1 Historical reconstruction of Ocean Acidification in the Australian region

Andrew Lenton¹
Bronte Tilbrook¹,²
Richard J. Matear¹
Tristan P. Sasse³
Yukihiro Nojiri⁴

¹CSIRO Oceans and Atmosphere National Research Flagship, Hobart, Australia
²Antarctic Climate and Ecosystems Co-operative Research Centre, Hobart, Australia
³Climate Change Research Centre, Kensington Campus, University of New South Wales, Sydney, Australia
⁴National Institute for Environmental Studies, Tsukuba, Japan

1. Abstract

The increase in atmospheric greenhouse gases over the last 200 years has caused an increase in ocean acidity levels. Documenting how the ocean has changed is critical for assessing how these changes could impact marine ecosystems and for the management of marine resources. We use present day ocean carbon observations from shelf and offshore waters around Australia, combined with neural network mapping of CO₂, to estimate the current seasonal and regional distributions of carbonate chemistry (pH and aragonite saturation state). These predicted changes in carbonate chemistry are combined with atmospheric CO₂ concentration changes since to reconstruct pH and aragonite saturation state changes over the last 140 years (1870-2013). The comparison with data collected at Integrated Marine Observing System National Reference Station sites located on the shelf around Australia shows both the mean state and seasonality for the present day is well represented by our reconstruction, with the exception of sites such as the Great Barrier Reef. Our reconstruction predicts that since 1870 an average decrease in aragonite saturation state of 0.49 and of 0.09 in pH has occurred in response to increasing oceanic uptake of atmospheric CO₂. Our reconstruction shows that seasonality is the dominant mode of variability, with only small interannual variability present. Large seasonal variability in pH and aragonite saturation state occur in Southwestern Australia driven
by ocean dynamics (mixing) and in the Tasman Sea by seasonal warming (in the case of aragonite saturation state). The seasonal and historical changes in aragonite saturation state and pH have different spatial patterns and suggest that the biological responses to ocean acidification are likely to be non-uniform depending on the relative sensitivity of organisms to shifts in pH and saturation state. This new historical reconstruction provides an important to link biological observations to help elucidate the consequences of ocean acidification.

2. Introduction

The ocean plays a key role in reducing the rate of global climate change, absorbing approximately 30% of the anthropogenic CO$_2$ emitted over the last 200 years (Ciais et al., 2013), and more than 25% of current CO$_2$ emissions (Le Quéré, 2015). The CO$_2$ taken up by the ocean reacts in seawater, leading to decreases in pH and dissolved carbonate ion concentrations (CO$_3^{2-}$), these changes being collectively referred to as ocean acidification. Over the past 200 years, it is estimated that there has been a 0.1 unit reduction in the ocean’s surface pH, or 26% increase in the concentration of hydrogen ion concentrations in seawater (Doney et al., 2009).

Current projections suggest that the increase in hydrogen ion concentration is likely to be greater than 100% (than the preindustrial period) by the end of the century under high emissions trajectories e.g. Matear and Lenton (2014). Furthermore these changes will persist for many millennia e.g. Frolicher and Joos (2010). Ocean acidification is likely to impact the entire marine ecosystem - from microbial communities to top predators. Factors that can be impacted include reproductive health, organism growth and physiology, species composition and distributions, food web structure and nutrient availability (Aze et al., 2014; Doney et al., 2012; Dore et al., 2009; Fabry et al., 2008; Iglesias-Rodriguez et al., 2008; Munday et al., 2010; Munday et al., 2009).

Aragonite is a metastable form of calcium carbonate that is produced by major calcifiers in coral reef ecosystems, including reef building corals, and is the predominant biogenic carbonate mineral in warm and shallow waters of the tropics (Stanley and Hardie, 1998). The aragonite saturation state of seawater has been used as a proxy for estimating net calcification rates for corals e.g. Langdon (2005).
Projections suggest that by as early as 2050 growth rates of reef building coral may slow to such levels that coral reefs may start to dissolve (Silverman et al., 2009). The impact of acidification combined with other stressors, such as ocean warming, has implications for the health, longer-term sustainability and biodiversity of reef ecosystems (Doney et al., 2012; Dore et al., 2009).

The impact of these changes on the marine environment is fundamental for the management of future marine resources, for nations like Australia with its extensive coastline and regions of international significance such as the Great Barrier Reef. An historical record of the changes that have occurred since the preindustrial period allows us to (i) correctly attribute observed responses over the historical period; (ii) assess how well climate models represent spatial patterns of ocean acidification for the period that overlaps observations (e.g. IPCC AR5); (iii) quantify the magnitude of seasonal and interannual variability, and identify the drivers of this variability; and (iv) provide important boundary conditions for high resolution regional models.

Despite potential impacts of ocean acidification for the Australian region, the number of carbonate chemistry measurements is sparse. The few datasets collected only characterise variability and the mean state in specific environments e.g. (Shaw et al., 2012; Albright et al., 2013) or attempt to synthesize these into regional or habitat-based studies e.g. Gagliano et al. (2010). The only seasonally-resolved observational dataset available to characterize the mean state around Australia in the present day is Takahashi et al. (2014), but this data has coarse resolution and only focuses on the open ocean areas. Studies that have reconstructed the longer-term variability of ocean acidification from coral proxies have been of regional scale and are temporally coarse e.g. Pelejero et al. (2005) and Calvo et al. (2007).

