Dear editors and reviewers:

Below is a detailed response to comments made by the referee’s on our paper ‘Spatial variability of diploptene $\delta^{13}C$ values in thermokarst lakes: the potential to analyse the complexity of lacustrine methane cycling’.

We would like to thank the reviewers for their efforts and constructive comments and we believe that they have improved the manuscript. Revisions to the manuscript are given in detail below and can be seen in the marked up version of the manuscript included here. Quotes from the manuscript incorporating the changes are in red.

Please note, we would like to alter an author affiliation. This is an extra alteration to the manuscript.

Sincerely
Kim Davies on behalf of all the authors.

Referee #1

General comments (GC)

GC 1: The title of the manuscript makes me think there is potential for using $\delta^{13}C$ on diploptene for reconstructing historical estimates of lake methane ebulition...but after reading the manuscript, I am not so sure that is true

R1: We agree that the title could have been misleading. We have altered it to more accurately describe the paper.

New title:

‘Spatial variability of diploptene $\delta^{13}C$ values in thermokarst lakes highlights the complexity of tracing the lacustrine methane cycle’

GC2: The authors should be careful to not suggest that the proposed method appears more valuable than it really is (at least at our current state of knowledge). Specifically, I think the abstract is more positive about using $\delta^{13}C$-diploptene observations for reconstructing past methane oxidation in lakes than the manuscript supports.

Response 2: We have changed the abstract to better reflect the uncertainty associated with the results. Specifically, we have added a sentence about the need for further research before the $\delta^{13}C$ values of diploptene could be considered for reconstructing past methane oxidation. The
alterations make it clear to the reader that the results are complicated and they reveal the potential variability which can be found in contemporary sediments even in a small lake.

GC3: I think this manuscript can be published, as long as the authors are clear that this is a very preliminary study, which basically tells us that with more research, δ^{13}C diploptene might become useful as a biomarker for informing methane oxidation history in lake sediments. But for now, we don’t know enough to reliably apply it.

Response 3: We very much agree with this and this is a fundamental point that the manuscript is trying to make. We have included changes to the abstract and the conclusion which should make these points much clearer.

Sentences altered/added:
The diploptene δ^{13}C values highlight strong within-lake variability but presently, there is no clear pattern in this variability that can be linked to thermokarst specific methane emissions.

This study, whilst preliminary, highlights the need for further research and implies that at this stage, single-value, down-core records of hopanoid isotopic signatures are unlikely to be secure indicators of changing methane flux at the whole-lake scale.

We conclude that given the current data, further research should be completed in order to understand the variability in δ^{13}C diploptene values prior to utilisation of this method for the reconstruction of methane cycling in lacustrine systems.

Specific comments (SC)

SC1: Diploptene is mispelled TWICE in the abstract. ‘Diplotene’ is something completely different (and is not a chemical).

R1: We have fixed these grammatical errors.

SC2: In the abstract: ‘Using δ^{13}C-diploptene as a proxy for methane oxidation activity, we suggest the observed differences in methane oxidation levels among sites within the two lakes could be linked to differences in source area of methane production (e.g. age
and type of organic carbon) and bathymetry as it relates to varying oxycline depths and changing pressure gradients.

Ok...but as noted in the manuscript, there was no radiocarbon dating in one of the lakes. So it seems that the suggestion of age differences is premature

R2: We have removed the reference to chronology in the abstract and altered the wording.

SC3: Section 5.3: “A crucial outcome of this study is the large variability seen in the δ13C values of diploptene across small spatial distances. This is an important finding, as often whole lakes can be represented by a single sampling site in palaeoenvironmental studies.”

I agree with this! But it undermines some of the conclusions of the manuscript, especially the last statement of the conclusions: “We conclude that diploptene biomarkers have considerable potential to help reconstruct patterns of methane cycling in lakes and, with certain caveats, particularly attention to context, past methane dynamics.”

Isn’t it more true that this study raises MANY cautions that must be resolved before δ13C-diploptene values can be used to ‘reconstruct patterns of methane cycling and past methane dynamics’?

I don’t see how the results in this study do much more than show that sometimes the δ13C-diploptene values make sense with current observations of methane ebullition and methane oxidizing bacteria biomass, and sometimes they don’t (e.g. Figure 4)

R3: We agree that this final sentence in the conclusions was out of place and did not fit with what the data are showing. We have replaced this sentence with one that highlights that more work should be done.

New sentence:

We conclude that given the current data, further research should be completed in order to understand the variability in δ13C diploptene values prior to utilisation of this method for the reconstruction of methane cycling in lacustrine systems.

Minor Comments (MC)

MC1: ‘The connections between methane production...’ This sentence should be split into two sentences, probably after ‘not well understood’
R1: This sentence has been amended suggested

MC2: page 12164 “in the food web to the incorporation of carbon from of methane”
extra word: remove “of”

R2: ‘of’ has been removed

MC3: page 12166: odd to cite personal observation from the first author

R3: the reference to personal observation has been removed

MC4: “actively thermokarsting” Don’t verb nouns unless absolutely necessary.

R4: The sentence has been changed to: ‘actively thawing and eroding’

MC5: page 12171: It’s too bad that there is no radiocarbon data for Ace Lake.

R5: We would have liked to provide a high resolution chronology for both lakes, however, due to way in which the project was funded, there was no money available.

MC6: page 12176: “palaeoenvironmental investigations take into lake type” should be “palaeoenvironmental investigations take into account lake type”

R6: The word ‘account’ has been added.

Figure comments (FC)

FC1: Figure 2: unit “Mg” should be “mg”

R1: Mg has been changed to ‘mg’

FC2: Figure 3: What is the basis of the bin sizes for the bubble counts on this figure? The first interval has size 3, then a bin size of 6, then a bin size of 5, then a bin size of 2, then a bin size of 93! Why?

R2: The bin sizes were designed to show the variability in the data. We agree however, that they didn’t make sense. The bin sizes have been amended and now follow a logical pattern.
During the editing process, it was noticed that one of the data points was missing so it has been added to the diagram.

FC3: Figures 3 and 4: The compass rose arrow is WRONG on one of these figures. I don’t know which is wrong, but they both cannot be true.

Also, the shoreline of Ace Lake looks rather different in Figure 3 and Figure 4. Why?

R3: The lake outline in figure 3 had a slightly different orientation to the lake outline in the other diagrams. For ease, figure 3 has been altered so that it fits with the style of the rest of the diagrams. This means the north arrow is also fixed.

Referee #2

Davies and co-authors present a study on spatial variability of diploptene δ13C measurements of the bacterial biomarker diploptene in thermokarst lakes together with methane monitoring, and that has the potential to assess past carbon cycling in northern high latitudes. However, I think the paper still needs some work before publication. The critical issue is that the authors showed totally 14 diploptene δ13C values within the same zone (TK zone or Centre section) from two lakes, but with big variations. Although the authors proposed several reasons for the large variability in the δ13C values of diploptene across small spatial distances, maybe more data would be useful.

Response: We thank the reviewer for their comments. Whilst we agree that more data would be very helpful there is no option for processing anymore samples. The samples were run as a preliminary dataset utilising a very limited PhD budget which has been exhausted and therefore no more funds exist. In order to address any issues with the size of the dataset, we have highlighted the preliminary nature of the data in the manuscript throughout the abstract, discussion and conclusion. However, it should be pointed out that the study was set up so as to achieve repeat samples in each zone and that this is a relatively high sample resolution when considering the field in which we are interested in trying to apply the technique (palaeo reconstructions).

SC1: In the abstract, line 13: diplotene should be diploptene. The same as line 18.

R1: We have fixed these grammatical errors.

SC2: In the abstract, line 21: (e.g., age and type of organic carbon) and. I think the authors just showed one age and it seems they didn’t discuss anything about type of organic carbon in the paper. The authors should clarify this.

R2: We have removed the reference to chronology in the abstract and altered the wording.
SC3: 3.2 Methane monitoring: the authors mentioned methane δ13C and δD, but didn’t show/discuss them in the paper.

R3: The mention of δD has been removed from the manuscript. The δ13C we refer to can be found in table 1 and is used as part of the mixing model.

SC4: 3.5 Mass balance equation: “. . . δ13C hetero-hopane is the δ13C value of the hopanoids derived from heterotrophic bacteria. . .”, So please specify which hopanoids in the paper because a lot of hopanoids are derived from bacteria.

