Water use strategies of a young *Eucalyptus urophylla* forest in response to seasonal change of Environmental factors in South China

Z. Z. Zhang\(^1\), P. Zhao\(^1\), R. Oren\(^3\), H. R. McCarthy\(^4\), L. Ouyang\(^1\), J. F. Niu\(^1\), L. W. Zhu\(^1\), G. Y. Ni\(^1\), Y. Q. Huang\(^5\)

\(^1\)Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
\(^2\)University of Chinese Academy of Sciences, Beijing 100049, China
\(^3\)School of the Environment, Duke University, Durham, NC 27708-0328, USA
\(^4\)University of Oklahoma, Department of Microbiology and Plant Biology, Norman, OK 73019 USA
\(^5\)Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China

Correspondence to: P. Zhao (zhaoping@scib.ac.cn, +86-020-37252881)

Abstract

To depict the wet (April with a soil water content, SWC, of 37%) and dry (October with a SWC of 24.8%) seasonal changes in the water use and physiological response of a *Eucalyptus urophylla* plantation in subtropical South China characterized by monsoon climate, the whole-year (June, 2012~May, 2013) transpiration of *E. urophylla* was monitored using the TDP method. Daily transpiration (\(E_T\)) in dry season averaged 5.7±2.9 kg d\(^{-1}\) and was 58.0% higher than that in wet (3.6±2.3 kg d\(^{-1}\)). The difference is consistent with that of the radiation and evaporative demand of the two months, while the nocturnal transpiration (\(E_{T\text{-NOC}}\)) in the wet season (0.18±0.021 kg d\(^{-1}\)) was almost twice that in the dry season (0.11±0.01 kg d\(^{-1}\)). Trees displayed a higher stomatal conductance (\(G_S\)) (53.4~144.5 mmol m\(^{-2}\) s\(^{-1}\)) in the wet season and a lower \(G_S\) (45.7~89.5 mmol m\(^{-2}\) s\(^{-1}\)) in the dry season. The leaf-soil water potentials
(ψ_L) of the wet and dry season were -0.62±0.66 and -1.22±0.10 MPa, respectively. A boundary line analysis demonstrated that the slight improvement in the G_S by SWC in wet season was offset by a significant decrease in D, and the G_S sensitivity to D (-m) was affected by the variance of radiation instead of SWC. Specific hydraulic conductivity (k_s) of trees of different sizes decreased by 45.3 ~ 65.6% from the wet to the dry season. Combining the decreased maximum reference G_S at D=1 kPa (G_{Sref-max}) by 22.4% with the constant max G_S (G_{Smax}) when ψ_L <-1.2 MPa, we shed some light on the mechanism underlying the high water-use efficiency (WUE) of this Eucalyptus specie. With a slight change in G_{Sref-max} and high sensitivity of k_s to decreasing ψ_L, large trees used water more efficiently than small ones did. In addition, the -m in the dry season (0.53±0.007) was lower than that in the wet season (0.58±0.01) due to the difference in the ratio of G_S to the boundary layer conductance (g_b) in the two months. The negative relationship between –m (except when light is limited) and photosynthetically active radiation (Q_{0}) proved to be a plastic response to environmental changes for E. urophylla but did not change with decreased k_s as expected.

1. Introduction

Climate change resulting from global warming is gradually threatening tropical and subtropical forest communities in a variety of ways, one of which is the increasing frequency of severe droughts that are caused by changes in the precipitation pattern according to the IPCC’s report (Davidson et al., 2012). Over the past 50 years, China has experienced significant changes in annual and seasonal precipitation (Zhai et al., 2005). Zhou et al. (2011) noted that with increasing air temperatures in southern China since 1980, rainfall patterns have shifted to more rain-free days and fewer days of light rain in dry season (characterized with little rainfall and lower soil water content), more severe storms during the wet season, even though the total rainfall did not change significantly. The direct effect of decreased rain events is the decreased soil water supply, which may further restrain transpiration especially for shallow root
plants. However, since vapour pressure deficit (D) increases exponentially with increasing air temperatures and therefore warming is expected to have a larger influence in future D, transpiration will be enhanced in drier atmosphere in the absence of plant physiological regulation.

Tropical forests may not be resilient against climate change in the long term, primarily due to predicted reductions in rainfall, drought-induced excessive water loss and ecosystem disturbances (Zhou et al., 2013), thus decreasing forest productivity, increasing tree mortality, and decreasing forest biomass carbon sinks (Chaves et al., 2002). While as reviewed by Lloret et al., (2012), many empirical evidences support the existence of stabilizing processes minimizing and counteracting the effects of these extreme climate events, reinforcing community resilience. In planted forests, trees are more vulnerable under severe environmental stress because of their weaker ecological resilience (Bleby et al., 2012). *Eucalyptus* is the most planted tree genus in the world (Teketay et al., 2000) and has become a major economic resource in the southern provinces of China. The coverage of this species is expanding rapidly and has doubled in the past decade (Shi et al., 2012).

As reported, phenotypically ‘plastic’ exotic species such as *Eucalyptus* are likely to develop traits that are hydraulically compatible with their soil environment from a young age and not likely to remain fixed as environmental conditions change (Bleby et al., 2012). These species respond to environmental feedback on hydraulic development such that older and taller trees may have substantially different hydraulic and physiological traits compared to their younger and smaller counterparts. This type of “transformation” plays an important role in tree robustness.

Physiological regulations must also be considered with the changing and stressful environment, consisting of the resilience aspect at the single-tree level. Stomatal movement is the main physiological mechanism that controls gas exchange in terrestrial plants. Under light-saturating conditions and a high vapor pressure deficit (D), most plants reduce stomatal conductance (G_S) to avoid dehydrative damage by limiting the rate of water loss and the development of a potentially impairing low leaf
water potential (Ψ_L) (Meinzer et al., 1993). The absence of stomatal regulation would cause excessive xylem cavitation and a failure of water transport (Cochard et al., 1996; Lu et al., 1996). However, stomatal regulation is typically coordinated with hydraulic conductance, which gradually decreases with aggravated water access limitation in the soil. Understanding the mechanistic responses of trees to low water availability and drought is essential to accurately incorporate these mechanisms into process-based ecophysiological models and global vegetation models (McDowell, 2011).

