Modelling CH$_4$ emissions from arctic wetlands: effects of hydrological parameterization

A. M. R. Petrescu1, J. C. van Huissteden1, M. Jackowicz-Korczynski2, A. Yurova2, T. R. Christensen2, P. M. Crill3, and T. C. Maximov4

1Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Hydrology and Geo-Environmental Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
2Lund University, Department of Physical Geography and Ecosystems Analysis, Sölvegatan 12, 22362 Lund, Sweden
3Stockholm University, Department of Geology and Geochemistry, Svante Arrhenius väg 8 C, Frescati, 106 91 Stockholm, Sweden
4Russian Academy of Sciences, Siberian Division, Institute of Biological Problems of Cryolithozone, 41, Lenin Prospekt., Yakutsk, Sakha Republic, 677980 Russia

Received: 24 August 2007 – Accepted: 7 September 2007 – Published: 12 September 2007

Correspondence to: A. M. R. Petrescu (roxana.petrescu@falw.vu.nl)
Abstract

This study compares the CH$_4$ fluxes from two arctic wetland sites of different annual temperatures during 2004 to 2006. The PEATLAND-VU model was used to simulate the emissions. The CH$_4$ module of PEATLAND-VU is based on the Walter-Heimann model. The first site is located in northeast Siberia, Indigirka lowlands, Kytalyk reserve (70° N, 147° E) in a continuous permafrost region with mean annual temperatures of −14.3°C. The other site is Stordalen mire in the eastern part of Lake Torneträsk (68° N, 19° E), ten kilometres east of Abisko, northern Sweden. It is located in a discontinuous permafrost region. Stordalen has a sub arctic climate with a mean annual temperature of −0.7°C.

Model input consisted of observed temperature, precipitation and snow cover data. In all cases, modelled CH$_4$ emissions show a direct correlation between variations in water table and soil temperature variations. The differences in CH$_4$ emissions between the two sites are caused by different climate, hydrology, soil physical properties, vegetation type and NPP.

For Kytalyk the simulated CH$_4$ fluxes show similar trends during the growing season, having average values for 2004 to 2006 between 1.29–2.09 mg CH$_4$ m$^{-2}$ h$^{-1}$. At Stordalen the simulated fluxes show a slightly lower average value for the same years (3.52 mg CH$_4$ m$^{-2}$ h$^{-1}$) than the observed 4.7 mg CH$_4$ m$^{-2}$ h$^{-1}$. The effect of the longer growing season at Stordalen is simulated correctly.

Our study shows that modelling of arctic CH$_4$ fluxes is improved by adding a relatively simple hydrological model that simulates the water table position from generic weather data. We conclude that CH$_4$ fluxes at these sites are less sensitive to temperature variation than to water table variations. Furthermore, parameter uncertainty at site level in wetland CH$_4$ process models is an important factor in large scale modelling of CH$_4$ fluxes.
1 Introduction

Together with water vapour and carbon dioxide (CO$_2$), CH$_4$ is an important contributor to the warming of the atmosphere. The atmospheric mixing ratios of so called greenhouse gases, CO$_2$, and nitrous oxide (N$_2$O) have increased about 31%, and 17%, respectively above pre-industrial values whereas CH$_4$ has increased 151%±25%, (Watson et al., 2001). The concentration of atmospheric CO$_2$ has increased from a pre-industrial value of about 280 ppm to 379 ppm in 2005. Increases in atmospheric CO$_2$ since pre-industrial times are responsible for a radiative forcing of +1.66±0.17 Wm$^{-2}$ (Solomon et al., 2007).

The N$_2$O concentration in 2005 was 319 ppb, about 18% higher than its pre-industrial value. Nitrous oxide increased approximately linearly by about 0.8 ppb yr$^{-1}$ over the past few decades and contributes a radiative forcing of +0.16±0.02 Wm$^{-2}$ and is due primarily to human activities, particularly agriculture and associated land use change (Solomon, et al., 2007).