R4: From this comment, we can see that the reference to other types of hopanoids is confusing. We have altered the wording of the mixing model to better reflect what we were trying to show. We have added a sentence in the introduction to help convey the theory behind the mixing model.

The mixing model is trying to understand the contribution of MOB to the diploptene signal, where diploptene is derived from both MOB and heterotrophic bacteria. Here, shifts towards more negative δ13C values would suggest a greater contribution of MOB to the diploptene signal.

Added sentences:

In particular, the compound diploptene (17 β(H), 21 β(H)-hop-22 (29)-ene), is a hopanoid hydrocarbon derived from a range of bacterial sources. However due to the utilisation of methane as a carbon source, the δ13C values of diploptene derived from MOB will be more negative than if it were derived from other heterotrophic bacteria which utilise organic carbon from vegetation.

The δ13C values of diploptene derived from heterotrophic bacteria will primarily reflect the substrate carbon which in this instance will be organic material and not methane. These values are therefore unlikely to vary; however a ~2 to 4‰ shift can occur during lipid biosynthesis (Pancost and Sinninghe Damsté 2003, and references therein).

SC5: Results section of Line 24-25(P12171): ‘. . . . Diploptene δ13C values in the thermokarst zone of Ace L. are similar to those of the lake centre at Smith. . . .’, I couldn’t see they are similar.

R5: we have removed this sentence

SC6: Line 14 in the 5.2 section, it is fig3 or fig.4?
R6: This should be figure 4, we have amended this.

SC7: 5.2 section and Table 3: It is also not very clear that MOB biomass has large variations across the small distances. For example, at the TK zone of Ace Lake, sample a3 and a4 are close, but the difference of MOB biomass is around 30%. If it is because of microbial community, so give more evidence.

Referee #3

SC1: In the abstract diploptene is misspelled twice.

R1: We have fixed these grammatical errors.

SC2: Page 12163 Line 4, What is a “bight”

R2: We have included a brief definition of a bight in the text. Briefly, a bight is a curve in the coastline or a bay formed from such a curve.

SC3: Page 12164 Line 2-4, “potential confounding factor. . .” this seems potential pretty important, what impact could this have on your results.

R3: This factor is discussed in section 5.2, however we have added more detail in the introduction.

Sentence added:

Methane production and oxidation that occurs in the near-surface sediments will represent a background level which is likely to be found in many contemporary lake settings and the amount should be lower than that derived from thermokarst specific sources. We might expect some level of depletion in δ^{13}C values due to near-surface production but crucially, if δ^{13}C values of diploptene are to be used as a proxy for past methane production, we would expect thermokarst specific methane production that is being oxidised would have much lower δ^{13}C values than background methane oxidation.

SC4: Introduction, it is not clear exactly what patterns you would you expect to see in diploptene δ13C under the scenarios discussed.
R4: We have added a number of sentences which make it clearer what patterns we would expect to see.

Sentences added:
In particular, the compound diploptene (17 β(H), 21 β(H)-hop-22 (29)-ene), is a hopanoid hydrocarbon derived from a range of bacterial sources. However due to the utilisation of methane as a carbon source, the d13c values of diploptene derived from MOB will be more negative than if it were derived from other heterotrophic bacteria which utilise organic carbon from vegetation.

Therefore if MOB are present in the sediments of thermokarst lakes, we would expect to see depleted δ13C values of diploptene.

We might expect some level of depletion in δ13C values due to near-surface production but crucially, if δ13C values of diploptene are to be used as a proxy for past methane production, we would expect thermokarst specific methane production that is being oxidised would have much lower δ13C values than background methane oxidation.

SC5: Page 12168, Line 5, Any particular reason for using the 1-2cm sediment slice?

R5: The 0-1cm sediment slice was more variable is sample size due to the sediment-water interface, therefore the 1-2cm slice is still well oxygenated and was more likely to represent the same level across all samples.

SC6: Page 12167, Line 25, Don’t include the δD analytical error if you don’t include any δD data.

R6: The mention of δD has been removed from the manuscript.

SC7: Page 12170 Line 11, You give a potential range of 0-30‰ what value did you use, is this the 10‰ you discuss earlier, please clarify.

R7: We have added sentences to clarify what we did. The results are presented as a range which incorporate both the minimum and maximum possible fractionation factor, therefore d13c_{MOB,dip,min} will represent the lowest possible value given maximum fractionation (30‰).

Sentences added:
In order to incorporate this large range, we used both the minimum and maximum value of fractionation (0 and 30‰) to show different scenarios rather than assuming a single value. This should also cover any potential variation due to differing δ13C_{methane}. Therefore the
equation was calculated twice, once using $\delta^{13}C_{\text{mob dip min}}$ and once using $\delta^{13}C_{\text{mob dip max}}$.

SC8: Overall the calculation of diploptene δ^{13}C seems pretty vague with a lot of estimates, this is ok, isotopes can be messy, but the discussion of these choices and the variation/uncertainty they introduce could be more clearly discussed, especially give the high variability and inconsistency of your results and the claims that this method could be used to do historical reconstructions.

R8: We are unsure if the reviewer is referring to the d^{13}c values we have of the diploptene from the sediments or the d^{13}c values inferred to calculate MOB concentrations. If referring to the latter, then we agree that they are messy and deliberately vague as we did not want the estimates to seem more robust than we can actually calculate. We have included further sentences to clarify the purpose of the mixing model.

We have also pointed out more clearly that this area of research needs much more development before it could be used for reconstructions.

Sentences added:

By developing this mixing model and considering, in more detail, the potential end member values for the δ^{13}C values of diploptene derived from different sources (MOB and other heterotrophic bacteria) we can get a semi-quantitative idea of the distribution patterns of MOB across the samples.

These estimates have a large degree of uncertainty associated with them and we note that there are some important caveats to using this mixing model.

SC9: Line 12171 Line 6, How many bubbles were sampled for δ^{13}C, there are no error values listed, which seems to suggest only a single sample was analyzed at each site. If that is the case, there is not much you can infer from this one number; especially considering how your diploptene δ^{13}C data shows just how spatially variable δ^{13}C is in this system.
R9: The value from Ace Lake represents an average from across 5 seep locations in the
thermokarst zone whilst the value from Smith Lake is taken from a single seep. We agree that
the number of samples should be increased but in this instance, no more samples can be taken.
These values have been used for the mixing model and we agree that it is likely that these
values will be variable, however, we hoped that by using a minimum and maximum value for
fractionation we would have incorporated a large amount of variation. We have included a
sentence in the mixing model section which discusses this further.

Added sentences:

The δ^{13}C$_{\text{methane}}$ is the measured value of methane captured at seep locations in the thermokarst
zones at each lake. As the value is based on a limited number of data (n1 and n5 for Smith L.
and Ace L. respectively), it is likely there will be more variation than is seen in the model.
Furthermore MOB can be significantly depleted in comparison to the source carbon they
utilise (Whiticar 1999); isotopic differences can be as large 30‰ (Jahnke et al., 1999). In
order to incorporate this large range, we used both the minimum and maximum value of
fractionation (0 and 30‰) to show different scenarios rather than assuming a single value.
This should also cover any potential variation due to differing δ^{13}C$_{\text{methane}}$. Therefore the
equation was calculated twice, once using δ^{13}C$_{\text{mob, dip}}$ _min and once using δ^{13}C$_{\text{mob, dip}}$ _max.

SC10: Methods: Sample size, replication, sampling location information needs to be
clearly covered in the methods section. This information needs to be included for all
analyses, not just diploptene δ^{13}C, although I couldn’t even find sample size
information for diploptene δ^{13}C in the methods section (it is mentioned later in the
manuscript).

R10: we have included a table which shows the sample weights and made reference to figure
2 which shows the sampling locations for the sediment cores.

Table included:

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Sample size (dry g)</th>
</tr>
</thead>
</table>

10
<table>
<thead>
<tr>
<th>Smith</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2596</td>
</tr>
<tr>
<td>2</td>
<td>0.2206</td>
</tr>
<tr>
<td>3</td>
<td>0.3584</td>
</tr>
<tr>
<td>4</td>
<td>0.1486</td>
</tr>
<tr>
<td>5</td>
<td>0.1942</td>
</tr>
<tr>
<td>6</td>
<td>0.5654</td>
</tr>
<tr>
<td>7</td>
<td>0.3841</td>
</tr>
<tr>
<td>8</td>
<td>0.2024</td>
</tr>
<tr>
<td>9</td>
<td>0.3386</td>
</tr>
<tr>
<td>10</td>
<td>0.2185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ace</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>1.3427</td>
</tr>
<tr>
<td>a2</td>
<td>0.6812</td>
</tr>
<tr>
<td>a3</td>
<td>0.5758</td>
</tr>
<tr>
<td>a4</td>
<td>0.808</td>
</tr>
</tbody>
</table>

SC11: It looks like Ace lake was only sampled in the TK zone whereas Smith Lake was also sampled away from the TK zone. This is unfortunate, since it really limits the ability to distinguish potential impacts of thermokarst activity from other spatial differences within/between lakes.