The goals of our study are: (i) reconstruct the observed variability and mean state in pH and aragonite saturation state in the present day around Australia at high spatial resolution and (ii) reconstruct the changes that have occurred in the Australian region over the last 140 years (1870-2013). To this end, we first develop a new salinity-alkalinity relationship for Australian waters based on observations collected around Australia over the last two decades. We then assess our reconstructed pH and...
Aragonite saturation state fields with data collected around Australia at the Integrated Marine Observing System National Reference Stations (IMOS-NRS; Lynch et al., 2014). Finally, we present the reconstructed aragonite saturation state and pH in the Australian region and discuss the seasonal, interannual and long-term changes in these fields. The reconstructed fields as well as the calcite saturation state, dissolved inorganic carbon dioxide (DIC), total alkalinity (ALK), sea surface temperature and salinity are all available online at http://imos.aodn.org.au.

3. Methods

In this study we focus on the Australian region (Figure 1) delineated nominally by the Subtropical Front (45° S) in the south and the equator (0°) in the north, and between 95° E: 170° E. This region encompasses part of the eastern Indian Ocean and Indonesian Seas and a large part of the Tasman and Coral Seas. The seasonal cycle of physical, chemical, and biological properties of the surface ocean mixed layer this region are described in Condie and Dunn (2006), and will not be described further in this paper. The characterization of the carbon system requires two of six potential carbon parameters (i.e. pH, total dissolved inorganic carbon, total alkalinity, partial pressure of carbon dioxide, bicarbonate, carbonate), from which all the parameters of the ocean carbon system can be calculated. We first use pCO$_2$ and total alkalinity to reconstruct the changes in ocean acidification.

Oceanic values of pCO$_2$ were taken from an updated version of Sasse et al. (2013) that used a self-organizing multiple linear output (SOMLO) approach to predict pCO$_2$ values around Australia on a 1° x 1° degree grid each month for the nominal year of 2000. In brief, the SOMLO approach utilizes the global network of bottle-derived pCO$_2$ and corresponding standard hydrographic parameters (SHP; temperature, salinity, dissolved oxygen and phosphate; N=17753) to first cluster the dataset into 49 neurons (or bins) based on similarities and homogeneity within the dataset. Principle component regressions were then derived between pCO$_2$ and the SHP using data within each neuron. This can be thought of as a local-scale optimization, which follows the nonlinear clustering routine. To then predict pCO$_2$ values for any set of SHP, a similarity measure is first used to establish which neuron best represents the
SHP measurements, once established, pCO_2 values are predicted using the regression parameters of that neuron. Independent testing by Sasse et al. (2013) reveals the SOMLO approach predicts open-ocean pCO_2 values with a global uncertainty of 22.5 µatm (RMSE; N=17350), which decreases to 16.3 µatm (RMSE; N=859) within the Australia region. Monthly pCO_2 climatologies presented in Sasse et al. (2013) were derived using the World Ocean Atlas (WOA) 2009 product (Antonov et al., 2010; Garcia et al., 2010a; Garcia et al., 2010b; Locarnini et al., 2010), which we update here via the WOA 2013 product (Garcia et al., 2014a, b; Locarnini et al., 2013; Zweng et al., 2013). We note that these pCO_2 values provide significantly higher spatial data coverage than the global climatology of Takahashi et al. (2009).

To extend the oceanic pCO_2 values into the past and the future, the value of ΔpCO_2 ($pCO_{2air} - pCO_{2sea}$) was first calculated using Sasse et al. (2013) for the year 2000. This ΔpCO_2 value was then transformed into a time series of oceanic pCO_2 between 1870 to 2013, by adding this to the observed atmospheric CO_2 value over this period using the atmospheric history constructed by Le Quéré et al. (2015).

As only limited measurements of total alkalinity (ALK) exist in the Australian region, we develop and use the relationship between ALK and salinity to estimate ALK in the Australian region. While many studies have quantified this relationship globally e.g. Takahashi et al. (2014) and Lee et al. (2006) and regionally e.g. Kuchinke et al. (2014), to date no specific relationship has been developed for the entire Australian region.

To develop this relationship 2772 concomitant measurements of salinity and alkalinity collected in the Australian region over the last two decades were used. (Table 1; Figure 1). From this data we determined our alkalinity-salinity relationship to be:

$$ALK (\mu mol/kg) = (2270.0 \pm 0.1) + (64.0 \pm 0.3) \times (SAL - 35.)$$ (1)

This relationship is based on a type 2 linear regression, accounting for uncertainty in both the salinity and ALK measurements of 0.05 and 3 µmol/kg respectively. This new relationship was applied to the climatology of salinity (0.5° x 0.5°/daily) taken from the CSIRO Atlas of Regional Seas 2012 (CARS; Ridgway et al., 2002) as no
long-term high spatial and temporal resolution observations of ocean surface salinity at present exist around Australia (nor globally). Nevertheless, based on sparse measurements Durack and Wijffels (2010) suggested that there has been amplification of the global hydrological cycle that has resulted in surface salinity changes over the last 50 years. Their estimated changes around Australia are not uniform and are typically less than ± 0.1, which introduces only a 6.4 μmol/kg change in ALK for the 50-year period. The influence of the changes on the carbonate chemistry (pH and aragonite saturation state changes of about 0.001 and 0.02 respectively), are small compared to the changes predicted from increasing atmospheric CO$_2$ thereby allowing us to assume that the CARS salinity used has not changed in our calculations.

