Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific

D. L. Arévalo-Martínez\textsuperscript{1}, A. Kock\textsuperscript{1}, C. R. Löscher\textsuperscript{2}, R. A. Schmitz\textsuperscript{2}, L. Stramma\textsuperscript{1}, and H. W. Bange\textsuperscript{1}

\textsuperscript{1}GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
\textsuperscript{2}Institute of Microbiology, Christian Albrechts University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany

Received: 05 May 2015 – Accepted: 03 June 2015 – Published: 19 June 2015

Correspondence to: D. L. Arévalo-Martínez (darevalo@geomar.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Recent observations in the eastern tropical South Pacific (ETSP) demonstrated the key role of meso- and submesoscale processes (e.g. eddies) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen minimum zone (OMZ). Given that nitrous oxide (N\textsubscript{2}O) production/consumption processes on the water column are sensitive to oxygen (O\textsubscript{2}) concentrations, the ETSP is a region of particular interest to investigate its source-sink dynamics. To date, no detailed surveys linking mesoscale processes and N\textsubscript{2}O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N\textsubscript{2}O across three mesoscale eddies (two mode water or anticyclonic and one cyclonic) which were identified, tracked and sampled during two surveys carried out in the ETSP in November-December 2012. A “two peak” structure was observed for N\textsubscript{2}O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification amoA and the gene marker for N\textsubscript{2}O production during denitrification, nirS. Conversely, we found strong N\textsubscript{2}O depletion in the core of the OMZ (O\textsubscript{2} < 5 \mu mol L\textsuperscript{-1}) to be consistent with nitrite (NO\textsubscript{2}\textsuperscript{-}) accumulation and low levels of nitrate (NO\textsubscript{3}\textsuperscript{-}), thus suggesting active denitrification. N\textsubscript{2}O depletion within the OMZ’s core was substantially higher in the center of mode water eddies, supporting the view that eddy activity enhances N-loss processes off Peru, in particular near the shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of eddies during their propagation towards the open ocean showed that, in general, “aging” of mesoscale eddies tends to decrease N\textsubscript{2}O concentrations through the water column in response to reduced supply of material to fuel N-loss, although hydrographic variability might also significantly impact the pace of the production/consumption pathways for N\textsubscript{2}O. Our results demonstrate the relevance of mode water eddies for N\textsubscript{2}O distribution, thereby improving our
understanding of the N-cycling processes, which are of crucial importance in times of climate change and ocean deoxygenation.

1 Introduction

Nitrous oxide (N$_2$O) is an atmospheric trace gas which strongly affects Earth’s climate both by contributing to the greenhouse effect and by its role as a major ozone-depleting substance (Ravishankara et al., 2009; Myhre et al., 2013). The ocean is a net source of N$_2$O to the atmosphere accounting for about one third of the total natural source (Myhre et al., 2013), and therefore, the investigation of its formation pathways under changing oceanic regimes is relevant for any future predictions of how the nitrogen (N) cycle will react to future climate change. N$_2$O is mainly produced by microbial nitrification and denitrification, with particularly high yields under low oxygen (O$_2$) conditions (Goreau et al., 1980; Naqvi et al., 2010; Löscher et al., 2012; Bakker et al., 2014) such as those found in oxygen minimum zones (OMZ) of the tropical oceans. In the eastern tropical South Pacific (ETSP) a prominent OMZ is formed and maintained by the close coupling between elevated primary production fueled by coastal upwelling and weak ventilation of intermediate waters (Karstensen et al., 2008). Although elevated N$_2$O production in these subsurface low-O$_2$ waters could supply as much as 25–50 % of the global ocean source (Suntharalingam et al., 2000), it has been shown that when O$_2$ concentrations fall below about 5 µmol L$^{-1}$ (in the OMZ’s core) N$_2$O consumption through denitrification (NO$_3^-$ → NO$_2^-$ → NO → N$_2$O → N$_2$) takes place, and therefore these waters may act as a net sink for this gas (Codispoti and Christensen, 1985; Löscher et al., 2015). Hence, OMZ’s have a significant role in the marine N cycle not only due to their influence on the subsurface production of climate relevant trace gases such as N$_2$O (Paulmier et al., 2008; Codispoti, 2010; Capone and Hutchins, 2013) but also because of their contribution to the loss of bioavailable fixed N (Kalvelage et al., 2013; Dalsgaard et al., 2014). Further ocean deoxygenation as well as expansion of the OMZs worldwide could in turn increase the volume of waters in which N-loss takes place (Stramme et
al., 2010; Deutsch et al., 2011), thereby intensifying N limitation of primary production and reducing ocean’s ability to sequester atmospheric CO$_2$ (Falkowski, 1997).

Recent observations have demonstrated the key role of meso- and submesoscale processes in shaping hydrographic and biogeochemical properties of the ETSP (Stramma et al., 2013, 2014). Along the Peruvian coast, instabilities of the main current flow lead to the formation of nonlinear mesoscale eddies which propagate offshore from the site of formation, significantly contributing to the cross-shelf transport of heat, mass, momentum and biogeochemical properties (Chelton et al., 2007; Chaigneau et al., 2008). Likewise, offshore propagation of mesoscale eddies has been shown to increase the spatial extent of the high productivity area of the coastal upwelling (Correa-Ramirez et al., 2007; Chelton et al., 2011), implying their relevance in the export of carbon to the open ocean. Provided that downward transport of organic matter is an essential control of the marine N cycle (Kalvelage et al., 2013), it is of interest to investigate potential changes in N$_2$O distribution within mesoscale eddies. Although such mesoscale features in the OMZ off Peru have been identified as locations of enhanced N-loss (Altabet et al., 2012; Stramma et al., 2013), to date no detailed surveys linking mesoscale eddies and N$_2$O as well as their relevance to N-cycling are available.

