurope tower about 500 m north-east from the site. A comparison of temperature and PAR measurements from
the two sites shows a good agreement vindicating the use of measurements from the CarboEurope data set. During the first part of the campaign (7–14 May), the site experienced a diurnal sea breeze with onshore winds from 180° to 270° during the day from around 11:00 to 19:00 LT and an offshore or land breeze from a northerly direction dominating from 03:00 or 04:00 until 11:00 LT. The wind speed was between 0.1 and 4.3 m s\(^{-1}\), averaging 1.8 m s\(^{-1}\). The highest wind speed was observed around 13:00 LT with the lowest coinciding with the sea-land breeze reversal during the evening. Prior to the start of the campaign the region experienced heavy rain and flash flooding. From 1 to 7 May the site experienced 18.5 mm of rain of which 11.7 mm fell overnight on 4 May. This unsettled weather gradually gave way to clear skies and warmer conditions. The ambient temperature ranged from 13 to 24°C which gradually increased between 7 and 14 May.

During the second part of the campaign 20 May–3 June, the wind direction varied typically from 180° to 280° between 09:00 and 21:00 LT and from 50° to 150° during the night. The wind speed ranged from 0.1 to 10.4 m s\(^{-1}\). The highest values were observed between 14:00 and 19:00 LT and the lowest between 21:00 and 02:00 LT. The air temperature ranged from 10 to 31°C and the typical values were 19–23°C in the daytime and 15–19°C at night. The daily maximum values of photosynthetically active radiation were around 1400–1900 \(\mu\)mol m\(^{-2}\) s\(^{-1}\). The cumulative rainfall during 20 May–3 June was 22 mm. The most intensive showers took place on 28 and 29 May and there was a period of continuous rain on 3 June.

3.2 VOC mixing ratios

Figure 2 shows the half-hour averages of the mixing ratios of methanol, acetaldehyde, acetone, isoprene, and monoterpenes measured with the PTR-MS instruments of LU, CEH and CNR-UH. In general, the agreement between the LU and CEH instruments was good, particularly for methanol with a correlation coefficient (\(R^2\)) of over 0.98. The correlation coefficients for the other compounds ranged from 0.86 for acetaldehyde to 0.94 for monoterpenes. The LU and CEH isoprene and monoterpane concentrations
were calculated using PTR-MS transmission factors as gas standards were not available for these compounds.

The results from the two periods in early and late May exhibit similar overall trends though the average mixing ratios of methanol, acetaldehyde, and acetone were slightly lower during the second period.

Table 3 shows a summary of the concentration results from the two measurement periods. During the first measurement period (7–14 May 2007) concentrations of all species were highest during the first few days. Methanol emissions are known to be influenced by abiotic stress factors such as elevated ozone levels, drought, flooding and mechanical leaf wounding (Fukui and Doskey, 1998; Holzinger et al., 2000; Beauchamp et al., 2005; Karl et al., 2005; Brunner et al., 2007; Penuelas et al., 2005) as well as leaf age, with higher emissions typical of young developing leaves (Nemecek-Marshall et al., 1995). Whether the elevated concentration levels observed over the first few days of the campaign were due to the heavy rain encountered during this period or disturbance of the site during setting up is unclear but there are also notably higher concentrations during the early part of the second period of the campaign (20 May to 3 June 2007), suggesting these elevated concentrations may be related to the inevitable vegetation disturbance during setting up.

Methanol was the most abundant compound measured, and along with acetaldehyde, acetone and isoprene showed a similar trend with a clear diurnal cycle with a daytime maximum. Monoterpenes showed a diurnal trend but with a night time maximum. Measurements over crop fields have also shown methanol to be one of the most abundant biogenically emitted VOCs (Warneke et al., 2002; Fall, 2003; Schade and Custer, 2004; Davison et al., 2008). Measurements during the original BEMA campaigns observed oxygenated compounds emitted from pine and oak species. Acetic and formic acid, and acetaldehyde and formaldehyde were collected by a cartridge trap technique which was less sensitive, less compound-specific and with poorer resolution, than the PTR-MS available during this campaign (Kesselmeier et al., 1997). The results did however show broadly similar diurnal trends to those observed during this
campaign with ambient concentrations vary from 0 to 7 ppbv with a daytime maximum. This has proved to be in keeping with the measurements from this campaign where a 4 ppbv daytime maximum concentrations was observed measured using PTR-MS.