Sea surface temperature (SST) measurements from 1870 to the present day were obtained from the HadISST v1.1 dataset (1°x1°; Rayner et al., 2003). Higher resolution datasets do exist, e.g. NOAA OI V2 (0.25° x 0.25°; Reynolds et al., 2007), but none have estimates beyond the last 3 decades, and we chose the 1°x1° product to extend our reconstruction back to pre-industrial period.

This approach calculates the magnitude of the seasonal cycle of DIC, rather than pCO$_2$. The pCO$_2$ seasonality changes over time in response to changes in the Revelle factor and will influence the air-sea gradient in pCO$_2$, which drives net flux across the air-sea boundary e.g. Hauck and Völker (2015). To correct for this, we first calculated the (detrended) seasonal anomaly of DIC in the period 1995-2006. We then added this seasonal cycle of DIC to the (deseasonalised) long-term DIC record (1870-2013). This allows us to reconstruct the historical DIC fields and the changes in the magnitude of the oceanic pCO$_2$ in response to the Revelle Factor to be captured.

We then added this seasonal cycle to the deseasonalised long-term DIC record (1870-
reconstructed DIC fields, thereby allowing pCO$_2$ to change. The reconstructed DIC fields were then used in conjunction with our derived alkalinity fields to calculate changes in ocean acidification in the period 1870-2013. As the resolution of SST and pCO$_2$ fields are nominally 1°x1° monthly fields, all values were calculated on a 1°x1° grid at in-situ temperatures. The values of pH are calculated using the total scale following recommendations of Riebesell et al. (2010) while aragonite and calcite saturation states were calculated following Mucci (1983). To assess the uncertainty in the reconstructed ocean acidification values, we compared these with the values calculated from individual cruises, this allowed us to estimate the uncertainty (as the root mean squared error) to be 0.02 and 0.1 in pH and aragonite saturation state respectively.

4. Results and Discussion

4.1 Assessment of the mean state and seasonal variability at coastal NRS sites

The ability of our reconstruction to predict the mean state and seasonality of ocean acidification around Australia is evaluated by comparing our calculated aragonite saturation state and SST data with carbonate chemistry and SST measurements made over the last few years from seven of the eight Australian IMOS-NRS sites (Figure 2; https://imos.aodn.org.au). The Darwin NRS site was not used in the comparison due to the small number of measurements at this site. To assess how well the observed response at the NRS sites were captured, we calculated both the correlation coefficient (R) and the bias (or bias function) (Table 2).

The observed responses from the NRS sites compared with HadiSST are shown in Figure 3. There is a good correlation in SST at all sites ($r > 0.84$, Table 2) providing confidence that HadiSST represent the character of the seasonal variability. While HadiSST captures the SST variability there were some biases in the mean SST value (Table 2). These biases, e.g. Rottnest Island, likely reflect local process in the coastal environment at the NRS e.g. Lima and Wethey (2012) that are poorly represented by the much larger spatial scale of the HadiSST product.

The reconstructed aragonite saturation state (Ω_{AR}) show good agreement with values calculated from observations (Figure 4). The implication is that the salinity - total alkalinity relationship and calculated pCO$_2$ fields, which are derived mostly from
offshore data, are valid for most of the IMOS-NRS sites, which tend to be located on
the outer shelf. Exceptions are the Ningaloo and Yongala sites, where our
reconstruction overestimates the observed values of aragonite saturation state while
SST agrees well with HadiSST (Table 2). The total alkalinity -salinity relationship
may not hold at these two sites due to the influence of net calcification on nearby
coral reef systems and possibly sediment-water exchange that could alter the total
alkalinity e.g. Shaw et al. (2012).

Apart from the offsets at the Yongala and Ningaloo sites, the reconstructed aragonite
saturation state do recreate the range determined at most locations (e.g. Maria Island,
Port Hacking, Rottnest, and North Stradbroke Island). Limited sampling at Kangaroo
Island, Esperance and Ningaloo sites prevent direct comparisons of the seasonal
variability although the reconstructed variability is plausible based on available
measurements.

Overall the ability of our reconstruction to capture the mean state and variability of
ocean acidification at the IMOS-NRS sites, gives us confidence in the reconstruction
of ocean acidification in the shelf and offshore waters around Australia, and to extend
back in time.

4.2 Annual mean state

The mean state of aragonite saturation state around Australia for the period 2000-2009
is shown in Figure 5. The mean state shows a strong latitudinal gradient in aragonite
saturation increasing from values of 1.8 in the southern part of the domain to values
greater than 3.9 across Northern Australia and into the Coral Sea. The Coral Sea and
Western Pacific form part of the coral triangle, a globally significant region in terms
of coral and marine diversity (Bell et al., 2011). We see that our reconstructed values
in the Coral Sea and into the Western Pacific are also consistent with the
observational values of 3.9 calculated by Kuchinke et al. (2014) in this region. This
value is well above 3.5, considered to be a key threshold at which corals move from
healthy to marginal conditions (Guinotte et al., 2003).

Ricke et al. (2013), using results from an ensemble of CMIP5 simulations and
GLODAP data reported that in the Coral Sea, the present-day values of aragonite saturation state are much less than the 3.5 threshold (Guinotte et al., 2003). These differences are explained by the correction of CMIP5 simulations to GLODAP DIC and ALK values (Key et al., 2004) that have very few measurements in this region.