The main goal of this study is to present the first set of N$_2$O measurements collected across three mesoscale eddies which were tracked during the R/V Meteor cruises M90 and M91 in November-December 2012. Furthermore, we use a combination of N$_2$O concentrations and abundance of selected molecular markers (key genes) for its main formation pathways to elucidate the causes of the observed distribution. Finally, we compare the N$_2$O concentrations within the center of “young” and “old” mesoscale eddies in order to identify the net effect of their “aging” (offshore propagation).

2 Eddy surveys

The field work was conducted in November–December 2012 during the R/V Meteor cruises M90 and M91, which covered the open ocean and shelf areas off Peru (5–
Detailed physical and biogeochemical surveys of mesoscale eddies were carried out between 14–18° S and 75–84° W on 16 to 25 November and on 19 to 23 December. Based on near-real time satellite data of sea level height anomalies (SSHA) from Aviso (http://aviso.altimetry.fr/), it was possible to identify two mode water (anticyclonic) eddies at the shelf break (eddy A) and the open ocean (eddy B), as well as one cyclonic eddy (eddy C) in the open ocean. Likewise, SSHA data was used to track and revisit eddy A in order to investigate its property’s distribution after it started to move westward across the shelf break (Fig. 1).

### 2.1 Oceanographic and biogeochemical measurements

Ocean velocities were recorded by means of two RDI OceanSurveyor acoustic Doppler current profilers (ADCP), which provided velocity data down to about 700 and 1200 m depth (75 and 38 kHz, respectively). Discrete water sampling as well as profiling of hydrographic properties was carried out by means of a Sea-Bird CTD/Rosette equipped with 10 L Niskin bottles and double sensors for temperature, conductivity and O₂. Sea-water samples for discrete O₂ measurements were collected by drawing bubble-free samples from the CTD/Rosette system. O₂ concentrations of these samples were determined by the Winkler method (Hansen, 1999), and were used to calibrate the O₂ sensors. The overall precision of the O₂ discrete measurements was ±0.45 µmol L⁻¹.

Nitrate (NO₃⁻), nitrite (NO₂⁻) and phosphate (PO₄³⁻) concentrations were measured on board by means of a QuAAtro auto-analyzer (SEAL Analytical GmbH, Germany) with an overall precision of ±0.1 µmol L⁻¹ (NO₃⁻ and NO₂⁻) and ±0.02 µmol L⁻¹ (PO₄³⁻). The N deficit (or N*) was computed as: [NO₃⁻] + [NO₂⁻] – 16 × [PO₄³⁻]. Chlorophyll a (Chl a) concentrations were determined by the acetone extraction method followed by fluorometric analysis with a Trilogy® laboratory fluorometer (Welschmeyer, 1994). Turbidity was measured by means of a factory-calibrated Wetlabs Fluorometer/Turbidity sensor with sensitivity up to 0.01 NTU (Nephelometric Turbidity Units). Discrete N₂O samples were collected in 22 stations with emphasis on the upper 1000 m of the water col-
um. For this purpose, bubble-free, triplicate samples were collected in 20 mL brown glass flasks and sealed with rubber butyl septa and metallic caps to avoid any gas exchange. Subsequently, a headspace was created on each flask by injecting 10 mL helium (99.999 %, AirLiquide GmbH, Düsseldorf, Germany). Microbial activity within the samples was prevented by adding 50 µl of a 1:3 dilution of a saturated mercuric chloride (HgCl₂) solution. After an equilibration period of minimum two hours the samples were analyzed using a GC-ECD system (Hewlett Packard (HP) 5890 Series II gas chromatograph). The separation procedure was carried out in a stainless steel column (long: 1.83 m, external diameter: 3.2 mm, internal diameter: 2.2 mm) with a molecular sieve of 5 Å (W.R. Grace & Co. Conn., Columbia, USA). The GC-ECD was calibrated daily by using dilutions of at least three standard gas mixtures up to 10400 ppb (Deuste Steininger GmbH, Mühlheim, Germany). Standard gases with N₂O < 1000 ppb were calibrated in the department of atmospheric chemistry of the Max-Plank Institute for Biogeochemistry (Jena, Germany) against the NOAA 2006 scale, whereas for N₂O > 1000 ppb the gas molar fraction was determined by means of high-resolution measurements of a calibrated OA-ICOS analyzer (precision better than 0.3 ppb, Arévalo-Martínez, et al., 2013). Calculation of the N₂O concentrations was done as described by Walter et al. (2006). Our designation of particular stations to eddy cores and edges was based on the SSHA data and follows the criteria defined by Stramma et al. (2013).

2.2 Molecular genetic methods

Nucleic acids samples were collected by filtering up to 1 L of seawater (exact volumes were recorded and the filtration time was lower than 20 min) onto polycarbonate membrane filters with a pore size of 0.2 µm (Millipore). Immediately after collection, samples were frozen at −80 °C until further processing. Nucleic acids were extracted using DNA/RNA AllPrep Kit (Qiagen, Hildesheim, Germany) with additional 15 min cell lysis (10 mg mL⁻¹ lysozyme in 10 mM Tris-EDTA, pH 8), and shock freezing in liquid nitrogen before extraction. Quantitative (q)PCR followed protocols in Löscher et al. (2014) ex-
except that a ViiA7 qPCR system (Life Technologies, Carlsbad, CA, USA) was used. The sensitivity level for the detection of ammonium monooxygenase (amoA) and hydrazine oxidoreductase (hzo) genes with this method is 4 copies L\(^{-1}\), whereas for the nitrite reductase (nirS) gene is 1 copy L\(^{-1}\).