On a daily basis, concentrations of methanol, acetaldehyde, acetone and isoprene typically began to increase at around 07:00 LT. Methanol and acetaldehyde both peaked in the early morning (10:00 LT) with a secondary afternoon peak followed by a gradual decrease throughout the rest of the day. Similar trends were observed by Kesselmeier et al. (1997) for acetic and formic acid released from oak and related to transpiration patterns. The strong stomatal dependency of the emission of soluble compounds, such as methanol has been highlighted previously (Niinemets et al., 2004).

Measurements of acetone, although similar to those of methanol and acetaldehyde, showed some differences, such as a sharp decline in concentration at around 19:00 LT. Isoprene concentrations increased throughout the afternoon after an initial peak at 08:00 LT, to reach a maximum at 14:00 LT, before decreasing sharply, similar to acetone. Ozone measurements at the site showed a diurnal trend with a daytime maximum occurring a few hours after the maximum in BVOC concentrations. This maximum probably relates more to the change in direction of the sea-land breeze than to any reaction with VOCs emitted from the vegetation.

The low molecular weight compounds (methanol, acetaldehyde, acetone and isoprene), as well as showing similar trends, had good correlation coefficients between each compound, ranging from an R^2 value of 0.52 between methanol and isoprene to an R^2 of 0.8 for acetone and acetaldehyde suggesting their similar origins.

A wind rose of BVOC concentrations and fluxes (Fig. 3) shows a scatter of concentrations around the site with predominance of daytime concentrations coming from the seaward side and night time concentrations from the landward side of the sampling footprint due to the sea-land breeze effect. Unlike the other BVOCs measured, the highest monoterpene concentrations originate from the north-east. This trend was more pronounced during the first part of the campaign, which experienced a more
noticeable breeze effect than during the second measurement period. A natural for-
est of Holm oak, a known monoterpenes emitter, and a plantation of stone pine were
located in this direction. This suggests that much of the monoterpenes measured
during the campaign did not originate within the footprint of the flux area but were hor-
izontally advected into the site. The highest monoterpenes concentrations during both
campaign periods were observed at night once the wind had switched direction and
the land breeze dominated, bringing air from the Holm oak forest to the measurement
site. At night Holm oaks continue to emit monoterpenes although at much lower rates
than during the day (Staudt and Bertin, 1998; Grote et al., 2006), but rapid removal of
the compounds by reaction with light induced hydroxyl radicals ceases. Monoterpene
emission from pines is not light-dependent and is sustained or even stimulated at night
(Owen et al., 1997; Staudt et al., 1997).

A similar directional trend is not apparent in the monoterpenes flux (Fig. 3), confirming
the source is outside the flux footprint area. This also agrees with the findings from
Tenax tube samples collected during the first period of the campaign from plants within
the flux footprint area which showed only low levels of monoterpenes being emitted by
the species occurring in the footprint area.

Monoterpene emissions were higher during the second period of the campaign, both
as measured by PTR-MS over the sampling site and from leaf cuvette measurements
of specific plant species. This may be related to the temperature, which was approx-
imately 3°C higher during the second part of the campaign (Fares et al., 2009), and
the more advanced phenological state of the plants in the flux footprint area. Isoprene
emission is known to be dependent on leaf development (Wiberley et al., 2005), but
similar evidence is missing for monoterpenes emitters.

The concentrations measured simultaneously by the CEH and LU PTR-MS instru-
ments were almost identical in patterns. The absolute values for the compounds for
which external calibration was available was very good, but worse for monoterpenes
and isoprene, whose sensitivities were calculated during the first part of the campaign
using the instrumental transmission rather than calibration with gas standards. This
indicates that external standards are required for the highest accuracy of results, as the differences between calculated and measured sensitivities have been reported to be up to a factor of 2 (Warneke et al., 2002; de Gouw and Warneke, 2007).