Trees of different sizes usually respond to soil drought-induced water stress in different ways due to the varied hydraulic structure (Forrester 2015). Tree height, leaf area and sapwood area are in allometric relation with tree size in different ways, thereby changing the hydraulic properties when trees grow larger to adapt to the environment (Schäfer et al., 2000). The different physiological response of juvenile and full-grown trees had been intensely debated for many years and might be associated with species, ages, nutrient, climates, etc. (Binkley et al., 2013; Aranda et al., 2012). To our knowledge, small trees have lower overall water loss rates at both the leaf and canopy levels and a greater sensitivity of water loss in response to water stress (increasing D or decreasing leaf water potential) than large trees (Dawson 1996) and therefore have an advantage under drought conditions. While larger trees usually have a deeper root system for acquiring more available soil water, especially under drought conditions (Anderegg et al., 2012). As proposed by Cavender-Bares and Bazzaz (2000), juvenile trees are more affected by drought than mature trees, due both to their shallower rooting as well as their inability to fix C at low leaf water potential. They resist drought by closing stomata early in the day at the expense of C uptake. Mature trees avoid drought conditions by accessing deeper water reserves and adjusting WUE, sacrificing C gain only marginally. To shed light on the physiological response strategies of *E. urophylla*, the impact of tree size needs to be considered when evaluating the effects of decreased water availability on tree growth (Feichtinger et al., 2014).
By reducing G_S, plants minimize water loss and maintain the hydration of plant cells as D increases under conditions of low water availability. Thus, the magnitude of G_S reflects the drought intensity. For example, Medrano et al. (2002) observed a common response pattern that was species-and condition-dependent when G_S was light saturated. However, in addition to the regulation of stomatal aperture, the stomata must react rapidly to avoid excessive water loss in response to high transpiration demand under drought, i.e., the sensitivity. Sensitivity of stomata to D has been accurately described using empirical relationships as the slope between G_S and $\ln(D)$ (Oren et al., 1999) and is closely related to the magnitude of G_S at $D=1.0$ kPa (G_{Sref}). The stomatal sensitivity to D is linearly proportional to $G_{Sref} (-0.6)$ for isohydric plants that are able to maintain a constant minimum leaf water potential (ψ_{leaf}) (Pou et al., 2012). The hydraulic architecture of plants plays a vital role in the G_S response to changing leaf hydration (Sperry et al., 2002). In addition, because the decrease in G_S is usually followed by a change in hydraulic conductance (Martínez-Vilalta et al., 2014), a better understanding of the coordination between hydraulic architecture and stomatal responses to changing D will provide insight into the diurnal and seasonal growth patterns of plants (Ocheltree et al., 2014).

Most of the research about *E. urophylla* in the subtropical monsoon climate of South China is related to the productivity (Du et al., 2012; Simpson et al., 2003), wood property (Jiang et al., 2004; Luo et al., 2012; Luo et al., 2013), and disease (Zhou et al., 2008) considering of the economic aspects, while the plasticity in physiological response and function of tree species remain poorly understood. Our interest is in determining how the young planted *Eucalyptus* forest in South China will function under enhanced drought stress and varied atmosphere conditions. We hypothesized that trees growing in the dry season would respond more sensitively to climatic factors (especially referred to D) and have less-efficient water-use traits (e.g., weak transpiration rates, small stomatal conductance) but greater sensitivity to soil–water deficits and high evaporative demand than in the wet season. More specifically, we seek to answer the following key questions: (1) **Will the water use of *E. urophylla***
will be limited in dry season? (2) How the hydraulic and physiological traits of trees respond following a seasonal climate change? (3) How differently will the small and large trees respond to seasonal drought?

2. Materials and Methods

2.1 Study site and plant material

This study was conducted at the Huangmian state forest farm (24°66′N, 109°87′E) approximately 60 km southwest of Guilin city in South China. This farm is planted with Eucalyptus urophylla for lumber and pulp production. The plantation area was 32000 ha in 2010. All of the reported measurements took place in an E. urophylla stand 3~5 years old on a hill with an inclination of approximately 30° facing southwest. The forest density was 1375 trees ha\(^{-1}\). The soil of this forest is characterized with heavy loam. This area is characterized by a low subtropical monsoon climate with an annual precipitation ranging from 1750 to 2000 mm and an average annual temperature of 19°C. Although the rainfall is abundant, it is unevenly distributed through the year, producing wet (March to September) and dry (October to February of the next year) seasons. The measurement was carried out from June 2012 to May 2013. Fifteen trees of E. urophylla with an average height of 11.5 m and a mean diameter at breast height (DBH) of 10.1 cm were chosen for our study. An observation tower 23 m high was erected within the plantation providing access to the canopy of the E. urophylla stand.

2.2 Sap flux and environmental variable measurements

The sap flow density (\(F_d\), g m\(^{-2}\) s\(^{-1}\)) of the 15 sample trees was monitored with Granier-type sensors (e.g., Granier, 1987). Details about the sensors and installation can be found in Zhu et al. (2015). The \(F_d\) of E. urophylla is assumed to be isotropic in terms of the dependence of leaf transpiration on crown illuminance (Burgess and Dawson, 2008). An implicit assumption for scaling up of sap flow density is that the variability in xylem flux within a tree is smaller than that among trees. If not, \(F_d\) may
be used to estimate transpiration only after it is converted to a spatially weighted mean flux. Zhou et al. (2002) conducted a survey of the radial variation in the sap flow density for 3-4-year-old *E. urophylla* using the heat pulse method. The variation in sapwood depth from the outmost surface of the stem can be expressed as

$$y=ax^3+bx^2+cx+d,$$

where x is the ratio of the sensor depth to the radial sapwood thickness. We integrated the results of two plots in their study and obtained the equation

$$y=4.33x^3-8.31x^2+4.07x+0.52.$$

A meteorological station was equipped on the top of the tower. The photosynthetic photon flux density (Q_0, μmol m$^{-2}$ s$^{-1}$), temperature (T, °C), relative humidity (RH, %), and wind speed (u, m s$^{-1}$) were measured simultaneously with the sap flow measurement (Zhu et al., 2015). The rainfall data during the study period of Guilin were obtained from the China Metrological Data Sharing Service System (http://cdc.cma.gov.cn/home.do). The soil water content (SWC, m3 m$^{-3}$) was monitored with three soil water probes (SM300, UK) that were buried 30 cm under the ground surface.