The CH$_4$ abundance in 2005 of about 1774 ppb is more than double its pre-industrial value. Increases in atmospheric CH$_4$ concentrations since pre-industrial times have contributed a radiative forcing of +0.48±0.05 Wm$^{-2}$. Current atmospheric CH$_4$ levels are due to continuing anthropogenic emissions of CH$_4$, which are greater than natural emissions. Emissions from individual sources of CH$_4$ are not as well quantified as the total emissions but are mostly biogenic and include emissions from wetlands, ruminant animals, rice agriculture and biomass burning, with smaller contributions from industrial sources including fossil fuel-related emissions (Solomon et al., 2007).

About 60% of global CH$_4$ missions come from human-influenced sources and the rest are from natural sources (Houghton et al., 2001). Natural sources include wetlands, termites, oceans, and hydrates. Natural sources are dominated by wetlands. Where soils are waterlogged and oxygen is absent, methanogenic micro-organisms produce large amounts of CH$_4$ as they respire organic matter to CO$_2$ to derive energy. Wetland CH$_4$ emissions are thought to comprise around 80 percent of the total natural
CH$_4$ source. Total annual CH$_4$ emissions from natural sources are estimated to be around 250 Tg (Reay, 2006).

In the past decade the overall annual rate of CH$_4$ growth has decreased and become highly variable (Dlugokencky et al., 2003; Ciais et al., 2005). Ciais et al. (2005) attributes the decrease to a temporary reduction in anthropogenic emissions and the increased variability to wetland emission distribution. The largest CH$_4$ atmospheric mixing ratios are north of 40° N (Steele et al., 1987). This distribution coincides with the concentration of wetlands in the northern hemisphere and suggests that wetlands in this area may make a significant contribution to the global CH$_4$ budget (Moore and Knowles, 1990; Aselmann and Crutzen, 1989; Crill et al., 1988; Matthews and Fung, 1987).

The magnitude of the CH$_4$ emissions from wetlands is controlled by the dynamic balance between CH$_4$ production and oxidation rates in the peat profile and by transport mechanisms, (Bubier and Moore, 1994). Measured emissions demonstrate high spatial and temporal variation (Moore et al., 1990; Whalen and Reeburg, 1992; Dise, 1993) linked to environmental factors such as variation in temperature and ground water level.

CH$_4$ production and oxidation rates depend on substrate availability and supply, temperature and activity of the CH$_4$-producing and CH$_4$-oxidizing bacteria, affected by the redox status in the soil matrix which in turn is linked to the soil moisture condition and hydrochemistry, (Kettunen et al., 1999). Changes in both substrate availability and oxidation state during the growing season affect the population dynamics of methanogenic and methanotrophic bacteria (Svensson and Rosswall, 1984; Whiting and Chanton, 1993) and are reflected in the net CH$_4$ flux (Kettunen et al., 1999).

The water table in many wetlands show a seasonally related variation, with low levels in midsummer when the evapotranspiration is high and high levels in the rest of the season when precipitation dominates. The amount of variation depends on the water sources of the wetland (precipitation, groundwater or surface water flow). Because of the presence of microtopography (hummocks, hollows and lawns, Bubier et al., 1993b) the topography of a wetland has a very high variability in space close related to the
water table. Bubier et al. (1993b) found that the CH$_4$ flux follows the trend: hollows > lawns > hummocks. We study these sites because the hollows nutrient-rich and often saturated river delta (lawns) have CH$_4$ much higher than the other microlandscapes.

A characteristic of high latitude wetlands is the presence of the permafrost. Studies have shown that approximately 14% of the global carbon is stored in permafrost soils and sediments (Post et al., 1982). The frozen subsoil contributes to waterlogged soil conditions in permafrost wetlands. However, observations have shown that permafrost degradation causes an increase of methane fluxes by changes in local hydrology and ecosystem balance. More widespread thaw across the discontinuous permafrost region will be an important consideration to boreal C budgets with future climate change (Turetsky et al., 2002). Adequate modelling of these processes requires first of all correct modelling of the effects of water table on CH$_4$ fluxes. Models also should perform well in situations where ground water table observations are not available.