3 Hydrographic and biogeochemical setting

The properties of the eddies investigated during the M90 (November 2012) and M91 (December 2012) cruises were described in detail by Stramma et al. (2013) and therefore only the main features are briefly mentioned here. The eddy A was centered at about 16\(^\circ\) S, 76\(^\circ\) W with the highest intensity (zonal and meridional velocities) in the upper 600 m. As a typical mode water eddy, lifting/deepening of the seasonal/main pycnocline could be observed (McGillicuddy et al., 2007), whereby O\(_2\) was lower, and temperature and salinity were higher in the center of the eddy than at its edges (Fig. 2). Shoaling of the mixed layer depth in the center of the eddy A coincided with a high Chl \(a\) maximum at about 50 m depth and a up to 30% reduction in O\(_2\) concentrations. The outer western side of cross-shelf sections across eddy A also revealed the influence of coastal upwelling near the shelf break in the upper 180 m. However this feature was detached from the eddy itself as it is shown by temperature, O\(_2\) and velocity distributions (Fig. 2). Meridional velocity distributions as well as temperature, salinity and density fields suggest that eddy A enclosed waters from the Peru-Chile Undercurrent (PCU) at the time of formation near the shelf (Stramma et al., 2013). The eddy B was centered in the open ocean at about 17\(^\circ\) S, 83\(^\circ\)30' W. Although the velocity distribution was similar to that of eddy A (strong in the upper 600 m), rotational speeds were lower and the temperature, salinity and density anomalies (difference between stations at the center of the eddy and at its edges) were weaker than in eddy A. Moreover, in comparison with eddy A, the depth of uplifting isopycnals and the mixed layer depth were deeper in eddy B (Fig. 2). As a consequence, the Chl \(a\) maximum as well as the temperature and O\(_2\) anomalies could be found 100 m deeper in eddy B than in eddy A. A trajectory
analysis indicated that eddy B was formed near the shelf about five months before the time of sampling (i.e. 3 months older than eddy A); however a precise location could not be determined with our methods (Stramma et al., 2013). Eddy C was centered in the open ocean at 16°15′ S, 80°15′ W with maximum velocities at ca. 50 m depth, and a positive density anomaly over the upper 600 m. In contrast to the anticyclonic eddies A and B, temperature and salinity of eddy C were lower and density was higher in the center than in its edges (Fig. 2), although the magnitude of the anomalies was similar to those of eddy A (Stramma et al., 2013). Furthermore, O$_2$ concentrations were higher in the center of the eddy than in the edges and the size of the O$_2$ anomaly in the OMZ was larger than for eddy A, indicating ventilation of the OMZ with waters from below the main thermocline. Eddy C was formed at the coast but unlike the anticyclones it moved westward without staying at the shelf (Stramma et al., 2013).

4 Results and discussion

4.1 Depth distribution of $N_2O$

$N_2O$ concentrations in the water column featured a two-peak structure with maxima $N_2O$ concentrations at the upper and lower boundaries of the OMZ, and depletion at the OMZ’s core (Fig. 3). Such pattern has been previously reported for the ETSP (Fariás et al., 2007) and similar systems with prominent OMZs (Bange et al., 2001; Bange et al., 2010), and it is generally ascribed to alternating activity of microbial $N_2O$ production/consumption pathways along the vertical O$_2$ gradients (Codispoti and Christensen, 1985). Although elevated $N_2O$ concentrations were observed in near-surface waters (up to 88 nmol L$^{-1}$) of the northwestern edge of eddy A, at the time of sampling the eddy was already detached from the coast and thus these high concentrations could be rather associated to coastal upwelling. In agreement with the distribution of physical properties (Fig. 2), the vertical extent of the low-$N_2O$ waters from the OMZ’s core was shifted to shallower depths within the center of mode water eddies A and B. More-
over, shallower minima of N$_2$O were observed in the upper OMZ for stations located in the center of eddy A (150 m) compared to eddy B (250 m), whereas in both cases the second N$_2$O minima were slightly displaced towards deeper depths. N$_2$O concentrations at the boundaries of the OMZ in the center of eddy A were similar to those in its edge, whereas for eddy B the N$_2$O concentrations in the center were markedly lower than in its edge and outside of it. N$_2$O decrease at the core of the OMZ (defined as the depth range with O$_2$ < 20 µmol L$^{-1}$) was, however, stronger in the center of both anticyclonic eddies A and B with respect to stations at their edges (Fig. 3), suggesting enhanced N$_2$O consumption. This is consistent with observations from Stramma et al. (2013) who reported active N-loss processes based on the co-occurrence of pronounced NO$_2^-$ maxima as well as O$_2$ and NO$_3^-$ minima at the core of the OMZ within the center of both eddies A and B. Stramma et al. (2013) suggested a decline in N-loss activity in eddy B compared to eddy A, arguing that nutrient subduction along with reduced productivity might have reduced the flux of organic matter that could fuel these processes when the eddies move towards the open ocean. According to this, a comparatively lower consumption of N$_2$O by denitrification within the OMZ in center of eddy B should diminish the differences between profiles inside and outside. However, this effect was not visible in the N$_2$O distribution and conversely, N$_2$O concentrations were generally lower in the center of eddy B than in the center of eddy A. While depth-integrated N$_2$O concentration in the OMZ within the open ocean eddy B was only 6% lower than in coastal eddy A, observed differences were as high as 25% when the entire water column (5–1000 m) was considered. This result can be explained by lower water column O$_2$ concentrations in eddy A than in eddy B (36.4 and 42.9 mol m$^{-2}$, respectively) since this might have favored enhanced N$_2$O production in eddy A at the oxic-suboxic boundaries (see Sect. 4.2), thus compensating for the N$_2$O depletion in the OMZ core. Hence, although a general decrease in organic matter turnover in open ocean eddy B was observed (Stramma et al., 2013), during our survey this was not evident for N$_2$O. This could either reflect dissimilarities of the water masses in both eddies at the time of formation (see Sect. 4.3), or slower denitrification rates in the edges of
eddy B than in its center. A decreased pace of denitrification could explain the higher N$_2$O concentration in the OMZ from stations outside of eddy B than those in its center because it would imply slower N$_2$O consumption (transformation to N$_2$).