The annual mean state of pH for the period 2000-2009 is shown in Figure 5. In contrast with aragonite saturation state there is a increasing latitudinal gradient from ~8.1 in Northern Australia to ~8.14 in Southern Australia. The reconstructed values show good agreement on the southern Papua New Guinea coast with Milne Bay observations of Fabricius et al. (2011). However, south of Australia, the pH decreases again to values comparable with those seen in Northern Australia.

The spatial gradients of pH and aragonite saturation state as function of latitude are consistent with the gradients calculated from observations of carbonate chemistry from GLODAP (Key et al., 2004). The distribution of aragonite saturation state is set by both the large-scale distribution of SST, which shows a strong latitudinal gradient, and ALK. Consequently the spatial differences between aragonite saturation state and pH are driven by temperature e.g. Zeebe and Wolf-Galdrow (2001).

4.3 The Seasonal Cycle

The seasonal standard deviation (2-sigma) of aragonite saturation state and pH reveal large spatial differences in the magnitude of the seasonal variability (Figure 5, lower panels). Large seasonality in aragonite saturation state is evident, > 0.4 units. This spatial pattern of this seasonality is quite heterogeneous, with the largest variability occurring along the East Coast of Australia, in the Tasman Sea, and off Southern Australia. The low seasonal variability predicted in the Coral Sea means that aragonite saturation state is above 3.5 even in the winter months. Strong and heterogeneous seasonality in pH is also present, > 0.06 units, around Australia, with the largest range in Southern Australia.

The locations of large seasonality in aragonite saturation state and pH off Southern Australia are associated with regions of deep winter mixing >200m (Condie and Dunn, 2006). Here, the seasonal deepening of the mixed layer in winter supplies
carbon, alkalinity and nutrients to the surface ocean, which in turn alter the chemistry of the surface waters inducing large seasonal variability in ocean acidification values in the surface ocean. That the large seasonal variability in aragonite saturation state is not associated with large seasonal variability in pH along the East Coast of Australia and in the Tasman Sea, suggests that the dominant driver of seasonality variability is SST rather than ocean dynamics, as evident in other regions.

An important consequence of the uncoupling of the pattern of pH and aragonite saturation state is that the biological responses to ocean acidification at the seasonal scale may shift as the susceptibility to pH and aragonite saturation varies between organisms. This has implications for understanding ecosystem responses to ocean acidification.

Small areas of large seasonal variability are also present along parts off northern Australia and off Papua New Guinea. These are primarily driven by large seasonal changes in sea surface salinity driving changes in total alkalinity and DIC which influences the pH and aragonite saturation state.

4.4 Comparison with Takahashi et al (2014)

In this section the reconstructed annual mean and seasonality of pH and aragonite saturation state are compared with that calculated for 2005 (Takahashi et al., 2014); hereafter-denoted T14 (Figure 6). The data of T14 are based on oceanic pCO$_2$ measurements and regional potential alkalinity versus salinity relationships, at a resolution of 4°x5°. Since T14 excludes Equatorial Pacific (north of 8°S) data and coastal data, we can only compare our results T14 away from these regions.

The T14 spatial pattern of annual mean of aragonite saturation state appears to be in reasonable agreement with our reconstruction for most waters around Australia. An exception is off Northwestern Australia where the mean aragonite saturation state of T14 appears to be an under-estimate. Large differences in the seasonal changes also occur off the east coast of Australia and to the South of Australia. The magnitude of the seasonal variability (in T14) is lower than our reconstruction.
The pH values of T14 and our reconstruction both show the highest values in the subtropical waters, although T14 mean values are higher off eastern Australia and lower to the South of Australia. Overall there is quite poor agreement in both the magnitude and spatial pattern of pH variability for most regions.

That the spatial pattern of seasonal cycle of aragonite state is not reproduced along the East Coast of Australia and in the Tasman Sea and the variability in Southern Australia is not seen in either pH nor aragonite saturation state suggested that while the seasonal response of SST is captured in T14, the seasonal ocean dynamics are not well represented. Furthermore the underestimation of the magnitude of the seasonal cycle, particularly in regions in which the pattern of the seasonal cycle is reproduced, likely reflects the coarser resolution of T14 the product than the reconstruction (4°x5° vs. 1°x1°) and the spatial interpolation required to generate T14.

As result of this analysis we believe that in the Australian region our reconstruction offers an improved and higher resolution representation of the mean state and seasonality than T14. This comparison also underscores the need for such ongoing regional analyses, and the limitations of using large-scale global products such as T14 to understand regional variability and change.

4.5 Historical Changes

Historical change in ocean acidification since 1870 is represented in Figure 7 by the changes in the mean annual values of pH and aragonite saturation state between the period 1870-1889 and 1990-2009 (Figure 7). The corresponding changes in sea surface temperature (HadiSST; Rayner et al., 2003) are shown over the same period, indicating a small net warming of the waters around Australia. This warming has been relatively uniform with the exception of the northern edge of the Southern Ocean, and Southeastern Australia which is identified as a marine hotspot by Hobday and Pecl (2013). The ocean acidification changes due to ocean carbon uptake driven by increasing atmospheric CO2, rather than changes in SST. The changes with time in pH and saturation state at the IMOS-NRS sites are plotted in Figure 9.