The purpose of this study is to make a comparison between an arctic (Kytalyk, Siberia) and subarctic (Stordalen, Sweden) wetland and their seasonal CH$_4$ fluxes, and to test a flux model that combines the CH$_4$ flux process approach of Walter (2000) with the soil physics as included in the model of Granberg et al. (1999). The study is based on site soil physical, vegetation and water level data. The CH$_4$ flux measurements at the sites have been used to validate the model. Model runs have been made with both site water level observations and modelled water levels based on generic weather data, to compare the influence of modelled or observed water tables on model performance.

2 Material and methods

2.1 Site description

Kytalyk. The study area on which the research was based on is located in Northeastern Siberia, in the Kytalyk reserve, in the Indigirka lowlands near Chokurdakh (70°48′ N,
Modelling CH$_4$ emissions from arctic wetlands

A. M. R. Petrescu et al.

The research area consists of three different morphological units: the river floodplain, the river terrace with tundra vegetation and the high plateaus (10–30 m) underlain by continuous permafrost. The area is characterized by silty soils with a peaty topsoil. The study site is located in river lowlands consisting of fluvial terraces of Late Pleistocene and Holocene age, and the recent floodplain of a meandering river with extensive backswamps situated behind natural levees. Next to the floodplain, a terrace (Holocene age) approximately 2 m above the present floodplain is found, consisting of a drained thermokarst lake floor, with consisting of hummocky moist tundra in the dryer parts and a mature network of low-centred ice wedge polygons in the lower parts. The next higher level in the landscape consists of so-called “ice complex” hills, which probably represent a higher Pleistocene terrace. The CH$_4$ flux measurements were confined to the lower terrace and the river floodplain. The climate is high arctic, with an annual average temperature measured at the Chokurdakh airport weather station of −14.3 degrees Celsius, the warmest month being July, the coldest January (data derived from NOAA website and summarized by Van Huissteden et al., 2006b).

At Kytalyk, the vegetation of the lower terrace/drained thaw lake consists mainly of ombrotrophic Sphagnum mire, alternating with interconnected depressions dominated by sedges and Eriophorum. On the dryer parts Betula nana, Salix and Eriophorum hummocks dominate. On the river floodplain vegetation varies from Carex/Eriophorum fen with grasses in wide backswamp areas, to Salix shrub on levees. The active layer ranges from 18 cm at dry, Sphagnum-covered sites on the terrace, to up to 53 cm in some parts of the floodplain. Thermokarst processes are active along the river bank and thermokarst lake banks.

Stordalen. The Stordalen Mire (68°21’ N, 19°02’ E, elevation 360 m a.s.l.) is situated at about 10 km east of Abisko Scientific Research Station, Sweden (Oquist et al., 2001). This mire was part of the International Biological Programme, and has been studied since early 1970s. The site is about one kilometer from and ten meters above Lake Torneträsk.

The entire Stordalen mire is 25 ha large and is treeless. It is made up of four ma-
Major habitats: (1) elevated, nutrient-deficient (ombrotrophic) areas with hummocks and small shallow depressions; (2) wet, nutrient-richer (minerotrophic) depressions; (3) pools and (4) brooks bringing water to and from the complex (Rooswall et al., 1975). With regard to the permafrost and the plant cover composition, the site is a typical northern peatland. The elevated parts are on permafrost and tundra like vegetation (Rooswall et al., 1975).

The climate is subarctic, with a mean annual temperature of −0.7°C, the warmest month being July and coldest February. The annual precipitation at Abisko is the lowest in the northern part of Sweden, about 300 mm (records from 1913–2003).

This study focuses on a wet minerotrophic area of the mire, where the water table is situated in the vicinity of the soil surface and the vegetation is dominated by *Eriophorum angustifolium*. In the drier parts of the mire the *Eriophorum vaginatum* and *Carex rotundata* dominates the *Sphagnum* spp. (Öquist and Svensson 2001).

2.2 Measurements

CH₄

Kytalyk. During 2004–2006, the CH₄ fluxes were measured in Kytalyk in short (few days) field campaigns during the summer period. The flux measurements were made using closed chambers, in a roving manner, in order to sample a wider variety of vegetation type and hydrologic conditions. (Van Huissteden et al., 2005; Van der Molen et al., 2007).