Vertical distribution of N$_2$O in eddy C was similar to that of the two anticyclonic eddies, with doming of isopycnals in its center causing a shift of the upper and lower N$_2$O maxima, although in this case towards shallower depths. We found elevated N$_2$O concentrations at the boundaries of the OMZ and only a slight decrease at 150–400 m depth, where O$_2$ concentrations fell below 5 µmol L$^{-1}$ (Fig. 3). Nonetheless, N$_2$O minimum at the core of the OMZ was less pronounced than for eddies A and B, and the N$_2$O concentrations were higher in the eddy’s center than in its edge. Analysis of SSHA data showed, however, that stations assumed to be located in the edge and outside of eddy C were actually influenced by another anticyclonic eddy, and therefore are not representative of the mean conditions at the ETSP. Our results are consistent with the observations of Stramma et al. (2013) who reported elevated O$_2$ concentrations as well as low NO$_3^-$ accumulation at the center of eddy C, suggesting lower activity of N-loss processes than in eddies A and B. Although upon formation cyclonic eddies tend to increase subsurface production as mode water eddies do, this effect is not long-lasting and the net downwelling of nutrients ultimately leads to decreased primary productivity (McGillicuddy Jr. et al., 2007). Therefore it is likely that the decaying primary production of eddy C during its transit away from the shelf led to a diminished supply of organic matter which could fuel N-loss within the OMZ’s core, explaining the relatively high N$_2$O concentrations observed in comparison to eddies A and B. Both our maximum and minimum of N$_2$O concentrations along the vertical O$_2$ gradient were well within the range of previous observations in the ETSP (Fariñas et al., 2007, 2009), although our values for the coastal eddy A were somewhat lower, probably reflecting the influence of coastal upwelling events during their sampling.

Despite the fact that high N$_2$O concentrations were produced on and above the upper oxycline, and that shoaling of isoclines in the upper 100 m of eddy A was at some extent visible in the N$_2$O vertical profiles, these features do not appear in near-surface waters.
like they do during coastal upwelling on the shelf. We found that during our survey the exceptionally high N$_2$O concentrations in the near-surface corresponded to stations located closer to the coast and thus out of the influence of eddy A. Furthermore, we observed a markedly different profile type for coastal stations, wherein a rapid decrease in O$_2$ concentrations (OMZ start at about 15 m depth) was followed by a narrow peak in N$_2$O between 10 and 40 m depth (Fig. 3). Hence, although mesoscale eddies seem to influence the vertical distribution of N$_2$O, they do not have a direct impact on its surface distribution and emissions to the atmosphere since they are “trapped” below the mixed layer.

4.2 N$_2$O cycling within coastal eddy A

SSHA data from December 2012 indicated that coastal mode water eddy A was still centered near the shelf break at about 16° 30′S, 76°30′W. The O$_2$ distribution along a cross-shelf section between 16°9′ S, 76°50′ W and 15°23′ S, 75°20′ W revealed O$_2$ minima not only in the center of eddy A, but also in the vicinity of the shelf break due to coastal upwelling. (Fig. 4). An intermediate-depth low N$_2$O layer was consistent with the location of low O$_2$ (< 5 µmol L$^{-1}$) waters and it reached its maximum extension (70–400 m depth) close to the western side of eddy A center. Although a strong maximum of N$_2$O (up to 80 nmol L$^{-1}$) could be observed at about 40 m depth within the station located in the center of the eddy, the subsequent and sharp decrease in O$_2$ concentrations led to a marked decrease in N$_2$O.

The observed NO$_3^-$ and N$^*$ minima, as well as the pronounced secondary nitrite maximum (Codispoti and Packard, 1980) were consistent with the N$_2$O distribution, suggesting the occurrence of strong N-loss processes, particularly in the center of eddy A. Abundances of the hzo gene (encoding for hydrazine oxidoreductase), which is the functional gene marker for anaerobic ammonium oxidation (anammox; Schmid et al., 2008), were generally higher through the water column within the center of eddy A, and the maxima were found at shallower depths (50 and 200 m depth) than outside (Fig. 5). Although anammox does not reflect N$_2$O consumption, it does provide an indication of
active N-loss within the OMZ of the eddy at the time of sampling (Dalsgaard et al., 2012; De Brabandere et al., 2014) and therefore supports the observations from Altabet et al. (2012) and Stramma et al. (2013) in the ETSP.