2.3 Tree morphological features and stand transpiration

To obtain the allocation information, the sap wood depth (d_s) was measured from trees that were lumbered for wood pulp during the period of rotation cutting. We harvested 7 sample trees that were grown close to the experimental plot for biomass determination. The DBH was measured with diameter tape. The tree height (h) was measured with the tape draped from the top of the tower, and crown of sampled trees for sap flow measurements were aligned with tape to obtain the reading of the tree height. The total leaf area (A_L) was measured with a portable leaf area meter (Licor-3000, USA). Five small subsamples of each tree were scanned and weighted (fresh weight), the ratio of leaf area/ fresh weight was estimated. Then the whole tree leaves were then collected for the estimation of A_L. We take cores with a growth increment on trees around the stand ($n=27$). The sapwood depth was visually distinguished from heartwood by changed color at the boundary of the two parts on the cores before the sapwood area was estimated (A_S). Because the DBH of the
harvested trees ranged from 6.6 to 11.1 cm, while those for sap flow measurements ranged from 8.5 to 16.06 cm, we referred to Zhou et al.’s study (2004) to obtain biomass information of *E. urophylla* trees with a DBH greater than 11.1 cm. A_S of the sample trees was estimated based on the relationship of DBH and A_S. We used the fitted relationship between DBH and A_S and the A_L from the harvested trees together with Zhou et al.’s study (2004) to scale up whole tree transpiration (E_T) by multiple F_d of each tree. The nocturnal transpiration (E_T-NOC) was defined as E_T when Q_0=0. Because *Eucalyptus* leaves are characteristically thick, tough and long-lived and are generally retained throughout a growing season and often longer (Reich et al., 1999; Ashton, 1975; Cannell, 1989), these relationships do not account for the seasonal dynamics in leaf area.

Stand water use per ground area (E, mm) was estimated as the product of plot (20×20 m) sapwood area (derived from the DBH versus A_S relationship above for each tree in the plot) and hourly mean of F_d of the monitored trees (since no significant relationship between F_d and DBH was observed, p=0.45), and divided by the ground area of the plot. The total water use during the experimental period was summed by the hourly mean of E. However, because of the power down and equipment failure, there were missing data during the experiment. We fitted the relationship between Q_0 and daily sum of E to fill the gap.

2.4 Hydraulic properties of the stem xylem

The physical limitations on water flow through sapwood xylem influence stomatal behavior and transpiration in trees, which can be expressed based on Darcy’s law as:

\[
G_{S_{ref}} \propto E_L = k_s (\Delta \Psi - 0.01h) \frac{A_S}{A_L h}
\]

where the transpirational demand is proportional to the G_S times the vapor pressure deficit (D). k_s is the sap wood specific hydraulic conductivity (whole-plant conductance per unit sapwood). \(\Delta \Psi\) responds to the water potential gradient between root and leaf. On this base, percentage loss of conductivity (PLC) is estimated as 100
× (1 - k_s/k_m), where k_m is the max k_s.

To estimate the wet-dry seasonal variation in ΔΨ, the leaf water potentials at pre-dawn (Ψ_pre-dawn) and midday (Ψ_midday) were measured with a portable plants pressure chamber (PMS 1000, Corvallis, OR, USA) for sunny days in wet (5 days) and dry (4 days) season. Five trees were selected for the experiment. The measurements were averaged from three replicate shoots that were sampled from the mid-crown (most of the leaves were fully expanded) per tree. We assumed Ψ_pre-dawn to be a substitute for the water potential in the soil (Ψ_S) (Kim et al., 2008; Bleby et al., 2012) because soil moisture remain unchanged throughout the whole sunny day. Therefore, the ΔΨ was calculated as the difference between Ψ_S and Ψ_midday.

2.5 Canopy stomatal conductance

In the forests where transpiration is well-coupled with atmosphere conditions, the mean stomatal conductance can be calculated based on a simplified equation (Köstner et al., 1992) that is derived from Whitehead & Jarvis (1981) assuming that the F_d scaled by A_S/A_L is equal to the transpiration rate per unit of leaf area (E_L). The mean stomatal conductance for individual trees, G_S, can be calculated as:

\[G_S = \left(G_V \cdot T \cdot E_L \right) / D \]

where \(E_L \) is whole-tree transpiration per unit leaf area (g m^{-2} s^{-1}), \(G_V \) is the universal gas constant adjusted for water vapor (0.462 m^{3} kPa K^{-1} kg^{-1}), \(T_a \) is the air temperature (K), \(\rho \) is the density of water (998 kg m^{-3}), and \(D \) is in kPa. \(G_S \) is in units of mmol m^{-2} s^{-1} (Monteith and Unsworth, 2013).

This approach is based on the assumption that the contribution of water that is stored in the trees above the sensors to transpiration is negligible or explicitly accounted for. If the contribution is not negligible, it can be accounted for by determining the time lags between water uptake and an appropriate driving variable (Köstner et al., 1992; Granier & Loustau 1994). The forest had an LAI of 1.68 ±0.28 m^{2} m^{-2} and did not show significant seasonal changes (p=0.78) (Zhu et al., 2015). Therefore, \(G_S \) calculation is not subjected to errors that are caused by leaf area dynamics. Thus, \(G_S \)
was estimated after (1) performing a cross-correlation analysis between D and F_d, and using the time lag to infer a time-corrected F_d and (2) filtering out data for D<0.6 kPa in the hours of early morning and late afternoon (Oren et al., 1998).

2.6 Stomatal sensitivity to vapor pressure deficit

Many non-linear functions and models have been used to analyze the effect of environmental variables on G_S (Monteith 1995; Dang et al., 1997; Martin et al., 1997). Granier et al. (1996) proposed that stomatal sensitivity is proportional to the magnitude of G_S at low D (D=1 kPa) when soil moisture is not limiting, which was expressed as:

\[G_S = G_{Sref} - m \ln D \]

(3)

where \(G_{Sref} \) is the intercept (i.e., the value of G_S at D= 1 kPa in a log-linear relationship), and -m is the slope of the regression fit representing stomatal sensitivity to D (i.e., dG_S/dln D). Oren et al. (1999) demonstrated that m is approximately 0.6 by analyzing data from a variety of sources that were acquired with both porometric and sap flux estimates of G_S. In this study, the -m and \(G_{Sref} \) for *E. urophylla* in the wet and dry seasons will be estimated to determine the response of G_S to drought.