3.3 BVOC fluxes

Emissions of all five monitored compounds were observed from the macchia. Figure 4 shows the fluxes measured during the first and second period of the campaign. Emission rates were highest during mid to late afternoon and lowest during the night. This reflects the diurnal cycle of the biological and physical processes affecting the emissions. Most of the night time flux data were rejected due to the quality criteria. This reflects the low wind speeds and weak mixing encountered at night. Monoterpene fluxes also showed a daytime maximum, in contrast to the concentration measurements, which had higher night time values due to monoterpene-rich air being advected into the measurement area from the nearby Holm oak and pine areas when the land breeze became dominant at night.

The comparison of fluxes measured by CEH and LU showed similar overall trends with some night time deposition observed. Note however, that night time flux measurements are often associated with large degrees of uncertainty due to the stable atmospheric conditions and low wind speeds that often occur at night. Night time fluxes have largely been filtered out from the flux measurements presented by CNR-UH for the second measurement period. Median day and night time mixing ratio and flux data are presented in Table 3.

Methanol fluxes closely followed the diurnal profile of light and temperature with emissions peaking at around mid-day. The concentration measurements showed a slight difference peaking in early morning, before declining steadily throughout the afternoon. Plant physiology controls the emissions of methanol from vegetation through relationships to plant growth (Fall and Benson, 1996; Schade and Goldstein, 2006; Folkers et al., 2008), cell expansion and protein repair reactions.
(Mudgett and Clarke, 1993). The emission of methanol is controlled via the transpiration stream, which is itself governed by light and leaf temperature (which explains the close agreement with temperature), as well as stomatal conductance (Niinemets et al., 2004). Methanol formation resulting from catabolism can also occur during the night when the stomata are closed so leading to a methanol build up in the plant, which is released in a burst when the stomata open in the morning. This venting process has been suggested by Cojocariu and Hewitt (C. Cojocariu and N. Hewitt, personal communications, 2008) but is not thought to be the reason for the morning maxima in VOC concentrations seen in this study, as similar peaks are not seen in the flux. Instead, it is assumed that the concentration increase is related to an accumulation of early morning emissions into the shallow residual nocturnal boundary layer. Like the methanol concentration data, the flux data showed elevated values at the beginning of the campaign which are assumed to be related to plant damage during setup and to presence of a higher fraction of expanding leaves.

Isoprene and monoterpene emission estimates were calculated using the G97 algorithms from Guenther (1997) which assumes light and temperature dependent isoprene and monoterpene emitters. Summer time basal emission rates of 563 μg m$^{-2}$ h$^{-1}$ for isoprene (Owen et al., 1998) and 1199 μg m$^{-2}$ h$^{-1}$ for monoterpene (Fares et al., 2009) were used and a biomass density of 225 g m$^{-2}$ for the measurement site from Fares et al. (2009). Light and temperature values from 7 May to 3 June were taken from the CarboEurope data set.

As can be seen from Fig. 5 the comparison of modelled and measured isoprene fluxes using the DEC$_{cf}$ technique showed reasonable agreement, with higher modelled flux values being calculated for the second part of the campaign in keeping with the measurements. During the first part of the campaign, the daytime medians of the measured isoprene fluxes were 96.6 and 160 μg m$^{-2}$ h$^{-1}$ from LU and CEH respectively whereas the daytime median of the modelled isoprene fluxes was 243 μg m$^{-2}$ h$^{-1}$. The measurements yielded daytime medians of 320 and 325 μg m$^{-2}$ h$^{-1}$ for monoterpenes with a model calculated value of 518 μg m$^{-2}$ h$^{-1}$. The higher monoterpene and
isoprene fluxes measured in the second part of the campaign are also observed in the model results. The daytime medians of the measured isoprene and monoterpenes fluxes were 317 and 963 μg m$^{-2}$ h$^{-1}$, respectively. The daytime medians of the model results were 223 and 475 μg m$^{-2}$ h$^{-1}$.

The fluxes derived by the two groups in the first period agree reasonably well, showing the scale of uncertainty caused by individual lag time determination, which was done separately by each group, leading to a slight difference in the amount of data rejected due to an unclear lag time. The negative fluxes may be the result of flux divergence, with considerable uncertainties from advection and general low turbulence conditions. The fluxes of monoterpenes were derived differently by both groups in the first period. For example, in the processing of CEH data, the lag times for m/z 81 and m/z 137 were derived independently, while in the LU analysis the lag times were derived for the sum of the fragments. This led to coincidental good agreement in values, but in fact the LU flux should be higher, considering the higher concentrations that were reported.