Our reconstruction shows the oceanic carbon uptake over the last 120 years has
resulted in a (spatial) mean decrease in aragonite saturation state of 0.49. As illustrated in Figure 9 these decreases are not constant with time and the change in aragonite saturation state is accelerating. There is also a strong latitudinal gradient in magnitude of the decrease, with larger changes occurring in Northern Australian waters and smaller changes to the south. However the largest decreases in aragonite saturation state (>0.6) have occurred in the Tasman Sea and along the southern coast of Australia. These large changes are illustrated at the NRS sites Port Hacking, Ningaloo and Kangaroo Island (Figure 10). This pattern of change around Australia is consistent with large-scale chemical buffering capacity of the ocean (Revelle factor) which increases from ~ 9 at the equator to >11 at bottom of the study region e.g. Sabine et al. (2004).

Consistent with aragonite saturation state over the last 120 years there has been a net decrease in pH of 0.09 units, very close to the estimated global decrease of 0.1 pH by (Caldeira and Wickett, 2003) over a similar period. Consistent with aragonite saturation a strong latitudinal gradient in pH is evident, but it is the inverse. The largest changes in pH have occurred in Southern Australia e.g. Maria Island (Figure 9), with the smallest changes in Northern Australian waters (e.g. Yongala (Figure 9) is about 75% of the change experienced in the south). This spatial response of pH is primarily set by the gradient of ocean mean temperature that acts to increase pH in colder waters (Figure 8).

4.6 Interannual Variability

Our reconstruction simulates the magnitude of interannual variability around Australia (Figure 7) in pH and aragonite saturation state over the period 1870-2013. The magnitude of the interannual variability at the 2-σ level was also calculated after the long-term trend in aragonite saturation state and pH were removed using a 20-year running mean filter (Figure 9).

We see that the magnitude of the interannual variability in aragonite saturation state from the reconstruction is small (0.05 domain averaged; 2-σ) and spatially quite heterogeneous; with the largest interannual variability in aragonite saturation state occurring in the far eastern Tasman Sea associated with the largest interannual
variability in SST. In contrast the smallest variability is seen along the boundary of
the Southern Ocean where SST interannual variability is least. Consistent with
aragonite saturation state the pH interannual variability is small (0.002 domain
averaged; 2-σ) around Australia. While there appears to be more spatial heterogeneity
in the response of pH, the magnitude is very small. Nevertheless, we do see areas of
concomitant variability in pH and aragonite saturation state suggesting that in these
regions there is interannual variability in the supply of carbon and nutrients to the
surface ocean, which in turn would alter the chemistry of the surface waters rather
than SST changes alone.

To put the interannual variability in aragonite saturation state and pH in context we
calculate the ratio of seasonal variability to interannual variability in Figure 10. The
dominant scale of variability is seasonal for both aragonite saturation state and pH,
however there is a distinct spatial pattern to this ratio (Figure 10). For aragonite
saturation state, the seasonal variability is larger than interannual variability in the
South, while the ratio of seasonal variability is much closer to the magnitude of
interannual variability in the Coral Sea. This means that observationally separating
seasonal changes from interannual changes will be challenging, and may have
implications for interpreting observational records. By contrast, around most of
Australia the seasonal variability in pH dominates interannual variability with the
exception of the Tasman Sea and is much larger than the ratio for aragonite saturation
state. In the Tasman Sea, the magnitude of the seasonal variability is close to unity
suggesting that in this region it would again be difficult to separate seasonal changes
from interannual changes.

4.7 Robustness of the reconstruction

The interannual variability and trend in aragonite saturation state and pH in the
reconstruction as presented are driven wholly by SST and atmospheric CO₂, and
thereby neglects any changes in interannual variability due to changes in salinity and
biological production. Observationally, studies have suggested that in some regions
around Australia changes in salinity over the last 50 years have occurred e.g. Durack
and Wijffels (2010), while other regions have remained constant over the last 200
years e.g. Calvo et al. (2007). If we assume, consistent with (Durack et al., 2012), that the changes are related to evaporation – precipitation (E-P) rather than local riverine input which can have large local inputs of DIC, ALK and potentially nutrients (Hieronymus and Walin, 2013), then any increase in salinity can be treated as freshwater input only. Consequently given the small trends, relative to the mean, and the very low sensitivity of oceanic pCO$_2$ to freshwater input (< 1%), it is highly unlikely that such changes would make such a significant difference on pH or aragonite over the last 50 years. This is perhaps not surprising given that freshwater water changes are a dilution flux acting equally on DIC and total alkalinity (Lenton et al., 2012).

The nutrients driving variability in ocean acidification are also not considered in this study, as we assume that nutrients are zero around Australia. While this is not strictly true, most waters around Australia are oligotrophic in nature (Condie and Dunn, 2006). If the climatological values of silicate and nitrate from CARS (Ridgway et al., 2002) are used to calculate carbonate chemistry, we find only a small bias (0.0007 in aragonite saturation state and 0.005 in pH) in our reconstruction. While we would like to have used a time-evolving field, analogous to salinity, at present no long-term time series are available to use in this reconstruction.

In this study we assumed that the seasonal air-sea disequilibrium (ΔpCO$_2$) is seasonally time invariant i.e. no interannual variability, in the absence of longer-term observational datasets of oceanic pCO$_2$. At present products the existing products of oceanic pCO$_2$ fields that do exist e.g. (Landschützer et al., 2014) typically only extend back in time several decades reflecting the limit of historical observations. Consequently these products can not be used to reconstruct long-term changes in ocean acidification.