Stordalen. CH₄ fluxes were measured using the closed chambers technique (Christensen, 1993, 1995). The automatic chamber system at the Stordalen Mire is similar to the system described in detail by Goulden and Crill (1997). The measurement of CH₄ was made manually. Samples of the chamber headspace air were taken from the main sample air flow downstream from the gas analyzers.
Water table measurements and simulations

Kytalyk. The ground water table was determined after the flux measurements took place, from a hand auger hole. During the summer of 2004 daily values were recorded during four consecutive days (27–31 July) (Van Huissteden et al., 2005). For the year 2005, measurements took place between 20 and 30 July. In 2006 the water table was measured from 15 to 18 August.

Stordalen. Water table position relative to ground level was measured manually 3–5 times per week at all sites (Bäckstrand et al., 2007).

2.3 Model description

2.3.1 The PEATLAND-VU Model

PEATLAND-VU is a process-based model of CO$_2$ and CH$_4$ emission from peat soils at various management scenarios. It includes a slightly modified version of the Walter (2000) soil profile scale CH$_4$ flux model (Van Huissteden et al., 2006a) and a simplified soil physical model to simulate soil temperatures and soil freezing/thawing.

It consists of four submodels: a soil physics submodel to calculate temperature, water saturation and ice content of the soil layers, a CO$_2$ submodel, a CH$_4$ submodel and an organic production submodel (Van Huissteden et al., 2006a).

The CH$_4$ submodel is based on Walter et al. (1996), Walter (2000) and Bogner et al. (2000). The model of Walter (2000) includes: (1) CH$_4$ production depending on substrate availability; (2) CH$_4$ oxidation within the aerated soil topsoil and in plant roots and stems; (3) CH$_4$ transport by diffusion above and below the water table; (4) transport by ebullition below the water table; and (5) transport through plants (Van Huissteden et al., 2006a). For this study we only used PEATLAND-VU to estimate CH$_4$ fluxes.

The model requires as input a soil profile description with organic matter content, dry bulk density and pF curves for each soil horizon, and time series for soil surface or air temperature, water table depth and snow cover for each model time step (1 day in this
study). Output of the model is the surface CH$_4$ fluxes, including contributions from the different transport pathways.

2.3.2 Input data and parameterization of the model

The input data for PEATLAND-VU Model can be obtained from generic data, e.g. soil profiles and weather data stations (Van Huissteden et al., 2006a). Several soil parameters, in particular those relating to organic matter quality and quantity, are hard to measure; therefore model optimization may be necessary.

Based on the input data, simulations were carried out and the output CH$_4$ fluxes were compared with the measured ones (only for the Kytalyk site: three values represented with error bars). All input data (climate, soil parameters, vegetation type and ground water depth) were specific for the site.

For 2004 to 2006, the Stordalen climatic data sets were provided by the Abisko Scientific Research Station. For Kytalyk the data were obtained from Chokurdakh weather station at the local airport. In addition, air and soil temperature data measured on the site for micrometeorological CO$_2$ and H$_2$O flux measurements were used (Van der Molen et al., 2007). Several parameters influence the simulations and were calibrated. The most important ones were: the CH$_4$ production rate R_0 was set at the low end of the range indicated by Walter (2000) (Van Huissteden et al., 2006a). For Kytalyk the value was set to 0.3μMh$^{-1}$ and for Stordalen to 0.25μMh$^{-1}$ for both WT approaches; the Q_{10} value for temperature correction CH$_4$ production (range 1.7–16 in Walter and Heimann 2000) was set at a value of 4 for the Swedish site and 2 (simulations with observed WT) and 3 (simulations with simulated WT) for the Siberian site; and the CH$_4$ plant oxidation fraction was set 0.6 for the Siberian site and 0.7 for the Swedish site.