In the comparison of the two periods one needs to take into account the more advanced phenological stage of macchia vegetation, expecting higher VOC emissions. Despite the different approaches applied to calculating VOC fluxes during the two sampling periods of the campaign, similar trends were observed.

4 Conclusions

Atmospheric measurements of the oxygenated biogenic VOCs, methanol, acetaldehyde and acetone, along with isoprene and monoterpenes, were conducted at a site among macchia vegetation at Castelporziano, Italy during two periods 7 to 14 May and 20 May to 3 June 2007. These data allowed direct eddy covariance fluxes to be calculated.
The VOC concentrations showed a clear diurnal cycle with a daytime maximum for methanol, acetaldehyde, acetone and isoprene and a night time maximum in monoterpene concentrations. In contrast a daytime maximum was observed in monoterpene fluxes. During the campaign the majority of the monoterpenes measured were advected horizontally into the area at night from a nearby Holm oak forest once the wind direction had switched to a land breeze. This explains the night time maximum in concentrations and daytime maximum in monoterpene fluxes from the vegetation within the flux footprint area.

Acknowledgements. We thank the European Network of Excellence of Atmospheric Composition Change (ACCENT) and the Volatile Organic Compounds in the Biosphere-Atmosphere System (VOCBAS) project of the European Science Foundation for financial support. Riccardo Valentini for use of meteorology data; the Academy of Finland, Helsinki University Centre for Environment and the Kone Foundation for additional support. We would also like to express our gratitude to the Scientific Committee of the Presidential Estate of Castelporziano and in particular to Giantommaso Scarascia Mugnozza and to Aleandro Tinelli.

References

Mudgett, M. B. and Clarke, S.: Characterization of plant l-isoaspartyl methyltransferases that may be involved in seed survival – purification, cloning, and sequence-analysis of the wheat-germ enzyme, Biochemistry, 32, 11 100–11 111, 1993.

Zhao, J. and Zhang, R.: Proton transfer reaction rate constants between hydronium ion (H$_3$O$^+$) and volatile organic compounds, Atmos. Environ., 38, 2177–2185, 2004.
Table 1. PTR-MS measurement cycles, the compounds contributing to the measured masses, and the PTR-MS integration, or dwell, times. For LU and CEH the cycle length was 1.4 s in the micrometeorological flux measurements (A) and 7.1 s in the ambient mixing ratio measurements (B). For CNR-UH the cycle lengths were 13.3 and 37.5 s, respectively.

<table>
<thead>
<tr>
<th>Protonated mass [amu] and contributing compound(s)</th>
<th>Formula</th>
<th>Dwell time [s]</th>
<th>LU and CEH</th>
<th>CNR-UH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>21 water isotope</td>
<td>H$_{2}^{18}$O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>33 methanol</td>
<td>CH$_{4}$O</td>
<td>0.2</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>37 water cluster</td>
<td>(H${2}$O)${2}$</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>39 water cluster isotope</td>
<td>H${2}$OH${2}^{18}$O</td>
<td>0.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>42 acetonitrile</td>
<td>C${2}$H${3}$N</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>45 acetaldehyde</td>
<td>C${2}$H${4}$O</td>
<td>0.2</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>55 water cluster</td>
<td>(H${2}$O)${3}$</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>59 acetone</td>
<td>C${2}$H${6}$O</td>
<td>0.2</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>63 dimethylsulfide</td>
<td>C${2}$H${6}$S</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>69 isoprene methylbutenol fragment</td>
<td>C${6}$H${8}$</td>
<td>0.2</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>71 methacrolein methyl vinyl ketone</td>
<td>C${2}$H${6}$O</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>73 methyl ethyl ketone</td>
<td>C${4}$H${8}$O</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>77 peroxyacetyl nitrate fragment</td>
<td>C${2}$H${3}$NO$_{5}$</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>79 benzene</td>
<td>C${6}$H${6}$</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>81 monoterpane fragments hexenal fragment</td>
<td>C${6}$H${10}$O</td>
<td>0.2</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>83 cis-3-hexenol fragment hexanal fragment</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>87 methylbutenol</td>
<td>C${6}$H${10}$O</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>93 toluene</td>
<td>C${7}$H${8}$</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>99 hexenal</td>
<td>C${6}$H${10}$O</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>101 cis-3-hexenol hexanal</td>
<td>C${6}$H${12}$O</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>107 xylenes</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>113 –</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>121 C$_{9}$ aromatics</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>137 monoterpenes</td>
<td>C${10}$H${16}$</td>
<td>0.2</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>157 –</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2.
Normalized sensitivities for the BVOCs presented in this paper. The PTR-MS instruments of LU and CEH were calibrated twice (on 6 and 13 May 2007) and the PTR-MS of CNR-UH was calibrated three times during the second part of the campaign (on 20, 25, and 31 May).