In reality oceanic pCO$_2$ will be impacted by changes in ocean dynamics and biological production. As primary production is very low around much of Australia (Condie and Dunn, 2006) (<0.2 mgm$^{-3}$) it is unlikely that even a doubling of primary productivity in response to changes in nutrient supply could induce large changes in oceanic pCO$_2$ around Australia. Consequently it is unlikely that variability in primary production plays a large role in modulating oceanic pCO$_2$ levels. In response to changes in circulation only the variability in SST in the carbonate chemistry is
accounted for in our reconstruction. While this variability maybe important at shorter-
term timescales e.g. Sitch et al (2015) it is still not clear how important these changes
are at decadal and longer timescales (Fay and McKinley, 2013). This highlights the
need for products based on sustained long-term observations to better understand and
characterize variability and change in ocean acidification.

5. Conclusion

To explore how Australia’s marine environment has changed, we have synthesized
newly acquired in situ observations of carbon chemistry around Australia to: (i)
provide an new estimate of the mean state of pH and aragonite saturation state, (ii)
estimate seasonal and interannual variability since 1870; and (iii) reconstruct the
changes in ocean acidification around Australia since 1870.

In this work we developed a new alkalinity-salinity relationship for the Australian
region. This relationship was used in conjunction with observed salinity and oceanic
and atmospheric CO₂ and SST data, to reconstruct the present and past changes in pH
and aragonite saturation state. Our reconstructed fields were compared against the
Takahashi et al (2014) climatology and high-resolution data collected at the IMOS-
NRS sites. We found good agreement between our reconstructed fields for the
observed annual mean and seasonal cycles at the shelf IMOS-NRS sites except
regions such as the Great Barrier Reef where nearshore processes and coral reef
metabolism could alter the pH and saturation state.

Our regional reconstruction provides much higher spatial and temporal resolution than
previous global estimates. This highlights the importance of regional analysis and
reconstructions in estimating and understanding region changes. An important result
of this study is that at present the Coral Sea is not experiencing marginal conditions
(values of aragonite saturation state < 3.5) with respect to ocean acidification as has
been suggested.

Large changes in aragonite saturation state and pH have occurred over the last 140
years in response to increasing oceanic uptake of atmospheric CO₂. A net (spatial)
mean decrease in pH of 0.09 is seen in the period (1990-2009) – (1889-1870),
together with a net decrease in aragonite saturation state of 0.49, both of which are
consistent with previous estimates of the historical trends. Importantly, due to ocean
chemistry, the spatial pattern of the change in aragonite saturation state and pH are different. In this study we found the largest changes in aragonite saturation state occurred at mid and low latitudes, and the largest changes in pH occurred at higher latitudes.

The large seasonal variability around Australia is heterogeneous, with distinctly different spatial patterns in aragonite saturation state and pH apart from South of Australia where variability is driven by deep winter mixing. For aragonite saturation state, large seasonal variability occurs off the East Coast of Australia and in Tasman Sea driven by seasonal variability in ocean temperatures. Generally, the magnitude of seasonal variability exceeds IAV in the Australian region with the exception of pH in Tasman Sea, and aragonite saturation state in the tropical ocean. In these regions the magnitude of interannual variability is comparable to seasonal variability, which has potential implications for interpreting observed biological changes over different timescales.

The variability in aragonite saturation state and pH are spatially different over regional scales and all time scales, implying that biological responses and impacts are likely vary. Further, this suggests that both pH and aragonite (or calcite) saturation state need to be considered independently in assessing ecosystem responses and changes.

The goal of this historical reconstruction also provides useful information to link with biological observations to help understand observed changes and aid in the design of future work, thereby elucidating the consequences of Ocean Acidification. To facilitate this all of the reconstructed data is available at http://imos.aodn.org.au

6. Acknowledgments

AL, BT and RJM acknowledge support from the Australian Climate Change Science Program. TPS would like to acknowledge funding support for the CSIRO carbon cluster. YN was supported by JSPS KAKENHI Grant Number 26220102. The authors would like to thank the Integrated Marine Observing System (IMOS) for providing data from the Australian National Research Sites (NRSs), and Kate Berry and Kristina Patterson for their analysis of the observed carbon data.
7. References

M. R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J.,
Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T.,
Tilbrook, B., van der Werf, G. R., Viomy, N., Wang, Y. P., Wanninkhof, R., Wiltshire, A.,
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G. H.,
Wanninkhof, R., Feely, R. A., and Key, R. M.: Global relationships of total alkalinity with
salinity and temperature in surface waters of the world's oceans, Geophys Res Lett, 33, - , Artn
Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R. J., Roy, T., Sutherland, S. C.,
Sweeney, C., and Tilbrook, B.: The observed evolution of oceanic pCO(2) and its drivers over
the last two decades, Global Biogeochemical Cycles, 26, Artn Gb2021, Doi
Lima, F. P., and Wethey, D. S.: Three decades of high-resolution coastal sea surface
temperatures reveal more than warming, Nat Commun, 3, Artn 704
Doi 10.1038/Ncomms1713, 2012.
Washington, D.C., 184 pp., 2010
Mishonov, T. E., NOAA Atlas NESDIS 73, 40 pp, 2013
Lynch, T. P., Morello, E. B., Evans, K., Richardson, A., Rochester, J. W. C., Steinberg, C. R.,
Roughan, M., Thompson, P., Middleton, J. F., Feng, M., Sherrington, R., Brando, V.,
National Reference Stations: a continental wide physical, chemical and biological coastal
Matear, R. J., and Lenton, A.: Quantifying the impact of ocean acidification on our future
Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz, Measurement of the
apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol.
Mucci, A.: The Solubility of Calcite and Aragonite in Seawater at Various Salinities,