R11: We agree that this is a shame. The centre of Ace L. is much deeper than at Smith L. (~9m) and we wanted to try to reduce the number of other potential factors which could influence the d13c values. Furthermore, due to the limited number of samples which could be run, we felt it would be more beneficial to get repeat samples from within zones. We have included a sentence in the methods to point this out.

Sentence added:

In order to remove water depth as a confounding variable and to increase the number of replications in each zone, Ace L. was not sampled as it was much deeper than Smith L. centre (~9m).
SC12: The Figures & Results sections make it difficult to fully assess the variability of the diploptene δ\(^{13}\)C data, in the text only the min/max values for each site is listed (no average +/- std dev so you can’t tell if there is just a few outliers or the data is evenly spread out) and then the figures just show 10‰ increments.

R12: We have included further sentences in the results section to highlight the standard deviation and the data more clearly. We have also added more standard deviation values to table 3 to make the variation clearer.

Table 3 \(\delta^{13}\)C values of diploptene at the study sites. The values are an average of three replicates. The standard deviation of these replicates and of each zone and across all samples is also given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number</th>
<th>(\delta^{13})C(_{dip}) (‰)</th>
<th>Standard Deviation (SD)</th>
<th>Sample</th>
<th>Standard Deviation (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td>TK zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td>-50.1</td>
<td>1.5</td>
<td>a1</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>-58.5</td>
<td>2.0</td>
<td>a2</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td>-53.1</td>
<td>0.4</td>
<td>a3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>a4</td>
<td>-68.2</td>
<td>0.1</td>
<td>a4</td>
<td>0.1 TK zone 8.0</td>
</tr>
<tr>
<td>Smith</td>
<td>Centre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-51.4</td>
<td>2.7</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-48.3</td>
<td>0.0</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-56.8</td>
<td>N/A</td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-49.2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-46.9</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-48.0</td>
<td>0.1</td>
<td>Centre</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>TK zone</td>
<td>7</td>
<td>-38.8</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-40.9</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-42.9</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>TK zone</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>7.8</td>
<td></td>
</tr>
</tbody>
</table>
Spatial variability of diploptene δ^{13}C values in thermokarst lakes: the potential to analyse the complexity of lacustrine methanecycling highlights the complexity of tracing the lacustrine methane cycle

[1] Geography & Environment, University of Southampton, SO17 1BJ, United Kingdom
[2] Organic Geochemistry Unit, School of Chemistry, University of Bristol, BS8 1TS, United Kingdom
[3] Cabot Institute, University of Bristol, BS8 1 UJ, United Kingdom

*Correspondence to: Kimberley Davies, kld206@soton.ac.uk
Abstract

Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, including methane release that originates from organic matter decomposition in thermokarst lakes. The connections between methane production in sediments, transport pathways and oxidation are not well understood, and this has implications for any attempts to reconstruct methane production from sedimentary archives. We assessed methane oxidising bacteria were used to represent methane oxidation as represented by methane oxidising bacteria across the surface sediments of two interior Alaska thermokarst lakes in relation to methane emissions via ebullition (bubbling). The bacterial biomarker diploptene was present and had low δ¹³C values (lower than -38‰) in all sediments analysed, suggesting methane oxidation was widespread. The most ¹³C-depleted diploptene was found in the area of highest methane ebullition emissions in Ace Lake (δ¹³C diploptene values between -68.2 and -50.1‰), suggesting a potential link between methane production, oxidation, and emission in this area. In contrast, significantly less depleted diploptene δ¹³C values (between -42.9 and -38.8‰) were found in the area of highest methane ebullition emissions in Smith Lake. Lower δ¹³C values of diploptene were found in the central area of Smith Lake (between -56.8 and -46.9‰), where methane ebullition rates are low but methane diffusion appears high. Using δ¹³C-diploptene as a proxy for methane oxidation activity, we suggest the observed differences in methane oxidation levels among sites within the two lakes could be linked to differences in the level of methane diffusing from the sediments, the source area of methane production (e.g. surface versus deep sediments age and type of organic carbon) and bathymetry as it relates to varying oxycline depths and changing pressure gradients, although these theories need to be tested. As a result, methane oxidation is highly lake dependent. The diploptene δ¹³C values also highlight strong within-lake variability but presently, there is no clear pattern in this variability that can be linked to thermokarst specific methane emissions.

This study, whilst preliminary, highlights the need for further research and implies that at this stage, single-value, down-core records of hopanoid isotopic signatures are not unlikely to be secure indicators of changing methane flux at the whole-lake scale.
1 Introduction

Thermokarst and thermokarst-affected lakes (those formed and/or influenced by thaw and collapse of ice-rich ground) are now recognized as important past and present sources of methane flux to the atmosphere (Shirokova et al., 2012; Walter et al., 2006, 2008; Wik et al., 2013). Under current scenarios of projected future climate warming in regions sensitive to thaw (Colins et al., 2013), these lakes are expected to remain a source of methane emissions to the atmosphere (Vincent et al., 2013). Predictions of the future contribution they will make to the dynamic global carbon cycle and any estimations of past emission rates are largely based on measurements recorded over the last 15 years (e.g. Brosius et al., 2012; Walter Anthony et al., 2014). Long-term (i.e. Holocene) variations in lake-derived methane flux to the atmosphere and changes in emissions during discrete climatic events in the past are less well understood (but see Walter Anthony et al., 2014; Walter et al., 2007b). A proxy for past gas flux from lakes would be an important development in better understanding long term carbon cycling, but we are far from understanding within-lake methane dynamics well enough for such a proxy to yet be reliable.

The broad term ‘thermokarst lakes’ encompasses a complex range of lakes types associated with different geographical and geomorphological settings in permafrost regions. Methane production within these lakes and fluxes to the atmosphere vary with lake type. Walter et al. (2008) and Brosius et al. (2012) divide thermokarst lakes into two main categories: yedoma lakes and non-yedoma lakes, where yedoma refers to late Pleistocene deposits of organic- and ice-rich silt, typically several or more metres deep (Zimov et al., 2006; Schirrmeister et al., 2013).

Methane production in thermokarst lakes can be classified by production type: production that occurs in anoxic surface sediments, as is common in most freshwater lakes and reservoirs, and production that occurs in deeper sediments, especially along the boundary of the "thaw bulb", which is specific to thermokarst lakes (Figure 1). Anoxia is caused by oxygen depletion associated with microbial decomposition of organic matter. Anoxic conditions are enhanced by thermal stratification in the water column and/or by rapid sedimentation that buries labile organic material before it can be processed at the sediment surface. A common trait of thermokarst lakes is methane production via mineralisation of organic carbon from sources not found in other lakes. For example, methane emissions can occur where thermokarst-induced erosion leads to large-scale slumping of banks into the littoral zone; material is
typically of Holocene age, but may be older (Figure 1). As well as the production from
slumped material, yedoma lakes may feature high methane emissions related to the microbial
processing of older, labile carbon in the deep thaw bulb (talik, i.e., an area of thawed
permafrost sediment underneath the lake). Walter Anthony and Anthony (2013) suggest that
yedoma thermokarst lakes typically produce more methane than non-yedoma thermokarst
lakes owing to a higher availability of labile carbon in thick, thawed yedoma sequences.

Once produced, methane can be transported to the atmosphere through a number of pathways:
ebullition (bubbling), turbulent diffusion and plant mediated transport (Bastviken, 2004).
Several studies have focused on these emission pathways, assessing methane production and
emission levels in freshwater environments (e.g. Bastviken, 2004; Bastviken et al., 2011;
Delsontro et al., 2011; Joyce and Jewell, 2003).