A boundary line analysis of the relationship between D and G_S was performed in the dry and wet seasons. The datasets of G_S for each tree were classified by radiation (9 levels). The data at night (Q_0=0) were excluded because the plant physiological response in the night was much more complicated than that in the daytime (Oren et al., 2001). The relationship between the lnD and G_S of each small subset was linearly fitted, and the intercept and slope corresponded to the G_{Sref} (G_S at D=1 kPa) and sensitivity in response to D (dG_S/dlnD, mmol m^{-2} s^{-1} kPa^{-1}), respectively (Oren et al., 1999). Then, the relationship between G_{Sref} and -dlnD/dG_S for the two months was fitted.
In order to depict the radiation control on stomatal conductance of different season, the G_{Sref} under different light conditions was normalized by the value at the maximum Q_{0} of each tree in both seasons, and the relationship between the G_{Sref} and mean Q_{0} at that level for all of the trees was fitted with an exponential function expressed as:

\[G_{Sref} = a \times (1 - \exp(-b \times Q_{0})) \]

where \(a \) refers to the maximum dependent variable, i.e., the max G_{Sref} (G_{Sref-max}).

Since soil water content is vital for stomatal regulation, the boundary analysis performed above was applied at different soil moisture conditions to depict the maximal potential water use of *E. urophylla*. SWC was evenly divided into five intervals from 20% to 45%.

2.7 Data analysis

Boundary-line analysis was conducted in Excel (version 2010, Microsoft Office Excel) to set up the relationship between environmental conditions and maximal canopy stomatal conductance or F_{d}. The upper boundary line was derived by: (1) partitioning data of independent variables (V_{I}) into a specific intervals, (2) calculating the mean and standard deviation of dependent variables (V_{d}) in each interval, (3) removing outliers (P < 0.05; Dixon’s test), (4) selecting the data falling above the mean plus one standard deviation, and (5) averaging the selected data for each V_{I} interval with n \geq 5 remaining V_{d} values. Excluding intervals with n<5 was done to prevent V_{I} intervals with too little information from affecting the relationship.

Statistical analyses were performed using SAS (version 9.2, SAS Institute, Cary, NC). A multiple regression analysis was conducted to determine the hydraulic architecture effect on tree water use in the wet and dry seasons. A paired t-test with SAS was used to compare the differences in environmental and plant physiological changes between wet and dry seasons. Origin pro (version 8.6, Origin Lab, USA) was used to draw all of the graphs in this paper.

3. Results
3.1 Water and atmospheric conditions

The precipitation (P) in the research site (Huangmian) totaled 2167.6 mm from June 2012 to May 2013, and varied from the minimum of 26.2 mm in January to the maximum of 487 mm in June. The water input was mainly contributed by precipitation in late spring and early summer (i.e., from April to June), which accounted for 55.4% of the whole year, while that from October to February was 16% and is typically defined as the dry season in South China. The nonlinear curve fit between SWC and P indicated that SWC linearly increases with P when P<200 mm and holds a constant value of 0.38 m3 m$^{-3}$ when P>200 mm (Fig. S1), meaning that the soil was not saturated throughout most of the year except for the period from April to July. The SWC in dry decreased 32.6% from wet season, revealing a significant difference in the soil water conditions between the wet and dry seasons. The monthly average Q_{0} showed an inverse pattern with SWC, which was 154.2±109.4 μmol m$^{-2}$ s$^{-1}$ in wet season and 283.7±108.6 μmol m$^{-2}$ s$^{-1}$ in dry season. D was higher in dry (1.07±0.39 kPa) than in wet (0.32±0.28 kPa) season. The differences in the three environmental factors between the two seasons were significant (p<0.01).

3.2 Tree water use in different seasons

A boundary line analysis of the relationship between F_{d} and Q_{0} was conducted, and the maximal F_{d} was derived from the exponential relationship. The F_{d} of the 15 trees was 41.03±7.97 g m$^{-2}$ s$^{-1}$ and 38.82±13.16 g m$^{-2}$ s$^{-1}$ in the dry and wet seasons, respectively, implying a similar ability to transport water to the canopy. The tree size did not have any effect on F_{d} even though a weak negative relationship between DBH and F_{d} in the dry season ($R^2=0.19$, p=0.06) was observed.

The annual stand E_{T} was 462.42 mm, and the E_{T} in dry and wet season accounted for 12.24% and 6.57%, respectively. The maximal (minimal) daily E_{T} of individual trees in the dry and wet seasons was 14.1±0.7 kg d$^{-1}$ (2.49±0.16 kg d$^{-1}$) and 9.52±0.97 kg d$^{-1}$ (2.2±0.3 kg d$^{-1}$), respectively. The daily transpiration (E_{T}) in dry season averaged 5.7±2.9 kg d$^{-1}$ and was 58.0% higher than that in wet season (3.6±2.3 kg d$^{-1}$).
(Fig. 2a, p<0.01). The greatest variance was observed for the tree of DBH=8.5 cm, whose \(\dot{E}_T \) in dry increased by 185.1% from wet season. In contrast, the \(\dot{E}_T \) of the largest tree (DBH=16.1 cm) increased by 48.5%, lower than the mean value. The wet/dry ratio varied from 0.4 to 0.8 and slightly increased with the tree size \((R^2=0.03) \), implying that the \(\dot{E}_T \) of the larger trees was less sensitive to seasonal changes in environmental factors.

In our stand, the nocturnal transpiration \((\dot{E}_{\text{NOC}}) \) was 0.18±0.021 kg in wet and 0.11±0.01 kg in dry season, indicating its decrease with decreasing water supply (Fig. 2b, p=0.047). This transpiration accounted for a proportion of daily \(\dot{E}_T \) by 1.82±0.45% and 4.51±1.34% in dry and wet season, respectively. However, the variances in \(\dot{E}_{\text{NOC}} \) among individuals were much higher in wet than in dry season, which mirrored a different sensitivity of trees responding to environmental changes at nighttime. The nocturnal sap flow \((\dot{E}_{\text{NOC}}) \) also followed a linear relationship with tree size, but larger trees were much more sensitive to the environmental changes in wet than in dry season.