7. Figures and Tables

Figure 1 Locations (circles) of the concomitant measurements of alkalinity and salinity used to develop a new salinity-alkalinity relationship for the Australian Region, the cruises are listed in Table 1. Overlain on this plot (red triangles) are the locations of IMOS National Reference Stations (NRS) used in this study.
Figure 2 The new salinity-alkalinity relationship developed for the Australian Region based on observations (Figure 1) collected in the period 1992-2011. The individual cruises are listed in Table 1.
Figure 3 Comparison of sea surface temperature from the observations at the IMOS National Research Stations with HadiSST (Rayner et al, 2003)
Figure 4 Comparison of aragonite saturation state (Ω_{AR}) from the observations at the IMOS National Research Stations with the reconstructed values.
Figure 5 Upper: the reconstructed annual mean aragonite saturation state and pH for the period 2000-2009; Lower: the seasonal variability given by 2 times the standard deviation (2-σ) of the seasonal variability in aragonite saturation state and pH from the period 2000-2009.
Figure 6 Upper: the annual mean aragonite saturation state and pH for 2005 from Takahashi et al (2014); Lower: standard deviation (2σ) of the seasonal variability in aragonite saturation state and pH for 2005 from Takahashi et al (2014).
Figure 7 Annual mean 120-year differences (2000-2009 and 1880-1889) in aragonite saturation state and pH (upper); Lower, the interannual variability (IAV) in aragonite saturation state and pH (2σ) over same period
Figure 8 Annual mean 120-year differences (2000-2009 and 1880-1889) in SST (upper); Lower, the interannual variability (IAV) in SST (2σ) over same period. SST data from HadiSST (Rayner et al, 2003).
Figure 9 Reconstructed time series of annual mean aragonite saturation state (upper) and pH (lower) at the IMOS-NRSs. Overlain on the upper plot is the threshold for the transition to marginal conditions for coral reefs (3.5) from Guinotte et al. (2003)
<table>
<thead>
<tr>
<th>Voyage</th>
<th>Region/Expocode</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Period</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section P13</td>
<td>West Pacific 31VIC92_0_1_2</td>
<td>0°S - 5°S</td>
<td>164°E - 165°E</td>
<td>Oct 1992</td>
<td>13</td>
</tr>
<tr>
<td>Section P10</td>
<td>West Pacific 3250TN026/1</td>
<td>0°S - 5°S</td>
<td>145°E - 146°E</td>
<td>Oct 1993</td>
<td>11</td>
</tr>
<tr>
<td>Section P21</td>
<td>Coral Sea 318M19940327</td>
<td>17°S - 25°S</td>
<td>155°E - 170°E</td>
<td>Jun 1994</td>
<td>49</td>
</tr>
<tr>
<td>Section P9</td>
<td>West Pacific 49RY9407_1</td>
<td>0°S - 3°S</td>
<td>142°E - 143°E</td>
<td>Aug 1994</td>
<td>7</td>
</tr>
<tr>
<td>Section IBS/19S</td>
<td>Indian Ocean 316N145_5</td>
<td>32°S - 45°S</td>
<td>95°E - 115°E</td>
<td>Dec 1994 - Jan 1995</td>
<td>29</td>
</tr>
<tr>
<td>Section I9N</td>
<td>Indian Ocean 316N145_6</td>
<td>0°S - 32°S</td>
<td>93°E - 106°E</td>
<td>Jan 1995 - Feb 1995</td>
<td>100</td>
</tr>
<tr>
<td>Section SR3</td>
<td>Southern Ocean AR9404_1</td>
<td>44°S - 45°S</td>
<td>146°E - 147°E</td>
<td>Jan 1995 - Feb 1995</td>
<td>5</td>
</tr>
<tr>
<td>Section IBN/15E</td>
<td>Indian Ocean 316N145_7</td>
<td>31°S - 34°S</td>
<td>91°E - 115°E</td>
<td>Apr 1995</td>
<td>57</td>
</tr>
<tr>
<td>Section I3</td>
<td>Indian Ocean 316N145_8</td>
<td>20°S - 22°S</td>
<td>90°E - 114°E</td>
<td>Apr 1995 - May 1995</td>
<td>31</td>
</tr>
<tr>
<td>Section</td>
<td>West Pacific 49HG19950414</td>
<td>1°S - 35°S</td>
<td>153°E - 163°E</td>
<td>Apr 1995 - May 1995</td>
<td>25</td>
</tr>
<tr>
<td>Section I10</td>
<td>Indian Ocean 316N145_13</td>
<td>9°S - 25°S</td>
<td>106°E - 112°E</td>
<td>Nov 1995</td>
<td>76</td>
</tr>
<tr>
<td>Section I2</td>
<td>Indian Ocean 316N145_14_15</td>
<td>8°S - 9°S</td>
<td>90°E - 106°E</td>
<td>Dec 1995</td>
<td>37</td>
</tr>
<tr>
<td>Section I2</td>
<td>Indian Ocean 09AR20000927</td>
<td>28°S - 34°S</td>
<td>94°E - 115°E</td>
<td>Sep 2000 - Nov 2000</td>
<td>66</td>
</tr>
<tr>
<td>Section SR3</td>
<td>Southern Ocean 09AR20011029</td>
<td>44°S - 45°S</td>
<td>146°E - 147°E</td>
<td>Oct 2001</td>
<td>7</td>
</tr>
<tr>
<td>Section I5</td>
<td>Indian Ocean 74AB20020301</td>
<td>31°S - 35°S</td>
<td>91°E - 115°E</td>
<td>Apr 2002</td>
<td>34</td>
</tr>
<tr>
<td>OISO-10</td>
<td>Southern Ocean 35MF20030123</td>
<td>45°S</td>
<td>146°E</td>
<td>Jan 2003</td>
<td>5</td>
</tr>
<tr>
<td>Section P6W</td>
<td>West Pacific 49NZ20030803</td>
<td>30°S</td>
<td>154°E - 170°E</td>
<td>Aug 2003</td>
<td>40</td>
</tr>
<tr>
<td>Section I3</td>
<td>Indian Ocean 49NZ20031209</td>
<td>20°S - 22°S</td>
<td>90°E - 113°E</td>
<td>Jan 2004</td>
<td>33</td>
</tr>
<tr>
<td>Section I9S</td>
<td>Southern Ocean 109S_09AR20041</td>
<td>35°S - 44°S</td>
<td>115°E</td>
<td>Dec 2004</td>
<td>18</td>
</tr>
<tr>
<td>Section P10</td>
<td>West Pacific 49NZ20050525</td>
<td>0°S - 4°S</td>
<td>145°E - 146°E</td>
<td>Jun 2005</td>
<td>18</td>
</tr>
<tr>
<td>Section I8S</td>
<td>Indian Ocean 108S_33RR20070</td>
<td>28°S - 45°S</td>
<td>94°E - 95°E</td>
<td>Mar 2007</td>
<td>79</td>
</tr>
<tr>
<td>Section I9N</td>
<td>Indian Ocean 109N_33RR20070</td>
<td>0°S - 28°S</td>
<td>93°E - 95°E</td>
<td>Mar 2007 - Apr 2007</td>
<td>103</td>
</tr>
<tr>
<td>Section I5</td>
<td>Indian Ocean 105_33RR200903</td>
<td>31°S - 35°S</td>
<td>90°E - 115°E</td>
<td>Apr 2009 - May 2009</td>
<td>128</td>
</tr>
<tr>
<td>Section P21</td>
<td>West Pacific 49NZ20090521</td>
<td>18°S - 25°S</td>
<td>154°E - 170°E</td>
<td>Jun 2009</td>
<td>52</td>
</tr>
<tr>
<td>Section P6W</td>
<td>West Pacific 318M20091121</td>
<td>30°S</td>
<td>154°E - 170°E</td>
<td>Nov 2009 - Dec 2009</td>
<td>93</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----</td>
</tr>
<tr>
<td>SS201004</td>
<td>Indian Ocean 21°S - 23°S</td>
<td>112°E - 115°E</td>
<td>May 2010</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2772</td>
</tr>
</tbody>
</table>

