Interactive comment on “Deriving seasonal dynamics in ecosystem properties of semi-arid savannas using in situ based hyperspectral reflectance” by T. Tagesson et al.

Anonymous Referee #2

Received and published: 25 April 2015

The manuscript describes an interesting study using multi-angular hyperspectral data collected from a tower at a semi-arid savanna. Overall the study seems to have been undertaken in a scientifically appropriate manner and makes a valuable contribution to scientific progress. The scientific quality is high. And the presentation of the manuscript is of excellent quality.

While the data analysis is sound I have the following questions, comments and suggestions which should be addressed to improve the manuscript:

The analysis of effects of varying sun / sensor geometry has been done over 15 days (of which 3 have been removed) during the peak of the growing season. This misses the highest zenith angles and times of different vegetation conditions. I suggest to repeat the analysis for other time periods as well to gain a full picture of sun / sensor geometry effects. Furthermore, why have only NDSIs been investigated and not the reflectances themselves? This information would help to understand the behaviour of the NDSIs and would support the claim in the discussion that NDSIs reduce angular effects.

Why has the analysis of the relationship between reflectance / NDSI and ecosystem variables been restricted to a linear relationship? E.g. other studies found a non-linear relationship between reflectance and biomass due to saturation effects. Also why have only daily median reflectances / NDSIs been used when GPP, LUE and FAPAR were daily integrals? Averages would be more appropriate in these cases. And why have the off-nadir views not been analysed?

Some minor more specific comments:

page 3318, line 22: “Environmental conditions” usually mean variables like temperature, humidity, rainfall, etc. Do you mean reflectance in different wavelength regions have different sensitivity to “environmental conditions”? Or do you really mean “vegetation condition”?

page 3320, section 2.1: It would be good to provide some information on the height of the grasses, trees and shrubs and the tree and shrub cover to get a better idea about the vegetation structure at the site.

page 3320, equation 1: Please define “albedo_soil”. Has it been measured?
Please define “VPD” on first use.

The authors refer to Huber et al. (2014) for more detail on the spectrometer setup. However, the manuscript should provide some of the more fundamental information: 1. Were foreoptics used? 2. What are spectral resolution and spectral sampling of the spectrometers? 3. Have the seven different viewing angles been measured simultaneously? Or has a rotating or moving head been used? Was always the same target in the field of view? Or did the target change because of the rotating head? 4. How have solar irradiance measurements been made? Transmissive or reflective diffuser? 5. If multiplexing setup how long does it take to go through a whole measurement sequence? 6. Has solar irradiance been measured for each view angle measurement separately?

Why have daily median reflectances been used? Why not an average over a certain time interval?

“median” over what? The 15 days?

I suggest to move the last sentence to the start of the paragraph, i.e. before line 13 as the NDSI has to be calculated before the ANIF can be calculated.

Change “in the end” to “at the end”.

“median” over what? The 15 days?

Change “accurate and extra” to “additional”.

Change “the majority” to “most”.

“Peak” suggests it is lower again at very high biomass. Rephrase.

This is not the reason for the saturation of the NDVI. The NDVI saturates at high biomass because the NIR reflectance is much larger than the red reflectance. NDVI therefore reduces to $R_{\text{NIR}} / R_{\text{NIR}}$ which equals 1.

Again this is wrong. The saturation is not necessarily reduced with narrower bands. Narrow bands might even cause saturation earlier. Saturation can be reduced by selection of bands that show a smaller difference therefore avoiding the NDVI equation becoming 1 (see above).

“As fluorescence is competing with photochemical conversion …” suggests high fluorescence equals low photochemical conversion. The reality is more complex. And it looks like often the opposite is true. So either remove this sentence or formulate differently.

“… should have very spectral high resolution (0.05-0.1nm)”.

This is not true. Fluorescence has been measured successfully with a spectral resolution of about 10nm. Whether very high spectral resolution is necessary depends on the method applied.

The whole discussion only focuses on what is happening at the leaf level, i.e. reduced pigment contents. What about changes in vegetation cover?

Why are there gaps in the reflectance time series? Black vertical lines at the start and end of the rain seasons should be in all diagrams.

Interactive comment on Biogeosciences Discuss., 12, 3315, 2015.