Active nitrification, as indicated by the depth distribution of gene abundances of amoA, the functional key gene for archaeal ammonium oxidation (Löschler et al., 2012), was observed within eddy A, and was stronger in the upper 200 m for the center of the eddy, whereas below 200 m it was of similar magnitude for stations outside and in the center (Fig. 5). This would explain the comparatively high, shallow-depth maximum of N\textsubscript{2}O within the center of eddy A (Fig. 4). Based on the structure of the vertical profiles of nirS gene abundances, we could also infer that N\textsubscript{2}O maxima at the boundaries of the OMZ partially resulted from production during early stages of denitrification. Our observations support the results of Castro-González and Farías (2004), who used N\textsubscript{2}O production experiments in the ETSP to show that denitrifiers produce increasing N\textsubscript{2}O : N\textsubscript{2} ratios as the O\textsubscript{2} concentrations increase due to the well-known sensitivity of the N\textsubscript{2}O reductase to O\textsubscript{2} (Dalsgaard et al., 2014). Furthermore, except for a deep minimum at 600 m, N\textsubscript{2}O production (as inferred from nirS abundances) was stronger in the center of the eddy (Fig. 5). Nevertheless, within the OMZ’s core it was evident that N\textsubscript{2}O consumption was stronger in the center of the eddy, suggesting that even though the genes for N\textsubscript{2}O production by denitrification were present, they were probably inhibited due to further low O\textsubscript{2} concentrations (\sim 3 \text{µmol L}^{-1}). It is also likely, however, that under denitrifying conditions N\textsubscript{2}O depletion occurs at a faster rate than production, masking the N\textsubscript{2}O production signal. Elevated NO\textsubscript{2}^{-} concentrations (11 \text{µmol L}^{-1}) along with close to detection limit NO\textsubscript{3}^{-} concentrations in the OMZ further suggests that complete -and more intense- denitrification took place in the OMZ core at the eddy center (Codispoti and Christensen, 1985; Codispoti et al., 1986). Thus, in general, in the center of the eddy a higher N\textsubscript{2}O maxima at the upper boundary of the OMZ resulted from enhanced nitrification and partial denitrification, whereas stronger N\textsubscript{2}O depletion at the OMZ’s core resulted from enhanced, complete denitrification. Although at depths below 600 m both amoA and nirS gene abundances were higher outside of the eddy, N\textsubscript{2}O concentra-
tions remained similar to those in the center and $O_2$ was still lower in the eddy’s center (Fig. 5). Nevertheless, vertical profiles of the same eddy one month before showed that $N_2O$ concentrations below 600 m were higher in the center (cf. Fig. 3). Thus, it could be that increasing variability beneath the lower boundary of the OMZ was caused by decreasing intensity (velocity) of the eddy below 600 m (Fig. 2). Overall, the net effect of anticyclonic eddy A was an enhancement of N-loss processes within its center, thereby making the OMZ’s core an even stronger sink for $N_2O$ than it would be under “mean” conditions.

### 4.3 Effect of eddy “aging” on $N_2O$

Westward propagation of mesoscale eddies implies that properties of the waters which were “enclosed” within its center at the time of formation are transported offshore (Chelton et al., 2007). Gruber et al. (2011) suggested that this transport leads to a net reduction of primary productivity in coastal upwelling regions due to nutrient subduction and advection. Since the export of organic matter is the most important factor fueling the N-cycling in the OMZ (Capone and Hutchins, 2013), changes in the distribution of the main production/consumption pathways of $N_2O$ are likely to occur under the influence of mesoscale eddies during their transit to open waters. On the following we compare the vertical distributions of $N_2O$ and relevant biogeochemical parameters within the center of the “young” coastal eddy A during the M90 cruise, and the “old” open ocean eddy B. Likewise, we include data of a second survey of eddy A during the M91 cruise (hereafter eddy A-M91). The cyclonic eddy C is not considered for this analysis given its relatively minor importance for N-loss processes.

Integrated concentration of $N_2O$ within the center of the eddies was 24 and 53% higher in eddy A than in eddy B and eddy A-M91, respectively (Table 1). In this case the difference between eddies A and B can be partially attributed to the location of formation and also to the fact the N-cycling processes tend to decrease after subsurface nutrients are subducted and primary production progressively decreases towards the open ocean. This is supported by higher $O_2$ and $NO_3^-$ concentrations in eddy B than
in eddy A, as well as the comparatively lower NO$_2^-$ concentrations in eddy B, which suggests an overall decrease in organic matter respiration in the open ocean eddy. On the other hand, the marked decrease of N$_2$O in the coastal mode water eddy A only one month after the first sampling points towards an enhancement of N-loss processes within the OMZ of this eddy. In agreement with this observation, eddy A-M91 featured the lowest concentrations of O$_2$ and NO$_3^-$, as well as the highest NO$_2^-$ values among the three eddies considered (Table 1). A substantial increase in abundances of both amoA and nirS genes was observed in the center of eddy A-M91 with respect to eddies A and B, explaining the comparatively higher N$_2$O concentrations found at the boundaries of the OMZ. It seems however, that enhanced N$_2$O production by nitrification and partial denitrification in eddy A-M91 is outpaced by high N$_2$O consumption in the core of the OMZ with further decreasing O$_2$ concentrations, which in turn resulted in values even lower than those of the open ocean eddy B. Furthermore, sharp differences in hzo gene abundances among the three eddies, with A-M91 featuring significantly higher values (Table 1), put in evidence that N-loss activities in the ETSP were comparatively stronger in coastal eddies at the time of sampling. Likewise this also suggests that strengthening of eddy A (increased velocity) while it stayed stationary on the shelf between the two surveys (M90 and M91) might have led to an N-cycling intensification through the water column.

In order to provide a quantitative estimate of the amount of denitrification that took place in eddy A, as well as to assess how it changed between the two surveys, we computed the nitrate deficit (ΔN) by means of the “NO” approach (Naqvi and Gupta, 1985). “NO” is used as a quasi-conservative water mass tracer (Broecker, 1974) and it is defined here as: [O$_2$] + 9.1[NO$_3^-$] (Bange et al., 2000). A plot of “NO” vs. potential temperature (θ) from stations located at the center of eddy A during M90 and M91 is shown in Fig. 6. For both cruises we obtained a good correlation between “NO” and θ after excluding data points from the surface to the upper limit of the OMZ (O$_2$ ∼ 20 µmol L$^{-1}$), as well as those from the OMZ’s core (O$_2$ < 5 µmol L$^{-1}$). Hence, the obtained regression lines (“NO”$_{M90}$, “NO”$_{M91}$, Fig. 6) represent conditions which are expected when the
OMZ is not affected by denitrification (Naqvi and Gupta, 1985). We calculated $\Delta N$ by using “$\text{NO}^\text{M90}$” and “$\text{NO}^\text{M91}$” according to the following expression (Bange et al., 2000): \[
\left(\left[\text{NO}^\text{x}\right] - [\text{O}_2]\right) / 9.1 - [\text{NO}_3^-] - [\text{NO}_2^-],
\]
where $x$ is the corresponding regression line for each cruise.