Thermokarst-specific methane ebullition seeps have been observed and measured using GPS
mapping and submerged bubble traps and described as persistent, spatially explicit fluxes at
the water-air interface (Sepulveda-Jauregui et al., 2014; Walter et al. 2006, 2008; Walter
Anthony and Anthony 2013). Ebullition seeps are thought to be fairly stable due to the
development of conduits or ‘bubble tubes’ (Greinert et al., 2010; Scandella et al., 2011),
which are point sources from which methane is emitted to the atmosphere repeatedly at the
sediment-water interface. Nearly always, such seeps are densest near to actively eroding lake
margins, which we call the "thermokarst zone". Here, methanogenesis is high due to
thermokarst-specific sources of methane production: thawing of fresh talik and bank collapse
(Figure 1; Kessler et al., 2012). Walter Anthony et al. (2010) postulate that most methane
production that is specific to thermokarst lakes is transported to the atmosphere via seep
ebullition (due to high rates of methane production in dense, thick talik sediments), although
the diffusive flux component can be relatively high in older, more stable thermokarst lakes
that have accumulated Holocene-aged organic carbon in near-surface sediments.

Less work has focused on methane production in surficial sediments of thermokarst lakes,
dissolution and diffusion of methane from the sediments to the water column, and resultant
diffusive emission, particularly in thermokarst zones. This paper reports an analysis of carbon
isotopes in sedimentary bacterial biomarkers in relation to different forms of atmospheric
methane flux from two lakes near Fairbanks, Alaska, with the aim of improving our
understanding of methane cycling in thermokarst lake systems and assessing the effectiveness
of biomarkers as a proxy for methane cycling in lakes.
1.1 The link between methane ebullition and methane diffusion from sediments

A significant fraction of methane produced in lake sediments can be oxidized and recycled within the lake, processes that offset methane emissions. Methane that has diffused from the sediments is subject to aerobic microbial oxidation by bacteria (Bastviken et al., 2002; Liebner and Wagner, 2007; Trotsenko and Khmelenina, 2005). Aerobic methane oxidation (MO) is thought to considerably reduce methane emissions from water bodies (Reeburgh, 2007). Methane Oxidation studies in lakes have mostly been carried out under stratified water column conditions (Bastviken et al., 2002; Kankaala et al., 2006). As with diffusive methane flux (Sepulveda-Jauregui et al., 2015), little work has focused on aerobic MO in thermokarst lakes (Martinez-Cruz et al., 2015). Understanding the link between MO and observed fluxes is crucial for developing a proxy for past methane production in thermokarst lakes.

In studies based on deep marine environments there is a correlation between widespread methane, released via cold seeps through sediments, and MO, as indicated by the presence and δ13C values of specific bacteria and compounds (Elvert et al., 2001a; Pancost et al., 2001, 2000b). In these environments both anaerobic (Alperin and Hoehler, 2010; Briggs et al., 2011) and aerobic (Birgel and Peckmann, 2008; Elvert and Niemann, 2008) methane oxidation processes have been identified and are important for mediating methane flux to the atmosphere. As well as a link between methane ebullition seeps and methane diffusion in deep marine settings, a study carried out in a shallow (9m) near-shore bight (a curved bay) linked the formation of bubble tubes with increased methane diffusing from the sediments (Martens and Klump, 1980), the argument being that bubble tubes create an increased surface area that enhances methane diffusion, even though the methane transported via ebullition is taken directly to the atmosphere and is not subject to oxidation. While derived from different environments than thermokarst lakes, the deep and shallow marine results suggest a positive relationship between transport via ebullition and methane diffusion from sediments, which may also occur in thermokarst lakes.

He et al. (2012) provide evidence that suggests a possible correlation between a coal-bed sourced methane ebullition seep and MO in the non-yedoma thermokarst lake, L. Qalluuraq, Alaska. The highest MO potentials occurred near the coal-bed sourced ebullition seep and were associated with the presence of type I MOB in the sediments at the seep location. He et
al. (2012) also observed high spatial variability of MO potentials and methanotroph communities and highlighted the need for further investigation of MO in thermokarst lakes.

In contrast, based on δ¹³C and δD stable isotope values and radiocarbon ages of methane in bubbles, Walter et al. (2008) and Walter Anthony et al. (2014) suggest that methane emitted by ebullition originating in deep thaw-bulb sediments by-passes aerobic MO and that the majority of deep-sourced methane is transported through ebullition seeps as opposed to escaping sediments via diffusion. We therefore have two contrasting conceptual models (hypotheses): an enhancement model and a by-pass model. In the enhancement model, the thermokarst zone of a lake, where ebullition seeps are most abundant, would have higher levels of deep-sourced methane diffusion from sediments when compared with “quiescent” areas that are virtually ebullition seep free. In the by-pass model, where diffusion of deep-sourced methane out of sediments is thought to be minimal, we expect no difference between thermokarst-zone and lake-centred diffusion of deep-sourced methane from sediments, or, conceivably, less diffusion in the seep-rich area. A potential confounding factor is diffusion of methane that is formed in near-surface sediments, which can have variable and contrasting patterns across lakes, independent of spatial patterns of ebullition seeps. Methane production and oxidation that occurs in the near-surface sediments will represent a background level which is found in many contemporary lake settings however the amount should be lower than that derived from thermokarst specific sources. We might expect some level of depletion in δ¹³C values due to near-surface production but crucially, if δ¹³C values of diploptene are to be used as a proxy for past methane production, we would expect that if thermokarst specific methane production is being oxidised, this would have much lower δ¹³C values than even background MO.

Past methane emissions may be addressed qualitatively by using indirect proxies, for example, features related to the cycle of methane through the lacustrine food web. Biogenic methane has highly depleted δ¹³C values (usually -850 to -850‰, Whiticar, 1999), depending on the methane production pathway and substrate availability. These depleted δ¹³C values can be traced through the food web, for example, in low-level heterotrophs such as invertebrates. Previous studies have linked depletion in the δ¹³C values at various stages in the food web to the incorporation of carbon from of methane oxidising bacteria (MOB; van Hardenbroek et al., 2010; Jones and Grey, 2011; Sanseverino et al., 2012). Recent studies have demonstrated that some chironomid (non-biting midge) taxa utilise MOB as a food source within lakes.
(Deines et al., 2007; van Hardenbroek et al., 2010). In thermokarst lakes, depleted δ^{13}C values in larvae and fossil head capsules have been linked to increased methane flux (van Hardenbroek et al., 2012). Wooller et al. (2012) also interpret negative shifts in δ^{13}C values of fossil chironomids and daphnia as an increase in methane availability.

MOB have been identified in sediments from a wide range of terrestrial and aquatic environments. They are known to synthesise a number of specific compounds that can be isolated. In particular, the compound diploptene (17 β(H), 21 β(H)-hop-22 (29)-ene), is a hopanoid hydrocarbon derived from a range of bacterial sources. However due to the utilisation of methane as a carbon source, the δ^{13}C values of diploptene derived from MOB will be more negative than if it were derived from other heterotrophic bacteria which utilise organic carbon from vegetation. In marine sediments, diploptene has been identified as a methanotrophic biomarker via low-negative δ^{13}C values in marine sediments and as well as in microbial mats associated with methane seeps (Elvert et al., 2001b; Pancost et al., 2000a, 2000b) as well as in Holocene peat (van Winden et al., 2010; Zheng et al., 2014). Diploptene and the related diplopterol have been used to establish past patterns of MO from marine sediment records (Jahnke et al., 1999; Pancost et al., 2000a) as well as lake sediments (Spooner et al., 1994; Schouten et al., 2001), and peat deposits (Kip et al., 2010; van Winden et al., 2012; Zheng et al., 2014). Therefore if MOB are present in the sediments of thermokarst lakes, we would expect to see depleted δ^{13}C values of diploptene.

To oxidise methane effectively, MOB require access to dissolved methane in sediments and lake water. The assumption is, therefore, that isotopic depletion at or near the base of the food web indicates oxidation of dissolved methane. The extent to which isotopic signals can be used as a proxy for past methane ebullition flux in thermokarst lakes depends on the relationship between ebullition and diffusion and the sensitivity of the isotope signal to changing methane supply. In order to investigate these issues, we applied the approach used to identify MO at deep marine vents and seeps—lipid biomarkers from bacteria—to different areas associated with known ebullition emission patterns in two Alaskan lakes. MOB are a more direct proxy for methane than organisms higher in the food chain, and their use should allow a better understanding of methane diffusion from sediments, particularly in areas of ebullition seeps. The presence and δ^{13}C values of diploptene were used firstly to establish if MO was occurring at levels detectable by biomarkers, and secondly to assess the degree of
MO observed in areas characterized by different modes of methane production and transport to the atmosphere.