1 http://cdiac.ornl.gov/ftp/oceans/

Table 1. Cruise data used to derive the salinity versus total alkalinity relationship for surface waters in Australian regional seas.
Table 2: The locations of the NRS sites used in this study, along with the biases, correlation coefficient (R) between the SST and aragonite saturation state observed at the site with values from our reconstruction, HadSST and calculated omega, respectively. Also listed are the number of observations used in calculating the Biases and Correlations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Lat</th>
<th>Lon</th>
<th>SST - BIAS</th>
<th>SST - R</th>
<th>OmA - BIAS</th>
<th>OmA - R</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esperance</td>
<td>33° 56S</td>
<td>121°51E</td>
<td>0.8</td>
<td>0.93</td>
<td>0.09</td>
<td>-0.06</td>
<td>16</td>
</tr>
<tr>
<td>Kangaroo Island</td>
<td>35° 49S</td>
<td>136°27E</td>
<td>0.38</td>
<td>0.84</td>
<td>0.01</td>
<td>0.03</td>
<td>27</td>
</tr>
<tr>
<td>Maria Is</td>
<td>42° 36</td>
<td>148°14E</td>
<td>0.6</td>
<td>0.93</td>
<td>0.07</td>
<td>0.83</td>
<td>40</td>
</tr>
<tr>
<td>Rottnest Is</td>
<td>32° 25S</td>
<td>115°25S</td>
<td>1.01</td>
<td>0.92</td>
<td>0.06</td>
<td>0.26</td>
<td>33</td>
</tr>
<tr>
<td>Ningaloo</td>
<td>21° 52S</td>
<td>113°57S</td>
<td>0.08</td>
<td>0.95</td>
<td>0.17</td>
<td>0.62</td>
<td>11</td>
</tr>
<tr>
<td>Yongala</td>
<td>19° 19S</td>
<td>147°27S</td>
<td>0.13</td>
<td>0.94</td>
<td>0.27</td>
<td>0.45</td>
<td>37</td>
</tr>
<tr>
<td>Port Hacking</td>
<td>34° 5S</td>
<td>151°6S</td>
<td>0.82</td>
<td>0.89</td>
<td>0.09</td>
<td>0.58</td>
<td>46</td>
</tr>
<tr>
<td>North Stradbroke</td>
<td>27° 18S</td>
<td>153°6S</td>
<td>0.08</td>
<td>0.96</td>
<td>0.06</td>
<td>0.78</td>
<td>40</td>
</tr>
</tbody>
</table>