After integrating $\Delta N$ over the depth range of the OMZ, we obtained values of 8.9 and 0.02 mol m$^{-2}$ for eddy A during M90 and M91, respectively. $\Delta N$ from M90 was considerably higher than most estimates available for a similar OMZ in the Arabian Sea (Naqvi and Gupta, 1985; Howell et al., 1997; Bange et al., 2000), and it was only comparable with values up to 7.3 mol m$^{-2}$ found by Naqvi and Gupta (1985) at about 20° N towards the coast of Oman. $\Delta N$ from M91 was however, markedly lower than both $\Delta N$ from M90 and $\Delta N$ from previous work in the OMZ of the Arabian Sea (minimum $\Delta N = 1.0$ mol m$^{-2}$; Bange et al., 2000). This suggests not only strong denitrification activities within mesoscale eddies formed off the Peruvian coast, but also high short-term variability as they move offshore. Thus, the observed contrast in $\text{O}_2$, nutrients and $\text{N}_2\text{O}$ integrated concentrations between eddy A and eddy A-M91 (Table 1), can be explained by the temporal differences in the strength of the denitrification processes in the OMZ’s core within this coastal eddy. Hence, the evidence of N-loss observed during M91 does not reflect enhanced denitrification within the eddy at the time of sampling (December), but rather the remaining signal of strong denitrification during early stages of the eddy which were partially captured when we sampled it in November. Nevertheless, a pronounced Chl $a$ and turbidity maximum in the center of eddy A-M91 suggest a potentially increased supply of organic matter which, upon sinking, could stimulate N-loss through anammox and denitrification (Kalvelage et al., 2013; De Brabandere et al., 2014). Therefore it is likely that N-loss still took place in the coastal eddy A during M91, although at rates comparatively lower than those during M90 and the time period elapsed between the two cruises.

In order to roughly estimate the amount of N-loss through denitrification which was driven by coastal eddy A between November and December 2012 (27 days), we used our $\Delta N$ values and a calculated area of $8.5 \times 10^9$ m$^2$. This resulted in a daily loss flux of
0.04 Tg-N day\(^{-1}\), which if scaled to an annual basis would be comparable with values reported for the Arabian Sea by Mantoura et al. (1993) but lower than most estimates for the same area (Naqvi, 1987; Howell et al., 1997; Bange et al., 2000) and for the eastern tropical South and North Pacific (20–33 and 20–29 Tg-N yr\(^{-1}\), respectively; Codispoti and Richards, 1976; Codispoti and Packard, 1980; DeVries et al., 2012). However, a direct comparison with those studies is not entirely realistic since the mean lifespan of mesoscale eddies off Peru is typically not longer than a few months (Chaigneau et al., 2008). Therefore the intense N-loss observed within the eddies might represent a transient state which at times contributes significantly to the total N-loss in the ETSP. Since denitrification can also be a source of N\(_2\)O (Codispoti and Christensen, 1985; Bakker et al., 2014) we estimated the N\(_2\)O production from denitrifying waters within the OMZ’s core (\(O_2 < 5 \mu mol L^{-1}\)) of eddy A. For this, we calculated the depth-integrated N\(_2\)O anomaly (\(\Delta N_2O = N_2O_{\text{measured}} - N_2O_{\text{equilibrium}}\)) over the OMZ for both profiles at the center of eddy A (M90 and M91). Using the eddy area and time span between cruises as shown above, we obtained a N\(_2\)O daily yield of \(1.3 \times 10^{-5}\) Tg-N\(_2\)O day\(^{-1}\) (or \(8.0 \times 10^{-6}\) Tg-N day\(^{-1}\)). Scaling this value to an annual basis resulted in a N\(_2\)O yield of \(4.5 \times 10^{-3}\) Tg-N\(_2\)O yr\(^{-1}\) (or \(2.9 \times 10^{-3}\) Tg-N yr\(^{-1}\)), which is markedly lower than previous values for the Arabian Sea (Mantoura et al. 1993; Bange et al., 2001). Accordingly, our estimated N\(_2\)O production from denitrification is considerably low in comparison with our estimated denitrification rates from eddy A in November-December 2012 (0.02 %), suggesting faster N\(_2\)O consumption than production within the OMZ of eddy A for the period of sampling. N\(_2\)O production in the OMZ of the Arabian Sea has been reported to amount for at least 2 % of the mean denitrification rates (Bange et al, 2001). However this value is not entirely comparable with ours since in that study a whole basin (\(1.95 \times 10^{12} m^2\)) is considered and our time span is in the order of months rather than years. It should be pointed out that our denitrification rates and N\(_2\)O yields from the OMZ assume a given size and permanence period of the eddy in coastal waters, and moreover, do not take in consideration the progressive decrease in N-loss activities within the eddy center as it moves away from the coast. Therefore, our values are only
contentious and are meant to highlight the need of combined biogeochemical-physical studies which account for the annual variability in occurrence, abundance and spatial extent of mesoscale anticyclonic eddies off Peru, given their importance for N-loss processes.

The coastal eddy A was formed on the shelf about two months before the time of sampling, whereas the open ocean eddy B was formed at least five months before our survey. This hampers a direct comparison of both mode water eddies, in particular because with our methods it was not possible to determine the exact location where eddy B was formed. Nonetheless, the main physical and biogeochemical features of eddies A and B suggest that, in general, the “aging” of mesoscale eddies tends to decrease N$_2$O concentrations through the water column in response to reduced supply of material to fuel microbial respiration in the boundaries of the OMZ. Hence, the comparatively lower N$_2$O depletion due to N-loss through denitrification in the OMZ core of open ocean eddies does not match the reduced N$_2$O production in its boundaries. Water mass properties at the time of formation, however, might account for the observed differences between eddies recently formed on the shelf and those in the open ocean. On the other hand, the pace at which the different microbial pathways leading to N$_2$O production/consumption develop can be also influenced by the spatial and temporal variability of the physical setup on the mesoscale feature while moving offshore.