The water potential at pre-dawn \((\Psi_{\text{pre-dawn}}) \) was -0.24±0.04 MPa and -0.21±0.03 MPa in the dry and wet seasons \((p=0.23) \), respectively, and at pre-night \((\Psi_{\text{pre-night}}) \) was -0.29±0.02 and -0.31±0.05 MPa. The water potential at noon \((\Psi_{\text{noon}}) \) was -7.51±2.32 and -14.55±2.31 MPa in wet and dry season \((p<0.01) \), respectively. None of the above values were significantly different among the 5 trees \((p>0.05) \). The water potential gradients at midday \((\Delta\Psi) \) averaged -0.62±0.66 (wet) and -1.22±0.10 MPa (dry). Similar to the leaf water potential, \(\Delta\Psi \) showed no significant variance among the five trees \((\text{ANOVA, } p=0.14 \text{ in wet and } p=0.25 \text{ in dry}) \) or between the two months \((p=0.33) \). \(\Delta\Psi \) was much higher in wet than in dry season \((p<0.01) \), which was consistent with the seasonal pattern of \(\dot{E}_T \).

3.3 \(G_s \) and its sensitivity in response to vapor pressure deficit under different light conditions

\(G_{\text{Sref}} \) linearly increased with sensitivity in both the dry and wet seasons (Fig. 3). The
normalized G_{Sref} of all of the trees increased rapidly when Q_0 was low and gradually saturated at the maximum (Fig. 4a). It reached 90% of the maximum (G_{S90}) when Q_0 was 287.8 and 167.1 μmol m$^{-2}$ s$^{-1}$ in the dry and wet seasons, respectively, indicating that the G_{Sref} in the wet season was more sensitive to light, resulting in a lower saturation point than that in the dry season ($p<0.01$). We also qualified the tree size effect on $-m$ in both seasons; the $-m$ at different light levels did not change significantly with the tree size ($p=0.33$). The effect of Q_0 on $-m$ was also qualified in both seasons (Fig. 4b). When light was limited, $-m$ gradually increased and then decreased when Q_0 became strong enough (ANOVA, Duncan, $p<0.01$), i.e., the sensitivity was not maintained constant even within a single day when the light intensity varied substantially. Oren et al. (1999) suggested that low light may be expected to cause deviations in $-m$ from the predicted slope (0.6). As the low-light data were removed ($Q_0<200$ μmol m$^{-2}$ s$^{-1}$), a linear decrease in $-m$ that ranged from 0.32 to 0.83 (dry season) and 0.22 to 1.10 (wet season) with radiation for the 15 trees was observed (Fig. 4b). The fact that $-m$ increases rapidly under low light conditions may be due to the closed stomas in the morning. Mean of $-m$ was substantially higher in the wet season (0.58±0.01) than that in the dry season (0.53±0.007) ($p=0.038$).

Oren et al. (1999) reported that as long as stomata regulate the leaf potential near a constant value, a slope near 0.6 is expected. This variation depended on the D range, boundary layer conductance (g_{bl}), and changes in hydraulic conductance associated with D. To determine the effect of the D range, we selected the data shown in Fig. 3 by the criterion that D ranged from 1 to 2 kPa for each light level to perform a boundary analysis. Then, $-m$ of the 15 trees at each light level was compared with the results that were derived from all of the data. As a result, the relationship between $-m$ and Q_0 in the wet and dry seasons was not significantly different from that analyzed above ($p=0.43$ and 0.14, respectively, ANOVA). Characterized by narrow leaves, the g_{bl} of the *E. urophylla* stand in wet and dry season was 930.1 and 1149.8 mmol m$^{-2}$ s$^{-1}$ (unpublished data) respectively, which led to a ratio of g_{bl}/G_S of more than 2 in dry season. Oren et al. (1999) argued that the $-m$ is negatively related to the g_{bl}/G_S and
equals 0.55 when the g_{th}/G_S is 10, which is the case of our study. As a result, the changes in hydraulic conductance might be responsible for the $-m$ variation.

The max G_S ($G_{S\text{ref-max}}$) of each tree was obtained from the exponential function (eq. 4, corresponding to a) before being normalized. The $G_{S\text{ref-max}}$ was fitted to the tree size (Fig. 5). The $G_{S\text{ref-max}}$ of small trees (<9 cm) in the wet season increased rapidly with DBH, then changed little after DBH>9 cm, while no clear relationship between the $G_{S\text{ref-max}}$ and tree size was observed in the dry season. The $G_{S\text{ref-max}}$ averaged 68.8 and 88.6 mmol m$^{-2}$ s$^{-1}$ in the dry and wet seasons, respectively, and the latter was significantly higher ($p<0.01$). The $G_{S\text{ref-max}}$ ratio of dry to wet ranged from 0.58 to 1.26 (0.81 on average), decreased rapidly when DBH<9 cm and stabilized after DBH>9 cm (Fig. 5).

The slope of $G_{S\text{ref}}$ versus $-m$ (Figure S3) for the five soil moisture levels ranging from 0.50 to 0.59 was weakly improved by SWC ($p=0.15$). The $G_{S\text{ref-max}}$ of each tree also slightly improved by SWC but was not significant ($p>0.05$), as some of these values were positive or negative related to SWC when each tree was fitted, while the others were weakly related. The relationship between $-m$ and mean Q_0 was also fitted and still independent from SWC ($p>0.05$).

To understand the role of ψ_L in the regulation of *E. urophylla* transpiration, we fitted the relationship between leaf water potential at noon and the corresponding $G_{S\text{max}}$ (normalized by the measurement on April 19, 2013) of 15 trees (Fig. 7a). $G_{S\text{max}}$ was positively related to ψ_L when light was limited. According to the cell turgor theory, the change in ψ_L is derived from the G_S-promoted water loss on the leaf (Dow & Bergmann, 2014). However, this value peaked and was maintained from -0.6 to -0.9 MPa for a while before a gradual decrease.