2.3.3 Water table simulations

The ground water table strongly influences the methane fluxes. Two runs were performed with two different water table files. The first was the measured water table
and the second was simulated using equations based on the Mixed Mire Water and Heat Model (MMWH) of Granberg et al. (1999) as modified by Yurova et al., 2007). The hydrology of the model is represented by a simple bucket approach describing the change in water content of a unit area (Granberg et al., 1999). MMWH model was developed to reconstruct the water table position in the upper active layer of the boreal mixed mires. Approach is based on the steady state moisture distribution in the unsaturated zone, which is simulated by the van Genuchten functions (1980) simplified and parameterized for the peat of different types by Weiss et al. (1998). The lateral flow is model dynamically, including the transmissivity feedback: the increase in runoff associated with higher water table due to change in hydraulic conductivity (maximum at the surface and reduces strongly with depth). Calculated potential evapotranspiration is reduced when the water table drops below the peat surface, and this decrease is exponential with a water table depth. The depth of permanent saturation and peat composition and physical properties are the main site-specific model parameters.

3 Results

3.1 Annual climate variations

Stordalen. The variation in climate parameters for 2004–2006 is shown in Fig. 3. The average value for air temperature was 1.07°C, the coldest day being the 3 March 2006 (−29.36°C) and warmest the 5 July 2005 (19.69°C). The data were provided by the Abisko Scientific Research Station for the three years in study. Abisko is in the rain shadow of the Norwegian mountains and the precipitation received is among the lowest in Scandinavia (Johansson et al., 2006). The mean annual precipitation for the period 2004–2006 is only 612 mm. The gaps in data for the soil temperature at 3 cm depth were due to the malfunction of the instrument.

The winter precipitation is mainly snow. The mean snow depth on the Stordalen mire was during this period 0.18 m. This is different from Abisko, due to snowdrift effects in
the open space of the Stordalen mire. The soil temperature records were measured at Stordalen mire.

Kytalyk. Figure 4 shows the three years record for climate parameters at the Siberian site. The mean temperature for the three years was −12.8°C, the coldest day being 12 December 2004 and the warmest 4 July 2005. The source for the air temperature, precipitation and snow data were the local site measurements in summer, supplemented with data from the Chokurdakh airport weather station. Missing values were interpolated.

3.2 Water table and active layer measurements

Stordalen. Water table position relative to ground level was measured manually 3–5 times per week at all sites (Bäckstrand et al., 2007). For this study the water levels from the fen portion of the mire were used, as presented in Fig. 5.

The active layer was measured at Stordalen mire at different sites, from 17 June–20 September 2004 and on the 22 September 2005 at 121 sites. The mean value for the year 2004 was 50.67 cm and for 2005 was 66.6 cm.

Kytalyk. The water table measurements (Table 2 and Fig. 8) were made during the field campaigns. We used the average water table for the floodplain sites to interpolate between periods with modelled water table. In Table 2 the averaged values (7 point measurements in 2004, 21 in 2005 and 12 in 2006 from the floodplain wet area) are shown.

Using as input parameters the climate data, we modelled the water table with the MMWH model (Granberg et al., 1999, modified by Yurova et al., 2007). Fig. 6 shows the simulation for Stordalen mire and Fig. 7 for Kytalyk site.

The cause of the deviation between data and model for the Kytalyk simulations is the excessive drainage of the floodplain caused by an abnormal low water level of the river water in 2005. On the terrace surface, where the effects of the low river water level have been absent, the measured water table for 2005 agrees better with the model (measured WT −0.2+/−1.22).
3.3 \(\text{CH}_4 \) fluxes

Stordalen. Using the measured water table depth from the fen part of the Stordalen Mire, the \(\text{CH}_4 \) flux trend is similar to the simulated one. The range for the measured \(\text{CH}_4 \) is between 0 mg m\(^{-2}\) h\(^{-1}\) and 18.07 mg m\(^{-2}\) h\(^{-1}\) (average value of 4.7 mg m\(^{-2}\) h\(^{-1}\)), while the simulated emissions vary between 0 mg m\(^{-2}\) h\(^{-1}\) and 26.9 mg m\(^{-2}\) h\(^{-1}\), with an average value for the three years of 3.52 mg m\(^{-2}\) h\(^{-1}\) (Fig. 8).