5 Summary and conclusions

In this study we used a combined approach including physical, biogeochemical and molecular methods in order to investigate the distribution of N$_2$O within mesoscale eddies in the ETSP. Overall, a “two peak” structure was observed in vertical profiles of N$_2$O, indicating the alternation between production and consumption processes as a response to the O$_2$ gradients through the water column. Our results suggest that N$_2$O concentrations in the water column were consistent with the main physical features of the mesoscale eddies. Hence, lifting/deepening of the seasonal/main pycnoclines in
mode water eddies (A and B) was visible for \( \text{N}_2\text{O} \), with shoaling of the upper maxima and slight displacement of the lower maxima towards deeper depths. Likewise, doming of isopycnals in the open ocean cyclonic eddy (C) caused a shift of the upper and lower \( \text{N}_2\text{O} \) maxima towards shallower depths. \( \text{O}_2 \) and nutrient (\( \text{NO}_3^- \) and \( \text{NO}_2^- \)) distributions as well as abundances of key gene markers for \( \text{N}_2\text{O} \) production processes showed that the upper and lower oxyclines in the boundaries of the OMZ are net sources of \( \text{N}_2\text{O} \), producing the two observed maxima which envelop the \( \text{N}_2\text{O} \)-depleted waters in the core of the OMZ. Nitrification combined with incomplete denitrification was responsible for the \( \text{N}_2\text{O} \) maxima, whereas active denitrification led to a net consumption of \( \text{N}_2\text{O} \). Trapping of highly productive coastal waters in anticyclonic eddies (e.g. eddy A) led to a net enhancement of N-loss processes in its center both through denitrification and anammox, thereby making the OMZ’s core an even stronger sink for \( \text{N}_2\text{O} \) than it would be under “mean” conditions, and moreover creating hotspots for loss of bioavailable fixed N. However, the strength of the N-cycling processes decreases during the transit of the eddies out of the shelf, mostly in response to a lower supply of organic matter from surface waters and sinking of nutrients as the eddy collapses. Hence our observations suggest that open ocean mode waters eddies tend to produce less \( \text{N}_2\text{O} \) than coastal ones because the weaker maxima that enclose the OMZ core have an overall bigger impact than the reduced \( \text{N}_2\text{O} \) consumption within the OMZ core. Nevertheless, water properties at the time of formation, as well as the pace at which eddies propagate might alter the \( \text{N}_2\text{O} \) concentrations through the water column. Although depth distribution of \( \text{N}_2\text{O} \) in the center of cyclonic eddy C was similar to eddies A and B, in general the concentrations (both maxima and minima) were higher and its relative importance for N-loss was negligible. Despite of the observed shoaling of upper isopycnals in both mode water and cyclonic eddies, we did not find any appreciable changes in the surface distribution of \( \text{N}_2\text{O} \) since these features are trapped below the mixed layer.

In conclusion, our survey provides the first insights of \( \text{N}_2\text{O} \) distribution within mesoscale eddies in the ETSP, and points out the importance of multidisciplinary ap-
proaches in investigating the rather multifaceted N-cycling in OMZs. However, high complexity of the N$_2$O production and consumption pathways together with unaccounted temporal and spatial variability, hamper the chances of an objective quantification of the net effect of mesoscale eddies in N$_2$O for the whole ETSP. Projected future deoxygenation and expansion of OMZs has been suggested to significantly increase marine N$_2$O production. However, an increased strength of the N$_2$O sink within the core of low-O$_2$ waters in mesoscale eddies might also play an important role which has not been yet quantified. Hence, it is critical to understand how these prominent features of the circulation might affect N$_2$O distribution and concentrations in order to be able to assess the variability of its sources and sinks strength.

Author contributions. L. Stramma, D. L. Arévalo-Martínez, and H. W. Bange conceived the study; D. L. Arévalo-Martínez set up the instrumentation for discrete N$_2$O measurements on board of the R/V Meteor and carried out the field work together with A. Kock and H. W. Bange. D. L. Arévalo-Martínez and A. Kock processed and calibrated depth profile N$_2$O data. C. R. Löscher collected and processed the molecular data. L. Stramma processed and analyzed hydrographic data. D. L. Arévalo-Martínez wrote the manuscript with contributions from H. W. Bange, A. Kock, C. R. Löscher, R. A. Schmitz, and L. Stramma.

Acknowledgements. This study was funded by the DFG-supported project SFB754 (http://www.sfb754.de), the BMBF joint project SOPRAN II and III (FKZ 03F0611A and FKZ 03F662A), and the EU FP7 project InGOS (Grant Agreement # 284274). We thank the Peruvian authorities for authorizing us to conduct the study in their territorial waters. We also would like to thank our Peruvian colleagues from IMARPE (M. Graco, A. Bernal, G. Flores and V. León) for their logistical support. We thank the captains and crew of the R/V Meteor for their assistance during the cruises M90 and M91. Likewise, we thank T. Baustian, A. Bernal, J. Craig, G. Eirund, G. Flores, V. León, M. Lohmann, N. Martogli, K. Nachtigall and G. Krahmann for their contributions to the processing of the different data sets used in this study. Analyses and visualizations of Chlorophyll used in this study (Fig. 1) were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. The altimeter data were produced by Ssalto/Duacs and distributed by Aviso with support from Cnes.
Mesoscale eddies and N\textsubscript{2}O in the ETSP

D. L. Arévalo-Martínez et al.

References


Mesoscale eddies and N\textsubscript{2}O in the ETSP

D. L. Arévalo-Martínez et al.

Abstract

Introduction

Conclusions

References

Tables

Figures

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The oxygen minimum zone (OMZ) off Chile as an intense source of CO\textsubscript{2} and N\textsubscript{2}O, Cont. Shelf. Res., 28, 2746–2756, 2008.