<table>
<thead>
<tr>
<th>BVOC and its protonated mass [amu]</th>
<th>Normalized sensitivity [ncps ppbv⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LU</td>
</tr>
<tr>
<td>33 methanol</td>
<td>5.7</td>
</tr>
<tr>
<td>45 acetaldehyde</td>
<td>6.3</td>
</tr>
<tr>
<td>59 acetone</td>
<td>7.8</td>
</tr>
<tr>
<td>69 isoprene</td>
<td>8.3*</td>
</tr>
<tr>
<td>81 monoterpenes**</td>
<td>8.4*</td>
</tr>
<tr>
<td>137 monoterpenes</td>
<td>5.7*</td>
</tr>
</tbody>
</table>

* These values were not measured but calculated using proton transfer reaction rate coefficients and transmission coefficients.

** α-pinene, limonene, and ocimene were used in the calibrations by CNR-UH.
Table 3. Medians of BVOC mixing ratios and fluxes calculated from all, daytime (12:00–17:00 LT), and night-time (00:00–05:00 LT) measurements. The measurement period was 7–14 May 2007 for LU and CEH and 20 May–3 June 2007 for CNR-UH. The number of measurements contributing to the median is given in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>LU</th>
<th>CEH</th>
<th>CNR-UH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume mixing ratio [ppbv]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>day</td>
<td>night</td>
</tr>
<tr>
<td>methanol</td>
<td>3.51</td>
<td>4.07</td>
<td>2.73</td>
</tr>
<tr>
<td>acetaldehyde</td>
<td>0.980</td>
<td>1.32</td>
<td>0.674</td>
</tr>
<tr>
<td>acetone</td>
<td>1.58</td>
<td>2.36</td>
<td>0.962</td>
</tr>
<tr>
<td>isoprene</td>
<td>0.103</td>
<td>0.160</td>
<td>0.0760</td>
</tr>
<tr>
<td>monoterpenes</td>
<td>0.303</td>
<td>0.208</td>
<td>0.577</td>
</tr>
<tr>
<td></td>
<td>Flux [µg m⁻² h⁻¹]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>day</td>
<td>night</td>
</tr>
<tr>
<td>methanol</td>
<td>421</td>
<td>579</td>
<td>-125</td>
</tr>
<tr>
<td>acetaldehyde</td>
<td>301</td>
<td>391</td>
<td>-132</td>
</tr>
<tr>
<td>acetone</td>
<td>299</td>
<td>411</td>
<td>11.7</td>
</tr>
<tr>
<td>isoprene</td>
<td>70.5</td>
<td>96.6</td>
<td>-36.0</td>
</tr>
<tr>
<td>monoterpenes</td>
<td>240</td>
<td>325</td>
<td>183</td>
</tr>
</tbody>
</table>
Fig. 1. Meteorological variables measured at the Castelporziano site (black lines) and the CarboEurope tower (grey lines).
Fig. 2. Half-hour averages of BVOC mixing ratios measured by LU (black circles), CEH (grey circles), and CNR-UH (black diamonds).
Fig. 3. Wind roses of BVOC mixing ratios and fluxes measured by LU, CEH, and CNR-UH. The grey circles represent the measurements made between 12:00 and 17:00 LT (day) and the black circles show the measurements between 00:00 and 05:00 LT (night).
Fig. 4. BVOC fluxes measured by LU (black circles), CEH (grey circles), and CNR-UH (black diamonds).
Fig. 5. Comparison of the measured (black circles) and modelled isoprene and monoterpenes emissions.