2 Regional context & Study sites

Yedoma-like deposits that are similar to those described in, and common to, Siberia (Schirrmiester et al 2011) can be found in Interior Alaska. These sediments can have a relatively high organic content (Péwé, 1975) and are rich in excess ice. Thermokarst lakes that develop in landscapes dominated by these deposits have been placed into the yedoma or non-yedoma types (as described above) in previous studies (Walter et al., 2008; Brosius et al., 2012; Sepulveda-Jauregui et al., 2015). Two lakes were sampled in April 2011 and July 2012 (Figure 2). Ace L. represents a yedoma-type lake (Sepulveda-Jauregui et al., 2015), where the permafrost soils surrounding the lake and eroding into the lake along its NE margin are predominantly yedoma. Smith L. is classified as a non-yedoma lake in which Holocene-aged deposits are likely the main source of organic matter fuelling methane production.

Smith L. (64°51'55.92"N, 147°52'0.70"W; figure 2) is a shallow (≤4 m), productive lake located in Interior Alaska. It has a gentle bathymetric profile with average water depths between 1-3m. The lake is not subject to a strong fetch or high energy inflow or outflow. Observations during the ice-free periods suggest high primary productivity, with blue/green algal blooms predominant throughout the summer months (KLD, personal observation). The lake likely originated by thermokarst processes (Alexander and Barsdate, 1971); comparisons of lake shorelines between the 1950s and today suggest that segments of the southern and western margins have been actively thermokarsting—actively thawing and eroding during recent decades, and tilting trees currently lining the margin of a bay on the southeast shore are further evidence of localized thermokarst. Smith Lake is a useful study site as its shallow profile reduces the potential of production or storage of methane due to stratification. Ace L. (64°51’45.49N, 147°56’05.69W) is part of the Ace-Deuce Lake system (Alexander and Barsdate, 1974) situated within an area covered by the Pleistocene Gold Hill and Goldstream loess formations (Pewe 1975). Ace L. is thermokarst in origin and formed through the thawing of ice bodies in the loess. The Ace-Deuce Lake system has high nutrient levels, and therefore Ace Lake can be described as a eutrophic lake with a strong seasonal nutrient cycle (Alexander and Barsdate, 1974).
3 Methods

3.1 Establishing sample regions

Walter Anthony and Anthony (2013) defined the ‘thermokarst’ zone for a number of lakes, and we continue to use this definition here. The thermokarst zone was the region of active thermokarst margin expansion observed using historical aerial photographs obtained during the past 60 years. In most lakes, the density of ebullition seeps is higher in thermokarst zones compared to non-thermokarst zones (Walter Anthony and Anthony, 2013). In Ace and Smith L., ebullition emissions were quantitatively monitored through a combination of winter-time ice-bubble surveys and bubble-trap flux measurements via previous studies (Sepulveda-Jauregui et al., 2015) and our own summertime bubble counts (figure 2). We obtained surface sediment cores well within the zone boundaries and as close to observed ebullition seep locations as possible (figure 2). At Ace L., bubble counts may have been underrepresented due to fetch-mediated surface turbulence disturbing visual counts of bubbles. However this was an issue at all count sites, such that, any error encountered will be associated with the overall scale of emissions measured and not with bias between zones. In order to remove water depth as a confounding variable and to increase the number of replications in each zone, Ace L. was not sampled as it was much deeper than Smith L. centre (~9m).

3.2 Methane monitoring

Ebullition gas samples were collected from seep locations in the thermokarst zone (n1 and n5 for Smith L. and Ace L. respectively) in the manner described in Walter Anthony et al. (2012) for determination of bubble methane concentration, stable isotope analyses, and radiocarbon dating. Gases were collected from submerged bubble traps into 60-ml glass serum vials following Walter et al. (2008), sealed with butyl rubber stoppers, and stored under refrigeration in the dark until analysis in the laboratory. We measured methane concentration using a Shimadzu 2014 equipped with an FID at the Water and Environmental Research Centre at University of Alaska Fairbanks (UAF). We determined δ^{13}C_{CH4}, using a Finnegan Mat Delta V, and δD_{CH4} on a Delta XP at Florida State University. Subsamples of gas were combusted to CO2, purified, and catalytically reduced to graphite (Stuiver and Polach, 1977), and the 13C/12C isotopic ratios were measured by accelerator mass spectrometry at the Woods Hole Oceanographic Institution’s National Ocean Sciences AMS Facility. Stable isotope compositions are expressed in δ (‰) = 100 ((R_{sample}/R_{standard})-1), where R is 13C/12C or D/H.
and standards refer to the Vienna Pee Dee Belemnite (VPDB) and Vienna Standard Mean Ocean Water (VSMOW), respectively. The analytical errors of the stable isotopic analyses were ± 0.1 ‰ δ^{13}C and ± 1.0 ‰ δ^D. We express radiocarbon data as percent modern carbon pmC (%) = ($(^{14}\text{C}/^{12}\text{C})_{\text{sample}}/(^{14}\text{C}/^{12}\text{C})_{\text{standard}}$) x 100, which is the percentage of $^{14}\text{C}/^{12}\text{C}$ ratio normalized to δ^{13}C = -25‰ and decay corrected relative to that of an oxalic standard in 1950 (Stuiver and Polach, 1977).

3.3 Biomarker analysis

Surface sediment samples were retrieved using a gravity corer and the 0-5 cm sequence was extruded at 1-cm resolution and retained for analysis; the 1-2 cm slice was subsampled for biomarker analysis. Sample sizes can be found in table 1. Two sequential extractions were performed upon the samples. The first step was a modified Bligh and Dyer extraction (Bligh and Dyer, 1959). Briefly, buffered water was prepared adjusting a solution of 0.05M KH$_2$PO$_4$ in water to pH 7.2 through the addition of NaOH pellets. Subsequently, a monophasic solvent mixture was made up with buffered water, CHCl$_3$ and MeOH (4:5:10 v/v). Samples were sonicated in Bligh-Dyer solvent mixture for 15 minutes and then centrifuged at 3000 rpm for 5 minutes. Supernatant was collected in a round bottom flask. This step was repeated twice and all supernatants were combined and dried to obtain the total lipid extraction (TLE) labelled TLE1. Post-extraction sediment residues were air-dried. The Bligh and Dyer post-extraction residues were sonicated in DCM for 15 minutes and then centrifuged at 3000 rpm for 5 minutes. This step was repeated first with DCM:MeOH (1:1, v/v) and then with MeOH. Supernatants were combined after every step of sonication-centrifugation to obtain TLE2. Both TLE1 and TLE2 were then combined to yield the final TLE.

The TLE was split into three fractions of increasing polarity using silica flash column chromatography (Oba et al., 2006; Pitcher et al., 2009). Silica gel columns (0.5 g, 60 Å particle size) were prepared and conditioned with 4 ml of n-hexane:ethyl acetate (3:1, v/v). Fractions were eluted with 3 ml of n-hexane:ethyl acetate (3:1, v/v) to obtain the simple lipid fraction, 3 ml of ethyl acetate to obtain glycolipids and 10 ml of MeOH to obtain phospholipids. The simple lipid fraction was further split into neutral lipid and the fatty acid fractions. The organic phase was then collected into a round bottom flask and Na$_2$SO$_4$ anhydrous was added until complete removal of water. Silica gel columns (again, 0.5 g, 60 Å particle size) were prepared and conditioned with 4 ml of the recently prepared CHCl$_3$ sat
solution. The simple lipid fraction was then loaded onto the column and subsequently, the
neutral lipid fraction was eluted with 9 ml of CHCl₃ sat. Finally, the neutral lipids were
separated into apolar and polar lipid fractions. Columns were prepared with approximately 0.5
g of activated alumina (Al₂O₃) and compounds eluted with 4 ml of n-hexane:DCM (9:1, v/v)
and 3 ml of DCM:MeOH (1:2, v/v) to yield the two fractions, respectively. Here, we focus on
analyses of the neutral lipid apolar fraction.