A second run, using the simulated water table from the changed version of Granberg et al. (1999), was performed with the PEATLAND-VU model. The \(\text{CH}_4 \) fluxes show a very similar pattern for the years 2004 to 2006 (see Fig. 8). The measured \(\text{CH}_4 \) emissions from the fen portion of the mire, averaged a value of 4.7 mg m\(^{-2}\) h\(^{-1}\) (data from two chambers for the 2004 and 2005 years and measured data with TDL for 2006) and range between 0 mg m\(^{-2}\) h\(^{-1}\) and 18.07 mg while the simulated fluxes range between 0 mg m\(^{-2}\) h\(^{-1}\) and 18.54 mg m\(^{-2}\) h\(^{-1}\) with averaged value of 2.53 mg m\(^{-2}\) h\(^{-1}\).

The \(\text{CH}_4 \) flux peak in both model and data was during the same month (September) and the period with active emission coincides with the growing season (April–October).

Kytalyk. For Kytalyk the measurements for the water table depth were done for four consecutive days in 2004, 10 days in 2005 and four day in 2006. Due to the very remote area was not possible to perform yearly measurements, therefore the water table input file used by PEATLAND-VU was constructed based on the available data and on the assumption that the minimum water depth is 5 cm below ground and does not exceeds 15 cm depth during winter time. The active layer was simulated with PEATLAND-VU based on the output temperature file constructed by the model using the air temperature as input. The soil physical submodel tends to overestimate the active layer depth. However, the measured active layer average value at the wet sites (0.45 cm) is within the range of the simulated ones (0.05–0.85 m).

The \(\text{CH}_4 \) fluxes range between 0 mg m\(^{-2}\) h\(^{-1}\) and 20.8 mg m\(^{-2}\) h\(^{-1}\) with a three year average value of 1.29 mg m\(^{-2}\) h\(^{-1}\). For the 2005 and 2006 the averaged value matches with the simulations. The only exception is for the year 2004 when the measurement
4 Discussion

Previous studies show that the CH$_4$ emissions are highly influenced by the water table variation (Van Huissteden et al., 2005). Therefore, for a better estimation of the total CH$_4$ emission from arctic areas, it is necessary to have a very good estimation of the water table depth. With the global warming, the permafrost areas are melting and disappearing, as it is the case of Stordalen mire (Christensen et al., 2004).

For the Swedish site, Stordalen, the CH$_4$ emissions on a decadal time scale are mainly influenced by the temperature changes in the past decades, which induced the melt of the permafrost. This results in an increase in the active layer depth and variation in the water table dynamics. With a wetter condition, the vegetations shifted from shrub dominated, elevated, ombrotrophic conditions to wet graminoid dominated more nutrient rich or minerotrophic conditions (http://www.geography.uc.edu/~kenhinke/CALM). Such trend it is observed at Stordalen but less dramatic (Christensen et al., 2004). The vegetation composition has changed significantly with a decrease in the permafrost-dependent relatively dry elevated mire vegetation types and a corresponding increase in the lower wet graminoid dominated vegetation. This change corresponds with changes in the underlying permafrost distribution as the latter is determining the mire surface topography and hydrology, and hence the plant community structure (Christensen et al., 2004). Due to this change the CH$_4$ emissions increased from 1.8–2.2 mg m$^{-2}$ h$^{-1}$ (1970) (Christensen et al., 2004) to 4.7 mg m$^{-2}$ h$^{-1}$ (averaged measured CH$_4$ flux 2004–2006).
The simulated CH\textsubscript{4} fluxes for Stordalen range between 3.52 mg CH\textsubscript{4} m-2 h-1 (measured WT) and 2.53 mg CH\textsubscript{4} m-2 h-1 (simulated WT), while for Siberia the mean temperature for the three years in case was –12.8\textdegree C and the averaged simulated CH\textsubscript{4} fluxes were much lower than the Swedish ones (1.29 mg CH\textsubscript{4} m-2 h-1 with measured WT and 2.09 mg CH\textsubscript{4} m-2 hr-1 with simulated WT). The mean soil temperature at the Stordalen site, for the years 2004–2006 was +3.76\textdegree C. This is in accordance with the known sensitivity of methanogenesis to temperature (Walter, 2000). However methane formation also may occur at subzero temperatures (Rivkina et al., 2000; Wagner et al., 2007) winter emissions that may occur at subzero temperatures are not included in the measurement data and the model.