3.4 Hydraulic architectures and sap wood conductivity

To determine the effect of the tree hydraulic structure on the plant physiological response, the integrative effects of Huber value, tree height and leaf water potential of the 15 trees on G_s were described using Eq. (1). The Huber value linearly increased
with DBH (Fig. 6). Eq. (1) was applied when D=1 kPa to evaluate the seasonal change in k_s (Fig. 7b). As a result, the k_s of both seasons was linearly fitted. The k_s in the wet season (29.1±13.1 mmol m$^{-1}$ MPa$^{-1}$) was much higher than that in the dry season (9.4±3.2 mmol m$^{-1}$ MPa$^{-1}$). In addition, large trees had a much higher seasonal variation in k_s (p<0.01). As shown in Fig. 7b, the dry to wet ratio of k_s decreased rapidly with tree growth and maintained constant when DBH>10 cm.

4. Discussion

4.1 Water use of *E. urophylla*

From June 2012 to May 2013, the transpiration accumulated 462.42 mm (1.26 mm d$^{-1}$), accounting for 21.3% of the total rainfall. This value was much lower as a young forest than that in other areas of the world (Cunningham et al., 2009; Yunusa et al., 2010; Mitchell et al., 2009; Benyon et al., 2006). Even the same species, *E. urophylla*, in a savanna in Venezuela transpired more water than in our study (2.3 mm d$^{-1}$) (Herrera et al., 2012). In general, transpiration may reach maximum values when the canopy is completely closed (Shi et al., 2012). The relatively low LAI (1.68±0.28) revealed a high-opening forest canopy in our study and might be the reason for low transpiration.

E_T was promoted during the drought period compared to that during the wet season. Meanwhile, a significant decrease in the soil water content (by 27.3%) was observed from September to October. A boundary analysis with the partitioning of the multiple effects of D, Q_0 and SWC on stomatal conductance demonstrated that $G_{Sref,max}$ was enhanced by weakly increased SWC for some trees but depressed for the other, and -m was also maintained constant along soil moisture gradients under different light conditions (Fig. 4b). In agreement with our results, the reported higher transpiration for a *Eucalyptus miniata* in Australian savannas in the dry season also suggests that soil water availability is not limited during the extended dry season (O'Grady et al., 1999). Jarvis (1993) believed that trees in aerodynamically rough forests that are well coupled to the atmosphere continue their transpiration at the rate
that is imposed by D under unlimited soil water availability. The promoted E_T in the
dry season in our study can be explained by a low decoupling coefficient (0.10±0.03,
unpublished data) and an obvious increase in D by 234.4% from wet to dry season.
However, this trend is not always the case under some other conditions. Zhou et al.
(2004) reported a significantly decreased daily sap flux with decreased available soil
water of *E. urophylla* plantation in the Nandu River watershed on the Leizhou
Peninsula, Guangdong Province, China, where the atmospheric conditions are very
similar to those in our study. These authors believed that the soil type produces
uncertainty in this relationship.

The nighttime sap flow is regarded as water recharge in the trunk and is vital for
the plant water-use strategy, especially in a drought landscape (Fisher et al., 2007).
The similar $\Psi_{\text{pre-night}}$ and $\Psi_{\text{pre-dawn}}$ in the dry and wet seasons revealed the same
demands for water replenishment in the night. However, nocturnal sap flux (E_{TNOC})
in the wet season (0.18±0.021 kg d\(^{-1}\)) was almost twice that in the dry season
(0.11±0.01 kg d\(^{-1}\)). The difference in E_{TNOC} was inferred to be caused by leaf
transpiration at nighttime. In fact, evidence was found by simultaneous leaf level gas
exchange measurement and water potential measurement, demonstrating that stomatal
conductance in wet and dry season was 63.1±31.0 and 33.6±5.0 mmol m\(^{-2}\) s\(^{-1}\),
respectively, when $Q_0=0$ after pre-night and before the pre-dawn. A new finding was
reported that a subsequent increase in transpiration in the night 6 h after dusk was
caused by the wood circadian clock regulation of G_S and F_d for *Eucalyptus grandis*
(Resco de Dios et al., 2013). The authors concluded that the endogenous regulation of
G_S is an important driver of nighttime water flux under natural environmental
variability. We believe that *E. urophylla* tended to transpire water continually after
sufficient water recharge, especially when water was available in the soil. The same
conclusion was proposed across a diversity of ecosystems and woody plant species by
various methods, and a variety of explanations were considered plausible for the
mechanism (Dawson et al., 2007).

4.2 Stomatal regulation in response to the leaf water potential
One of the views on the mechanisms of stomatal closure is usually treated as direct response to the change in leaf water potential as related closely to cell turgor (Martorell et al., 2014). A significant decrease (by 22.4%, Fig. 5) in Gₛ was observed accompanying a two-fold increase in Δψ in the dry season. According to eq. (2), if Gₛ is constant, a 234.4% increase in D will lead to the same proportional enhancement of Eₗ and Eₜ because the difference in Tₐ and Aₗ between the two months was not significant (p>0.05). Thus, a 22.4% decrease in Gₛ eventually led to a less increase in Eₜ and Eₗ by 159.5%. Stomatal closure also played a significant role to suppress excessive transpiration in our study.