3.4 Compound identification and Compound-specific δ¹³C isotope analysis
GC-MS analyses were performed using a Thermoquest Finnigan Trace GC and MS. The GC
was fitted with an on-column injector and the stationary phase was CP Sil5-CB. Detection
was achieved with electron ionization (source at 70 eV, scanning range 50-580 Daltons). The
temperature program consisted of three stages: 70-130 °C at 20 °C/min rate; 130-300 °C at 4
°C/min; and 300 °C, temperature held for 10 min.
Gas chromatography combustion isotope ratio mass spectrometry (GC-IRMS) was performed
using a ThermoScientific Trace GC Ultra coupled to a Conflo IV interface and DeltaV mass
Spectrometer. The GC conditions and program were the same as for GC-MS analyses.
Calibration was achieved using CO₂ reference gas of known isotopic composition and sample
δ13C values were expressed against the standard VPDB. All measurements were performed
in duplicate.

3.5 Mass Balance equation
A carbon isotopic mass balance equation (Equation 1), or two-part mixing model, was
developed to evaluate the contribution of MOB to the total bacterial biomass, and therefore,
the relative amount of oxidation occurring at each sample location. By developing this
mixing model and considering in more detail the potential end member values for the δ¹³C
values of diploptene derived from different sources (MOB and other heterotrophic bacteria)
we can get a semi-quantitative idea of the distribution patterns of MOB across the samples.
The resulting end member values are given in table 24. The equation is as follows:

\[f_{mob} = \frac{\delta^{13}C_{dip, sample} - \delta^{13}C_{hetero, hopanadip}}{\delta^{13}C_{mob, hopanadip} - \delta^{13}C_{hetero, hopanadip}} \]

\(f_{mob} \) is the fraction of diploptene generated by MOB and \(\delta^{13}C_{dip, sample} \) is the stable carbon
isotopic composition of diploptene in a given sample. \(\delta^{13}C_{hetero, hopanadip} \) is the inferred \(\delta^{13}C \)
the hopanoids diploptene if it were derived solely from heterotrophic bacteria, the inferred other primary source of this hopane hopanoids in this setting, and it is expressed as the $\delta^{13}C_{\text{bacterial biomass}} - \Delta^{13}C_{\text{biosynthesis}}$ (~4‰). The $\delta^{13}C$ values of diploptene derived from heterotrophic bacteria will primarily reflect the $\delta^{13}C$ values of the substrate carbon which in this instance will be organic material and not methane. These values are therefore unlikely to vary; however a ~2 to 4‰ shift can occur during lipid biosynthesis (Pancost and Sinninghe Damsté 2003, and references therein). $\delta^{13}C_{\text{mob-hopane-dip}}$ is the likely value of the diploptene hopanoids if it were derived solely from MOB. It is calculated from the $\delta^{13}C_{\text{methane}}$ minus the fractionation that occurs during carbon uptake by methanotrophs (0-30‰; Jahnke et al., 1999) minus the biosynthetic fraction during lipid synthesis ($\Delta^{13}C_{\text{biosynthesis}}$; ~10‰). $\delta^{13}C_{\text{methane}}$ is the measured value of methane captured at seep locations in the thermokarst zones at each lake. As the value is based on a limited number of data (n1 and n5 for Smith L. and Ace L., respectively), it is likely there will be more variation than is seen in the model. Furthermore MOB can be significantly depleted in comparison to the source carbon they utilise (Whiticar 1999); isotopic differences can be as large 30‰ (Jahnke et al., 1999). In order to incorporate this large range, we used both the minimum and maximum value of fractionation (0 and 30‰) to show different scenarios rather than assuming a single value. This should also cover any potential variation due to differing $\delta^{13}C_{\text{methane}}$. Therefore the equation was calculated twice, once using $\delta^{13}C_{\text{mob-dip min}}$ and once using $\delta^{13}C_{\text{mob-dip max}}$.

With little information available on the fractionation of hopanoids during their biosynthesis by MOB, we assumed a conservative value of 10‰ for our study. Four end-member values were calculated, taking into account maximum and minimum extremes for $\delta^{13}C_{\text{dp}}$ and $\delta^{13}C_{\text{hetero}}$ (Table 42). A threshold of 10% was used arbitrarily to identify the point at which we considered MOB to be contributing to the diploptene signal.

4 Results
Early-winter ice-bubble surveys combined with bubble-trap measurements of ebullition flux and bubble methane concentration revealed that ebullition seeps occur with high density in the thermokarst zone (2.27 seeps m\(^2\) and 4.2 seeps m\(^2\) for Smith L. and Ace L., respectively) compared to the rest of the lake (0.35 seeps m\(^2\) and 0.67 seeps m\(^2\) for Smith L. and Ace L., respectively). Seep ebullition values in the thermokarst bays were 85 and 151 mg CH\(_4\) m\(^2\) d\(^{-1}\) for Smith L. and Ace L., respectively (Figure 2). In the rest of lake (lake centre and non-thermokarst margins) seep ebullition was 6 and 20 mg CH\(_4\) m\(^2\) d\(^{-1}\) for Smith L. and Ace L.,
respectively. The $\delta^{13}C$ values for methane in bubbles collected from seeps in the thermokarst zones were -60.9‰ and -64.6‰ for Smith Lake and Ace L., respectively. At Smith L., the radiocarbon age of methane in ebullition bubbles collected adjacent to the margin was ~2ka, indicating a dominant Holocene carbon source (likely decomposing near-surface peat). No radiocarbon dates of methane were available at Ace L.

Diploptene was detected in all but one of the samples analysed (Table 23; figure 3). This sample was not part of further analysis. The values ranged from -68.2 to -38.8‰ and had an overall standard deviation of 7.8‰.

In the Ace L. thermokarst zone, diploptene values ranged from the lowest value for the whole dataset of -68.2‰ to -50.1‰. The most negative value was found at the greatest water depth (3.2m) and was the only sample that does not lie within 1 standard deviation of the mean for this thermokarst zone. However, another sample at the same depth was far less depleted (-50.1‰), which suggests the low $\delta^{13}C$ value is not explained by water depth. In Smith L., diploptene $\delta^{13}C$ values ranged from -56.8‰ to -38.8‰.

Samples from the centre and edge of Smith L. (n=6, n=3 respectively) were compared and a Mann-Whiney U test applied (H0: diploptene $\delta^{13}C$ values are not different). The values for Smith L. indicates that the MOB proportional contributions to the total bacterial communities differed significantly between the two sample zones, values from the thermokarst zone of Smith L. being higher (-42.9 to -38.8‰) than those in the lake centre (-56.8 to -46.9‰).

Diploptene $\delta^{13}C$ values in the thermokarst zone of Ace L. are similar to those of the lake centre at Smith, and values from the Smith thermokarst zone are higher than both of these. Thermokarst zone diploptene $\delta^{13}C$ values at Ace Lake were more negative than those at Smith Lake by at least 10‰, despite methane $\delta^{13}C$ values being less than 5‰ different. However, the samples in the thermokarst zone of Ace L. and the centre of Smith L. (n=4, n=6 respectively) were not significantly different according to a Mann Whitney U test.

The potential contributions of MOB, under different end-member assumptions, to the diploptene signal are shown in Table 34. The minimum and maximum possible contributions range from 19 to 85%, 7 to 27% and 19 to 63% for Ace L. thermokarst zone, Smith L. thermokarst zone and Smith centre, respectively.
5 Discussion

5.1 Distribution of ebullition seeps

The spatial distribution of ebullition seeps at Ace L. and Smith L. adheres to the general pattern of seep occurrences as described in other studies, (Walter Anthony and Anthony, 2013), in that the highest density of methane ebullition seeps were found in the thermokarst zone.

5.2 The presence and spatial variability of MOB

The δ^{13}C values of diploptene ranged from -68.2 to -38.8‰ (Figure 34), values similar to those that have been previously highlighted as evidence for methanotrophy in lacustrine sediments (-64‰ to -55‰; Spooner et al., 1994; Naeher et al., 2014), marine sediments (-62‰ to -35‰; Freeman et al., 1994; Thiel et al., 2003) and in wetlands (-40‰ to -30‰ to; van Winden et al., 2010; Zheng 2014). Therefore, we conclude that diploptene δ^{13}C values are reflecting the presence of MOB bacteria in lake sediments. The lowest values in Ace L. are among the lowest reported for lacustrine (or other terrestrial) systems, suggesting a relatively high degree of methanotrophy in those sites. In the thermokarst zone at Ace L., the diploptene values were highly variable but all suggested some degree of MO was occurring, and the fraction of diploptene derived from MOB was >10% even under the most conservative assumptions (Table 34).