The optimization of the methane model input parameters (CH\textsubscript{4} R\textsubscript{0} production rate, Q\textsubscript{10} value for temperature correction CH\textsubscript{4} production) was done by optimizing the values until the optimum match between data and model was found. For both sites the plant oxidation factor was set to a value of 0.7. This means that 70 percent of the methane is oxidized during the plant transport. For simulations at Stordalen mire a Q\textsubscript{10} value of 4 was used, while for Kytalyk the value was set to 2, the range of it being 1.7–16 (Walter, 2000). Together with R\textsubscript{0}, the Q\textsubscript{10} value influences the peak of the summer emissions relative to early and autumn. Since at Kytalyk no data throughout the growing season are available, tuning of the model parameters was focused on R\textsubscript{0} rather than Q\textsubscript{10}. In general, the model is not very sensitive to small differences in the value of Q\textsubscript{10}. We conclude that the model is more sensitive to the water table than to the temperature. This high sensitivity for water table position agrees well with statistical analysis of CH\textsubscript{4} flux data, soil temperatures and water table data from Kytalyk (Van Huissteden et al., 2005).

A good match was observed between the simulated and measured CH\textsubscript{4} fluxes using the simulated WT. One of the reasons might be a continuous water table file with constant fluctuations from summer to winter throughout the three years in study.

For the Kytalyk site, the simulated CH\textsubscript{4} fluxes match in both approaches with the averaged point measured CH\textsubscript{4}. The fluxes are much lower than the ones from N Sweden.
and this may be due to: (1) shorter growing season (May–September) compared with a longer one at Stordalen (April–October), (2) lower soil temperature, (3) more Sphagnum vegetation which lives in symbiosis with metanotrophic bacteria and consumes the CH$_4$ below the water table (Raghoebarsing et al., 2005) while the Stordalen wet site has Carex and Eriophorum spp., and (4) differences within the active layer depth.

Vegetation related factors influencing the CH$_4$ fluxes from floodplain are (1) plant mediated transport of CH$_4$ between the soils and atmosphere and (2) primary productivity (Van Huissteden et al., 2005). Sedges are good transporters of CH$_4$ (Busch and Lösch, 1999). The CH$_4$ fluxes are related to the vegetation by primary production by providing substrate for methanogens through root exudation (King and Reeburg, 2002). A recent study at Stordalen shows that sites dominated by Eriophorum angustifolium have higher CH$_4$ fluxes than the ones with Eriophorum vaginatum or Carex rotundata (Ström and Cristensen, 2007).

The variation within the CH$_4$ fluxes is strongly influenced by the hydrological conditions at each site. A smoother variation (see Fig. 8) is observed for Stordalen CH$_4$ as the WT had a more constant trend (not many picks, Fig. 5). For the Siberian site the water table varied a lot (wet in 2004 and very dry in 2005 caused by the excessive drainage of the floodplain) therefore the emissions show a higher variability in time.

5 Conclusions

CH$_4$ fluxes from arctic wetlands show a high variability in time. Even if both sites are located in arctic areas, the differences are considerable. Both study sites are wetlands but the CH$_4$ fluxes have different patterns. We hypothesize that the cause for these differences are (1) water table depth (2) air and soil temperature (3) vegetation type and (4) net primary production. By using the simulated water table depth, it was possible to match the measured CH$_4$ emissions with the simulated ones, using a relatively simple bucket model to simulate the water table based on generic meteorological precipitation and temperature time series. The results of our study are promising for improvement
of regional scale CH$_4$ emission models. Parameter uncertainty at site level in wetland CH$_4$ process models is an important factor in large scale modelling of CH$_4$ fluxes. The CH$_4$ fluxes at the Kytalyk site appear less sensitive to temperature variation than to water table variation, theory in concordance with other studies (Moore et al., 1990; Roulet et al., 1991; Walter et al., 1996; Van der Molen et al., 2007). This stresses the need for improvement of hydrological models for correct simulation of water table variation in modelling of wetland CH$_4$ fluxes.