The change in Gₛ is a response to altered ψₗ (Hölttä & Sperry, 2014). Gₛ peaked and was maintained from -0.6 to -0.9 MPa for a while before a gradual decrease (Figure 6a). This trend is consistent with the relationship between ψₗ and Gₛ across 70 trees species (Klein, 2014). Of note, the stomata did not fully close when ψₗ reached the minimum value when ψₗ=-1.6 MPa. In addition, Gₛ of *Eucalyptus pauciflora* gradually decreased with ψₗ when ψₗ>1.0 MPa (Martorell et al., 2014), while a stomatal closure of 25% of the maximum remained when ψₗ=-1.6 MPa according to the fitting line. This value was lower than our result (50~60%, Fig. 7a). Another example presented by Mielke et al. (2000) showed that Gₛ of *Eucalyptus grandis* maintained ~40% of the maximum when ψₗ<-2.45 MPa until the minimum ψₗ was reached (-2.8 MPa). Gₛ was also found to stabilized at ~37.5% of the maxmim after predawn ψₗ<-2.37 MPa until the minimum predawn ψₗ (-3.37 MPa) when three allopatric *Eucalyptus* (*E. camaldulensis* Dehnh, *E. leucoxylon* F. Muell and *E. platypus* Hook) were investigated together (White et al., 2000). even the minimum ψₗ of -4.8 MPa was observed, t a value of ~65 mmol m⁻² s⁻¹ still occurred in their study Even the minimum of midday ψₗ was observed (-4.8MPa), a value of ~65 mmol m⁻² s⁻¹ for Gₛ still occurred in their study. Klein et al. (2014) reported that the minimum (maximum) value of ψₗ can reach -2.2 MPa (-1.0 MPa) when Gₛ decreased to 50% of the max for most tree species. Franks et al. (2007) argued that *Eucalyptus* (*Eucalyptus gomphocephala*) does not regulate Ψₗ at or above any particular value as groundwater,
soil moisture and evaporative demand vary seasonally. Instead, water table depth, predawn Ψ_L, midday Ψ_L and midday G_S co-vary with monthly rainfall in a manner that is consistent with classical anisohydric behaviour. However, is this behaviour (i.e. not complete stomatal closure under low leaf water potentials) general among all *Eucalyptus* needs further studies. Though, The 50–60% of $G_{S_{max}}$ at -1.6 MPa indicates that *E. urophylla* in our study was more likely to optimized carbon assimilation under stressed leaf water condition, and it is also anticipated to take more risks of hydraulic failure in the meanwhile compared with those species who fully closed stomas.

4.3 Hydraulic conductivity of *E. urophylla*

A change in ψ_L depends on the leaf water loss and water recharge by sap flow. ψ_L decreases if water loss$>$water recharge. The stomata aperture showed less change when $\psi_L$$<$-1.2 MPa. When ψ_L decreased to -1.2 MPa in the dry season, k_s decreased by 45.3 to 65.6% from the wet season along tree size ranks (Fig. 7a). The decreased ψ_L indicated a failed water recharge by sap flow when G_S was maintained constant. Thus, k_s will continue to decrease when $\psi_L$$<$-1.2 MPa to drive the change in ψ_L.

Cavitation avoidance was a likely physiological function associated with stomatal regulation during water stress in our experiments as we discussed above. However, the possibility still exists that the striking relations that were observed between cavitation and stomatal function were only correlations and that the main physiological trait involved in the regulation was elsewhere (Cochard et al. 2002).

Evidently, differences in the behavior of isohydric and anisohydric plants are due to differences in the sensitivity of their respective guard cells to a critical ψ_L threshold (Sade et al., 2012), The apparent differences in stomatal control of isohydric and anisohydric plants are thought to be due to differences in the perception of abscisic acid (ABA) (Tardieu & Simonneau, 1998), which is highly related with stomatal closure (Schultz et al., 2003). The substantially decreased k_s will slow down the transfer of ABA from root to leaf, which may contributed to the unsynchronized response of decreased k_s and approaching stabilized G_S of *E. urophylla*.

Even we didn’t measured the k_s of root, trunk, or shoots, however, it was inferred
that the hydraulic conductivity of shoots may be responsible for the significant decrease of k_s, since many results had proved the branch dieback in periods of extended drought across a variety of species (Kursar et al., 2009; Urli et al., 2013; Choat et al., 2012). However, it also can’t rule out other possibility, such as roots, since Domec et al. (2010) also reported that embolism in roots explained the loss of whole-tree hydraulic conductance and therefore indirectly constituted a hydraulic signal involved in stomatal conductance reduction for *Liquidambar styraciflua* and *Cornus florida*.

However, Such a water-use strategy may contribute to high water-use efficiency for *E. urophylla*, especially under dry conditions because of more reduced water flux in the xylem compared with less changed G_S on the leaves. We found that G_S decreased by 22.4% from the wet to dry seasons, while k_s decreased by 45.3 to 65.6%, much higher than G_S. If the tree leaves in the wet and dry seasons have the same demand for CO_2, the WUE will also be higher in the dry season. This possibility had been demonstrated by some other studies (Brienen et al., 2011; Maseyk et al., 2011; Sharma et al., 2015; Liu et al., 2012).

4.4 Tree size effect

Here, we tried to determine the effect of tree size on plant physiology as proposed in the “Introduction”. Even no water stress was occurred in dry season, the highly increased transpiration demands will also lead to the significantly change of k_s from wet to dry season (Figure 6b). As a result, the ratio of dry/wet k_s decreases from 0.55 to 0.30 with increased tree size. We simulated the relationship between ψ_L and percentage loss of PLC for large and small trees. A more sensitive k_s was observed for the dominant tree (Fig. 8). It was implied that large trees are more vulnerable in the face of drought stress. Under these conditions, a higher resistance for dominant trees would lead to a rapid decrease in ψ_L (Ambrose et al., 2009). A striking result was that there was no significant differences ($p=0.14$ in wet and $p=0.25$ in dry season) among tree sizes in our research. Controversial results also existed in some other studies. Bleby et al. (2012) reported that the $\Delta\Psi$ of trees with DBH of ~8cm was significantly
higher than that of ~14cm and ~5cm in the restored forest of *Eucalyptus marginata*, but not significant between ~14cm and ~5cm. While ΔΨ in their study for trees of ~14cm (DBH) in a natural *E. marginata* was much higher than that of ~8cm and ~5cm. However, both of the two sites shared a same increase of Huber value by 49.2% and 33.3% respectively to maintain the hydraulic homeostasis. They argued that the similar G₅ for and increased Huber value for ~14cm and 8cm trees in the restored plot can explain the relationship of ΔΨ among tree size. While in the natural forest, G₅ of ~14cm was significantly higher than that of ~8cm and 4cm in addition to the less compensatory Huber value, leading to a more stressed condition for large trees. The same increase of Huber value (~70%) was also observed from 8cm to 16cm in our plot, and similarly, G₅max showed no differences among tree sizes in dry season and stabilized when DBH>10cm after a gradually increase in wet season for *E. urophylla* in our study (Figure 5). As a conclusion, we proposed that large trees may not be more stressed even the higher sensitivity of kₛ (unless it reached a threshold leading to hydraulic failure such like cavitation) because of the less increased G₅ and structural compensation of Huber value.