The results of the mixing model suggest that MOB can contribute anywhere between 7-83% of the diploptene production across all sampled areas (Table 34). These estimates have a large degree of uncertainty associated with them and we note that there are some important caveats to using this mixing model. Crucially, diploptene is not derived from all bacteria nor even all methanotrophic bacteria (Rohmer et al., 1987). Nor does it likely occur in constant biomass-to-lipid ratios in those organisms from which it can derive, such that extrapolations from a diploptene mass balance to inferring bacterial biomass distributions should be done cautiously. They are best considered semi-quantitative. Nonetheless, a MOB contribution to total biomass of ~10 to 80% is similar to that derived from other studies (11-80%; Bastviken et al. 2003; Sundh et al. 2005; Kankaala et al. 2006). Regardless of absolute MOB estimates, our data show that the centre of Smith L. and the thermokarst zone at Ace L. have the highest proportion of MOB in the total bacterial biomass.
The data presented here allow us to develop, alongside other studies, models of methane production and emission pathways in thermokarst lakes.

At Ace L., MOB biomass was high relative to other samples collected in this study and in the context of previous studies. Ace L. is a ‘yedoma-type’ lake and has a high methane ebullition flux (151 mg CH$_4$ m$^{-2}$ d$^{-1}$), likely derived from older (e.g. Pleistocene), deeper sediments in the talik bulb (Walter et al., 2008; Sepulveda-Jauregui 2015). Given the coincidence of high bubble counts and high estimated MOB biomass, it could be assumed that the supply of dissolved methane and therefore MO is high in the thermokarst zone and this methane might be derived from thermokarst specific sources.

Ace L. appears to be representative of the enhancement model, whereby methane ebullition flux from bubble tubes increase the amount of methane diffusion from the sediments. In Ace L., and by extension other yedoma-type thermokarst lakes, where methane is produced in deep sediments the increased contact time with sediment (both over distance and time taken for bubbles to reach the sediment-water interface) may allow for increased methane diffusion in adjacent sediments. Alternatively, thermokarst erosion of yedoma-type permafrost is also known to supply nitrogen and phosphorus to lakes (Walter Anthony et al. 2014), enhancing primary production, which in turn can fuel methanogenesis and MO from contemporary (atmospheric) carbon (Martinez-Cruz et al., 2015). We cannot definitively distinguish between these alternatives since the carbon utilised by MOB observed in Ace L. could be derived from deep, 14C-depleted methane and/or from shallow-sediment, contemporary methane. However it could be argued that even if the methane that is being oxidised is from near-surface sediments, the high level of production is due to the lake type (yedoma) and the thawing and eroding margins. This might be a common pattern in these types of lakes and could be reflected in the δ^{13}C values of diploptene, however this needs to be tested with further research.

Within the thermokarst zone at Smith L. the δ^{13}C values of diploptene were less variable (range: 10‰) than the Ace L. thermokarst zone (18‰) and the δ^{13}C values were overall more enriched (-42.9 to -38.8‰). In fact, the thermokarst zone in Smith L. had the lowest proportion of MOB for the entire dataset, with a MOB contribution to diploptene being equivocal for most of these samples. Conversely, samples from the centre of Smith L. had diploptene δ^{13}C values that were similar to those of the Ace L. thermokarst zone. The differences between the centre and the thermokarst zone could arise from alterations in the
microbial community that manifest as different MOB expressions of hopanoids, for example, Smith L. thermokarst zone MOB might not be biosynthesising diploptene or its precursor. Alternatively, there may be differences in the balance of MO for energy versus biomass production. Another explanation for the difference in δ^{13}C values, which could be validated through further investigation, could be due to differences in the methane production pathways as highlighted by Walter et al. (2008). The higher δ^{13}C values of diploptene could be due to more enriched methane formed through acetate fermentation. The most direct interpretation given the currently dataset, however, is that MOB are more abundant in the centre of the lake than at the thermokarst margin and, by extension, more MO is taking place in the lake centre. Given the pattern of high MO in the centre of Smith L. and less MO at the edge but more flux to atmosphere via ebullition, it seems that Smith methane dynamics are more akin to those of ‘clastic’ lakes or other, non-thermokarst boreal lakes (e.g. Bastviken et al., 2004). The patterns at Smith L. also suggest that methane dynamics in the thermokarst zone follow the by-pass model in which methane ebullition is an independent process that interacts weakly with the lacustrine system.

Overall, the Smith thermokarst zone had lower methane ebullition rates (85 mg CH$_4$ m$^{-2}$ d$^{-1}$) and less negative δ^{13}C of methane as measured from ebullition flux (-60.9‰) than Ace L. It is possible that this methane is not produced in the talik, but in near-surface sediments likely derived from peat slumping at the margin. This is supported by the late Holocene radiocarbon date of ebullition seep methane. The large size of the sediment blocks and the early stage of decomposition of the organic material that slump into the lake may mean there is less exposed substrate surface area and less methane production, as compared to yedoma-lake production from the fine-grained and more labile sediments. Production in shallower sediments (and often shallow water depths) means reduced partial pressure and faster release of bubbles from the sediment. Here, if bubble tubes initiate in shallower sediments (that are shallower than the talik bulb but deeper than the anoxic near-surface sediments) and the overall number, size and intensity of bubble tubes is reduced, then the connection between ebullition and diffusion could be decoupled.

Whether there is a reliable connection between ebullition flux and high diffusion in the thermokarst zone is still to be determined. Currently, as the data stand, it is difficult to decipher a clear pattern that can be linked to thermokarst specific methane production, but
The results of this novel but preliminary study highlight the need to continue research in this area.

5.3 Assessing past and current carbon cycling in thermokarst lakes

A crucial outcome of this study is the large variability seen in the δ\(^{13}\)C values of diploptene across small spatial distances which cannot be linked to specific types of methane production (e.g. near-surface or deeper, thermokarst specific production). This is an important finding, as often whole lakes can be represented by a single sampling site in palaeoenvironmental studies. Such large fluctuations in δ\(^{13}\)C values in surface sediments, which were taken as replicates (e.g. repeat samples from the same zone within a lake), highlight the need for caution when interpreting shifts in δ\(^{13}\)C values through time (i.e., down a single sediment core).

While the differences in diploptene δ\(^{13}\)C values between chosen study zones discussed above are statistically significant, the sample number is small, and this topic could benefit from further sampling. There is a large degree of heterogeneity in the values in all three study areas. Interestingly, previous studies of MOB in lake sediments also show large variability in bacterial communities across small spatial extents (Kankaala et al., 2006). This could have implications for interpretation of not only biomarkers but also other geochemical records. For example, it is unclear how high spatial and temporal variability in MOB biomass affects the isotopic composition of consumers higher in the food web. The biological and geochemical connections between MOB and higher trophic organisms need to be better understood in order to interpret past methane emissions.

6 Conclusions

A primary aim of our research was to contribute towards the understanding of the links between methane production, transport and recycling in thermokarst lakes. Diploptene δ\(^{13}\)C values were used as a proxy for MO that could test whether these can be linked to variations in methane supply via diffusion in thermokarst lakes. Diploptene was present in almost all samples and its δ\(^{13}\)C values were highly variable. A two-part mixing model highlighted potential variation in total MOB biomass with almost no MOB contributing to bacterial biomass in some samples but forming over half the total bacterial population in others. However the results were highly variable and suggest that, like methane production, MO is highly complex, both in terms of its spatial distribution and in relation to the type of
substrate available. A single model for thermokarst lakes is unlikely to capture all patterns present at both the inter-lake and intra-lake level, and as the data stand, there is a large amount of variability which cannot be linked to specific types of methane production. Thus, it is crucial that interpretation of diploptene $\delta^{13}\text{C}$ values (and other MO proxies) in palaeoenvironmental investigations take into account lake type (e.g., yedoma or non-yedoma) and possible spatial heterogeneity in methane production pathways. Moreover, future work should examine localized spatial variability of MO within lakes and how spatial variation is integrated temporally, as this may critically affect observed down-core patterns of biomarkers and their isotopic signals. We conclude that given the current data, further research should be completed in order to understand the variability in d_{13}C diploptene values prior to utilisation of this method for the reconstruction of methane cycling in lacustrine systems. We conclude that diploptene biomarkers have considerable potential to help reconstruct patterns of methane cycling in lakes and, with certain caveats, particularly attention to context, past methane dynamics.