**Table 1.** Comparison of physical and biogeochemical properties of mode water eddies in the ETSP during the M90 (November 2012) and M91 (December 2012) cruises. \( \text{N}_2\text{O}, \text{O}_2, \text{NO}_3^- , \text{NO}_2^- \) and selected functional gene markers are expressed as integrated concentrations/abundances over the water column (0–600 m).

<table>
<thead>
<tr>
<th></th>
<th>A (M90)</th>
<th>A(M91)</th>
<th>B(M90)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertical extent (m)</strong></td>
<td>0–600</td>
<td>0–600</td>
<td>0–600</td>
</tr>
<tr>
<td><strong>Radius (km)</strong></td>
<td>52.0</td>
<td>–</td>
<td>48.8</td>
</tr>
<tr>
<td><strong>Volume ((10^{12} \text{m}^3))</strong></td>
<td>5.2</td>
<td>–</td>
<td>4.7</td>
</tr>
<tr>
<td>**\text{N}_2\text{O} (mol m}^{-2})</td>
<td>0.034</td>
<td>0.016</td>
<td>0.026</td>
</tr>
<tr>
<td>**\text{O}_2 (mol m}^{-2})</td>
<td>36.4</td>
<td>10.8</td>
<td>42.9</td>
</tr>
<tr>
<td>**\text{NO}_3^- (mol m}^{-2})</td>
<td>14.8</td>
<td>12.4</td>
<td>15.8</td>
</tr>
<tr>
<td>**\text{NO}_2^- (mol m}^{-2})</td>
<td>1.6</td>
<td>2.6</td>
<td>0.52</td>
</tr>
<tr>
<td><strong>amoA ((10^8 \text{copies m}^{-2}))</strong></td>
<td>19.54</td>
<td>598.5</td>
<td>379.3</td>
</tr>
<tr>
<td><strong>nirS ((10^8 \text{copies m}^{-2}))</strong></td>
<td>0.37</td>
<td>57.9</td>
<td>0.23</td>
</tr>
<tr>
<td><strong>hzo ((10^8 \text{copies m}^{-2}))</strong></td>
<td>4.27</td>
<td>101773</td>
<td>2.9</td>
</tr>
</tbody>
</table>

\( ^a \) Values taken from Stramma et al. (2013).
Figure 1. Map of sampling locations in the ETSP. (a) MODIS-Aqua 4 km monthly mean Chl $a$ concentration (mg m$^{-3}$) for November-December 2012. (b) Aviso sea level height anomaly (cm) for the 21 November 2012 (anticyclonic eddies are depicted in red and cyclonic in blue). The cruise track and CTD stations with bottle sampling from the M90 cruise are shown in black. Open triangles indicate the hydrographic stations shown in Fig. 2. Sampling stations within the mode water eddies A and B, as well as the open ocean cyclonic eddy C are highlighted in yellow, whereas the cross-shelf section carried out during the M91 cruise is displayed in green.
Figure 2. Hydrographic conditions at the time of sampling in the ETSP. Temperature in °C (upper panels), O$_2$ in µmol kg$^{-1}$ (middle panels) and zonal (a, c, d)/meridional (b) velocity in m s$^{-1}$ (lower panels) for eddies A, B and C during the M90 cruise (November 2012; a–c), as well as for eddy A during the M91 cruise (December 2012; d) are shown. Locations of CTD profiles are marked by black triangles (cf. Fig. 1) and the isopycnal $\sigma_\theta = 26.6$ kg m$^{-3}$ near the core of the OMZ is included in the O$_2$ sections as a black dashed line.
Figure 3. Selected depth profiles of \( \text{N}_2\text{O} \) (left) and \( \text{O}_2 \) (right) across the mode water eddies A (a), B (b), and the cyclonic eddy C (c) during the M90 cruise in November 2012. The sampling location is indicated by the different line/circle colors: green = center, blue = edge, red = outside. Black lines/symbols in (a) show the northwesternmost station of eddy A, in which the influence of coastal upwelling was observed. Numbers in parenthesis indicate the station numbers (cf. Fig. 1).
Figure 4. Cross-shelf distribution of N$_2$O (a), NO$_2^-$ (b), NO$_3^-$ (c) and N$^*$ (d) along eddy A in December 2012 (16.2° S, 76.9° W to 15.3° S 75.2° W, see Fig. 1). Contours in (a) represent O$_2$ concentrations (in µmol L$^{-1}$). The white dashed lines indicate the approximate location of the eddy center according to SSHA data. Numbers above panels (a) and (b) are the station numbers (cf. Fig. 1).
Figure 5. Vertical distribution of N$_2$O and O$_2$ concentrations (a), as well as gene abundance of amoA (b), nirS (c) and hzo (d) within the center (solid lines) and outside (dashed lines) of eddy A in December 2012 (M91 cruise). The numbers in parenthesis indicate the station numbers (cf. Fig. 1).
Figure 6. “NO” vs. potential temperature (θ) for stations located at the center of eddy A during M90 (November 2012; circles) and M91 (December 2012; triangles). The color bar represents the O$_2$ concentrations (scale has been truncated at 60 µmol L$^{-1}$). “NO” values from non-denitrifying waters (O$_2$ > 5 µmol L$^{-1}$) are highlighted in black and were used for the linear least-squares regressions.