Acknowledgements. I would like to thank J. C. van Huissteden for his support and comments on earlier drafts of this paper, all the people I meet in Sweden during my two months secondment at the Department of Physical Geography and Ecosystems Analysis, Lund University, for their help, all co-authors for their precious comments and the reviewers for their thoughtful suggestions. I would also like to thank A. D. Friend for giving me the opportunity to go visit the Kytalyk reserve in NE Siberia. This study is funded by Marie Curie Fellowship, Greencycles RTN.

References

Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z.,

Siberian Arctic and its implication for the global CH$_4$ budget, Global Change Biology (Online Accepted Articles), doi:10.1111/j.1365-2486.2007.01331.x, 2007.

Table 1. Soil physical parameters per soil horizon as used in the PEATLAND-VU Model (Van Huissteden et al., 2006a; Roswall and Heal, 1975).

<table>
<thead>
<tr>
<th>Soil physical parameters per soil horizon</th>
<th>Kytalyk</th>
<th>Stordalen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of horizons</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Horizon base depths with respect to surface (in meters)</td>
<td>[0.1, 0.2, 2.0]</td>
<td>[0.1, 0.2, 0.3, 2.0]</td>
</tr>
<tr>
<td>Horizon base depths with respect to surface (in meters)</td>
<td>[15, 15, 15]</td>
<td>[48, 38, 31, 15]</td>
</tr>
<tr>
<td>C/N ratios for each soil layer</td>
<td>[15, 15, 15]</td>
<td>[48, 38, 31, 15]</td>
</tr>
<tr>
<td>Dry bulk density for each horizon (kg m(^{-3}))</td>
<td>[100, 130, 975]</td>
<td>[88, 102, 519, 808]</td>
</tr>
<tr>
<td>Percentage organic matter for each horizon pH</td>
<td>[95.0, 80.0, 5.0]</td>
<td>[90.0, 80.0, 70.0, 5.0]</td>
</tr>
<tr>
<td>Percentage organic matter for each horizon pH</td>
<td>[6.0, 6.0, 7.0]</td>
<td>[4.0, 4.0, 4.1, 4.0]</td>
</tr>
</tbody>
</table>
Table 2. Average water table depth and active layer thickness (cm below ground) from the floodplain wet area in Kytalyk for the years 2004–2006.

<table>
<thead>
<tr>
<th>Year</th>
<th>Average water table (cm below surface)</th>
<th>Average active layer thickness (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.71</td>
<td>42.8</td>
</tr>
<tr>
<td>2005</td>
<td>2.8</td>
<td>42.5</td>
</tr>
<tr>
<td>2006</td>
<td>0.16</td>
<td>53.5</td>
</tr>
</tbody>
</table>
Fig. 1. Location of the study site, Kytalyk Reserve, NE Siberia (modified after Van Huissteden et al., 2006a).
Fig. 2. Location of the study site, Stordalen mire, N Sweden (after Bäckstrand et al., 2007).
Fig. 3. Three years weather data records from the Stordalen Mire (source: Abisko Scientific Research Station).
Fig. 4. Three years weather data records from the Kytalyk site derived from Chokurdakh airport weather station (source: NOAA-NCDC website http://lwf.ncdc.noaa.gov oa/ncdc.html, augmented with local summer measurements).
Fig. 5. Measured water table depth at Stordalen Mire for 2004–2006.
Fig. 6. Water table modelled with the MMWH Model for Stordalen Mire 2004–2006.
Fig. 7. Water table modelled with the MMWH Model for Kytalyk site 2004–2006.
Fig. 8. Measured (red) and simulated (black) CH$_4$ emissions for 2004–2006 at Stordalen mire with measured water table (see Fig. 5).
Fig. 9. Measured (red) and simulated (black) CH$_4$ emissions for 2004–2006 at Stordalen mire using the simulated water table from Fig. 7.
Fig. 10. Average measured value (red) and simulated (black) CH$_4$ emissions for 2004–2006 at Kytalyk site using the measured water table.
Fig. 11. Average measured value (red) and simulated (black) CH$_4$ emissions for 2004–2006 at Kytalyk site using the simulated water table.