Acknowledgements

This research was supported by a NERC grant (NE/K000233/1) to M. Edwards and P. Langdon, a QRA new researcher’s award to K. Davies and a PhD Scholarship to K. Davies from Geography and Environment, University of Southampton. We gratefully acknowledge field and equipment assistance from Nancy Bigelow, Charlotte Clarke, Rob Collier and Ben Gaglioti, and permission from the owners to work at Ace Lake. Mark Dover (Cartography Unit, G&E) made valuable improvements to the figures.

References

Vincent, W. F., Laurion, I., Pienitz, R. and Anthony, K. M. W.: Climate Impacts on Arctic Lake Ecosystems, in Climatic Change and Global Warming of Inland Waters: Impact and

Table 1. Freeze dried sample weights for samples from Ace L. and Smith L.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Sample size (dry g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.2596</td>
</tr>
<tr>
<td>2</td>
<td>0.2206</td>
</tr>
<tr>
<td>3</td>
<td>0.3584</td>
</tr>
<tr>
<td>4</td>
<td>0.1486</td>
</tr>
<tr>
<td>5</td>
<td>0.1942</td>
</tr>
<tr>
<td>6</td>
<td>0.5654</td>
</tr>
<tr>
<td>7</td>
<td>0.3841</td>
</tr>
<tr>
<td>8</td>
<td>0.2024</td>
</tr>
<tr>
<td>9</td>
<td>0.3386</td>
</tr>
<tr>
<td>10</td>
<td>0.2185</td>
</tr>
<tr>
<td>Ace</td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>1.3427</td>
</tr>
<tr>
<td>a2</td>
<td>0.6812</td>
</tr>
<tr>
<td>a3</td>
<td>0.5758</td>
</tr>
<tr>
<td>a4</td>
<td>0.808</td>
</tr>
</tbody>
</table>
Table 2. Mixing model end member values and δ^{13}C values of the primary variables used to calculate the proportion of MOB at each sample point. δ^{13}C\textsubscript{bulk} is the average bulk sediment value from each lake, \pm indicates the standard deviation of the δ^{13}C\textsubscript{bulk}. MOB and heterotrophic bacteria have been assumed to have maximum levels of lipid biosynthesis occurring (10 and 4% respectively). δ^{13}C\textsubscript{mob-hopane_dip_min} is the estimated minimum stable isotope value given the δ^{13}C value of methane at each lake and the maximum potential fractionation of carbon by MOB. δ^{13}C\textsubscript{mob-hopane_dip_max} is the estimated value of MOB with no fractionation during assimilation. δ^{13}C\textsubscript{hetero-hopane_max} is the maximum estimated stable isotope value of heterotrophic bacteria if no fractionation is occurring during assimilation and the bulk sediment is +1.0 standard deviation (S.D.) from the mean at each lake. δ^{13}C\textsubscript{hetero-hopane_min} represents the minimum value for heterotrophic hopanes given maximum possible fractionation during assimilation and if bulk sediment is -1.0 S.D from the mean.

<table>
<thead>
<tr>
<th></th>
<th>δ^{13}C\textsubscript{bulk} (%)</th>
<th>δ^{13}C\textsubscript{mob-hopane_min} (%)</th>
<th>δ^{13}C\textsubscript{mob-hopane_max} (%)</th>
<th>δ^{13}C\textsubscript{hetero-hopane_min} (%)</th>
<th>δ^{13}C\textsubscript{hetero-hopane_max} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td>-30.8</td>
<td>2.1</td>
<td>-104.6</td>
<td>-74.6</td>
<td>-36.9</td>
</tr>
<tr>
<td>Smith</td>
<td>-29.3</td>
<td>0.8</td>
<td>-100.9</td>
<td>-70.9</td>
<td>-34.1</td>
</tr>
</tbody>
</table>

39
Table 2

$\delta^{13}C$ values of diploptene at the study sites. The values are an average of three replicates. The standard deviation of these replicates and of each zone and across all samples is also given.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>$\delta^{13}C_{\text{dip}}$ (‰)</th>
<th>Sample replicate standard deviation (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>-50.1</td>
<td>1.5</td>
</tr>
<tr>
<td>a2</td>
<td>-58.5</td>
<td>2.0</td>
</tr>
<tr>
<td>a3</td>
<td>-53.1</td>
<td>0.4</td>
</tr>
<tr>
<td>a4</td>
<td>-68.2</td>
<td>0.1</td>
</tr>
<tr>
<td>TK zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-51.4</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>-48.3</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>-56.8</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>-49.2</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>-46.9</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>-48.0</td>
<td>0.1</td>
</tr>
<tr>
<td>TK zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-38.8</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>-40.9</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>-42.9</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TK zone 8.0

TK zone 3.6

Total 2.0

Total 7.8
Table 34. Estimated contribution of MOB to the diploptene signal. Calculations assume fractionation due to biosynthesis of 10‰ for MOB and 4‰ for heterotrophic bacteria. $f_{\text{mob_min}}$ was calculated assuming the highest fractionation for both MOB and heterotrophs (30 and 4‰ respectively). $f_{\text{mob_max}}$ assumes no fractionation during assimilation. $f_{\text{mob_average}}$ was calculated using average $\delta^{13}C$ values for $\delta^{13}C_{\text{mob-hopane}}$ and $\delta^{13}C_{\text{hetero-hopane}}$.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>$f_{\text{mob_min}}$</th>
<th>$f_{\text{mob_max}}$</th>
<th>$f_{\text{mob_average}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>0.19</td>
<td>0.42</td>
<td>0.28</td>
</tr>
<tr>
<td>a2</td>
<td>0.32</td>
<td>0.62</td>
<td>0.43</td>
</tr>
<tr>
<td>a3</td>
<td>0.24</td>
<td>0.49</td>
<td>0.33</td>
</tr>
<tr>
<td>a4</td>
<td>0.46</td>
<td>0.85</td>
<td>0.61</td>
</tr>
<tr>
<td>Smith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.26</td>
<td>0.49</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>0.21</td>
<td>0.41</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>0.34</td>
<td>0.63</td>
<td>0.45</td>
</tr>
<tr>
<td>4</td>
<td>0.23</td>
<td>0.44</td>
<td>0.30</td>
</tr>
<tr>
<td>5</td>
<td>0.19</td>
<td>0.37</td>
<td>0.26</td>
</tr>
<tr>
<td>6</td>
<td>0.21</td>
<td>0.40</td>
<td>0.28</td>
</tr>
<tr>
<td>TK zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.07</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>8</td>
<td>0.10</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>9</td>
<td>0.13</td>
<td>0.27</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Figure 1. Illustration of methane production zones and emission pathways in lakes alongside thermokarst-specific zones and pathways. 1) Surface sediment ebullition zone. Methane that is produced in the anoxic surface sediments is released via ebullition, usually near the margins (Bastviken et al., 2004). (2) Surface sediment diffusion zone. Methane is produced in the anoxic surface sediments and diffuses in the sediments above and into the water column. Some of this methane will reach the water surface-air interface but a large amount is likely to be oxidised by MOB (Kankaala et al., 2006). This process is common in many lakes also. (3) Talik zone. Methane is produced in the deeper talik sediments underneath the lake and is released via ebullition seeps (Walter et al. 2008). Often this is a higher flux and is more constant than surface sediment ebullition. This production zone and pathway is a thermokarst-specific process. (4) Slump zone. Methane production in the surface sediments is increased due to the introduction of large volumes of slumped sediments. This methane is also released via ebullition seeps. Often, the flux from these ebullition seeps is higher than surface sediment ebullition but not as high as talik ebullition. This process might occur in any lakes that have dynamic margins and high erosion rates; however, it is likely that this process is most common in thermokarst lakes due to the melting of permafrost, so it is termed thermokarst-specific. Red ?’s indicate where methane diffusion from the sediments has not been studied in detail.
Figure 2. Locations of the study lakes in Alaska and the sample points within each lake. The red (Ace L.) and blue (Smith L.) bars indicate the flux values as measured at an individual ebullition seep within a given area of the lake.
Figure 3. Bubble counts at Ace Lake. A tally of all bubbles that broke at the water surface within a 2 m radius of the sample location. The thermokarst zone is found at the top of the lake and has the highest bubble counts.
Figure 4. Diploptene $\delta^{13}C$ values at Smith Lake and Ace Lake. In general the most depleted values are found in Ace and in the centre of Smith. The Thermokarst zone at Smith L. has the least depleted values for the whole dataset.