4.5 Elastic fluctuating stomatal sensitivity to radiation

The variation of −m seems significantly related with Q₀ via two different phases (Figure 4b). When light was limited, the increase of Q₀ will stimulate the opening of stomas, as showed in Figure 4a, until the threshold was reached. Meanwhile, the increased −m shared a same turning point of Q₀ with G₅ before gradually decreased. In other words, the stomatal sensitivity was largely dependent on the photosynthetic demands for light in this phase. Despite of the stabilized G₅, the stomas tended to be less and less sensitive to the increased D as Q₀ was improved when light was abundant. However, the increase of Q₀ was usually accompanied by the enhanced transpiration rates (Oren et al., 2001), which will further reduce the Ψₑ if sap flow is insufficient to the refill the water content in the leaf. As we discussed above, the decreased kₛ didn’t lead to a substantially closed stomas even Ψₑ was very low (Figure 6a, b), which may contribute the less sensitive stomas under high light.
Evidence was found in the lower –m in dry season even though \(Q_0 \) ranges was higher in wet season (figure 4b). \(Q_0 \) of \(G_{S90} \) in the dry (287.8 \(\mu \text{mol m}^{-2} \text{s}^{-1} \)) and wet seasons (167.1 \(\mu \text{mol m}^{-2} \text{s}^{-1} \)) also support this hypothesis (Figure 4a).

It is unfortunate that, to date, none of the previous studies associated with stomatal sensitivity considered light as an independent factor; therefore, we cannot assert whether the hypothesis is true or not. If it was true, plants that grow near the equator will be predicted to be less sensitive to changes in D, and compared to dominant trees in the forest, plants growing under the canopy will be inversely more sensitive as light is more precious there. Schäfer et al. (2000) assessed the importance of the mechanism for sustaining gas exchange in tall trees by directly relating -m to \(G_{Sref} \), and concluded that tall trees have lower \(G_{Sref} \) sensitivity than short trees. They argued that the lower stomatal sensitivity in tall trees ensures a more stable carbon uptake rate over the wide diurnal range of D and may serve to support carbon exchange. However, there is no doubt that light plays a significant role in controlling the stomata response to D. Obviously, further studies are needed for revealing the mechanism within this relationship.

5. Conclusion

a) Transpiration was largely controlled by evaporative demand, with a weak effect of SWC. Our results also revealed a water compensatory mechanism of \(E. urophylla \) when \(E_T \) was relatively lower in the wet season by nighttime transpiration, which partially compensated for the lower water use in the daytime by a proportion of 4.51%.

b) The combined regulation of water use by decreased stomatal and hydraulic conductance imposed restrictions on excessive evaporative demands, and the less changed \(G_S \) when \(\Psi_L < -1.6 \text{ MPa} \) mirrored a anisohydric behavior for \(E. urophylla \), which may contribute the Higher WUE of \(Eucalyptus \) when the more decreased \(k_s \) was compared.

c) Our results verified the hypothesis that trees of different sizes have different
strategies to respond to climate factors (D, Q₀, and SWC). As a tree grows, kₛ is more sensitive to water loss. However, the stabilized $G_{Sref-max}$ (in dry season) and continually increased Huber value with DBH may compensate this effect, leading to insignificant deviated $ΔΨ$ among trees.

d) The decrease in stomatal sensitivity of G_{Sref} to D along the radiation gradient accounted for another aspect of “plastic characteristics” for $E. urophylla$. It is predicted that trees growing under high light conditions will ensure a more stable carbon uptake rate.

Acknowledgement

This research Supported by the National Nature Science Foundation of China (41030638, 31170673, 41275169), the Provincial Nature Science Foundation of Guangdong (S2012020010933, 2014A030313762) and the CAS/SAFEA International Partnership Program for Creative Research Teams

Reference

Klein, T.: The variability of stomatal sensitivity to leaf water potential across tree

Monteith, J. L., Unsworth, M. H.: Principles of Environmental Physics: Plants,

Figure Legend
Figure 1. Precipitation (P), soil water content (SWC) and evaporative demands (D) dynamics across the period of sap flow measurement. Data of SWC in the Figure are daily mean±SE of that month, n=28-31.
Figure 2. Relationship between DBH and (a) averaged daily transpiration (E_T), (b) averaged total nocturnal water use ($E_{T\text{-NOC}}$). Data are mean±SE, all linear fittings are significant at the p<0.05 level. The insets in the figure represent the mean E_T (a) and $E_{T\text{-NOC}}$ (b) of 15 trees in dry and wet season respectively, letters imply a significant difference between dry and wet season.
Figure 3. The sensitivity of average stomatal conductance of tree individuals at each light level in response to increasing vapour pressure deficit (-dG/d\ln{D}) as a function of the canopy stomatal conductance at $D=1$ kPa (G_{Sref}) in dry (open symbol) and wet season (solid symbol). Different symbols represent the different light levels of the 15 trees.
Figure 4. (a) G_{Sref} is G_S of each tree at $D = 1$ kPa and normalized based on the highest value in relation to mean photosynthetically active radiation (Q_0). (b) The stomatal sensitivity ($-m$) of each tree in relation to Q_0 in dry (open symbols) and wet season (solid symbols). Lines are least-square fit through the entire data. Different symbols in the figure represent the 15 tree individuals. Light and dark lines respond to the least square fit in dry and wet season respectively.
Figure 5. Relationship between DBH and max stomatal conductance at reference D (≈1kPa) (G_{Sref-max}) deducted from Fig. 3. Lines represent least square fits for dry (white circle) and wet (black circle) season respectively, data are mean±SE.
Figure 6. (a) Limitation of leaf water potential (at noon, 12:00-13:00) on relative daily maximum G_S ($G_{S\text{max}}$) and (b) relationship between tree size and specific hydraulic conductivity k_s of 15 trees for *E. urophylla* in dry and wet seasons. $G_{S\text{max}}$ estimated by the mean of G_S from 11:00 to 13:00 normalized by the data of each tree on April 19, 2013.
Figure 7. Percentage loss of hydraulic conductivity (PLC) as a function of xylem water potential (Ψ_L) for small (tree 1, DBH=8.1 cm) and large (tree 15, DBH=16.1 cm) $E. urophylla$ trees. The assumption here is PLC=0 when $\Psi_L=0$ and PLC=100% when $\Psi_L=-3.0$MPa for most species, Ψ_L in dry and wet seasons is used to simulate the curve.